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Chapter 1

Introduction

1.1 Statistics versus Probability

Statistics versus Probability

I want to begin this course by discussing the difference between Probability Theory and
Statistics. Statisticians use the tools of Probability but reason from effects to causes rather
than from causes to effects. I want to try to say that again with a bit more detail but still
in a vague sort of way.

The standard view of scientific inference starts with a set of theories which make predic-
tions about the outcomes of an experiment as in the following table:

Theory Prediction
A 1
B 2
C 3

Now imagine that we actually conduct the experiment and see outcome 2. We infer that
theory B is correct (or at least that theories A and C are wrong). The question of how much
more faith put in B than before is subtle and has been much discussed. As usual theories can
easily be falsified – that is, shown to be wrong. But they are only shown to be right in the
sense that we try and fail to falsify them. If a theory makes many many correct predictions
in many contexts we start to treat it as if it were true; but one wrong prediction demands a
rethink.

Now we add Randomness to our little table because the outcomes of experiments are not
perfectly predictable, even in theory:

Theory Prediction
A Usually 1 sometimes 2 never 3
B Usually 2 sometimes 1 never 3
C Usually 3 sometimes 1 never 2
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4 CHAPTER 1. INTRODUCTION

Now imagine again that we see outcome 2. We now infer that Theory B is probably
correct, that Theory A is probably not correct, and that Theory C is wrong. Notice the
precision gained, when Theory C absolutely rules out outcome 2 but outcome 2 actually
happens – we can rule out theory C.

That leads me to summarize the difference between Probability and Statistics as follows:

• In Probability Theory: we construct the table by computing likely outcomes of
experiments. We predict what ought to happen if we do the experiment and some
specific theory holds.

• In Statistics we follow the inverse process. We use the table to draw inferences from
outcome of experiment – deciding how sure we are about which theory is correct. In
this course we consider the questions: how should we do draw these inferences and
how wrong are our inferences likely to be? Notice: our task is hopeless unless different
theories make different predictions – see future discussions of identifiable models.

I will start the course with Probability and switch after about 5 weeks to statistics.



Chapter 2

Probability

In this section I want to define the basic objects. I am going to give full precise definitions
and make lists of various properties – even prove some things rigorously – but then I am going
to give examples. In different versions of this course I require more or less understanding of
the objects being studied.

Definition: A Probability Space (or Sample Space) is an ordered triple (Ω,F , P ) with
the following properties:

• Ω is a set (it is the set of all possible outcomes of some experiment); elements of Ω are
denoted by the letter ω. They are called elementary outcomes.

• F is a family of subsets (we call these subsets events) of Ω with the property that F is
a σ-field (or Borel field or σ-algebra) – that is F has the following closure properties:

1. The empty set denoted ∅ and Ω are members of F .

2. A ∈ F implies Ac = {ω ∈ Ω : ω 6∈ A} ∈ F .

3. A1, A2, · · · in F implies A = ∪∞
i=1Ai ∈ F .

• P is a function whose domain is F and whose range is a subset of [0, 1]. The function
P must satisfy:

1. P (∅) = 0 and P (Ω) = 1.

2. Countable additivity: A1, A2, · · · pairwise disjoint (j 6= k Aj ∩ Ak = ∅)

P (∪∞
i=1Ai) =

∞
∑

i=1

P (Ai)

These axioms guarantee that we can compute probabilities by the usual rules, including
approximation. Here are some consequences of the axioms:

Ai ∈ F ; i = 1, 2, · · · implies ∩i Ai ∈ F
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6 CHAPTER 2. PROBABILITY

A1 ⊆ A2 ⊆ · · · implies P (∪Ai) = lim
n→∞

P (An)

A1 ⊃ A2 ⊃ · · · implies P (∩Ai) = lim
n→∞

P (An)

The last two of these three assertions are sometimes described by saying that P is contin-
uous. I don’t like this jargon because it does not agree very well with the standard meaning
of a continuous function. There is (in what I have presented so far) no well defined topology
or metric or other way to make precise the notion of a sequence of sets converging to a limit.

2.0.1 Examples

It seems wise to list a few examples of these triples which arise in various more or less
sophisticated probability problems.

Example 1: Three Cards Problem

I imagine I have three cards – stiff pieces of paper. One card is green on both sides. One
is red on both sides. The third card is green on one side and red on the other. I shuffle
up the three cards in some container and pick one out, sliding it out of its container and
onto the table in such a way that you can see only the colour on the side of the card which
is up on the table. Later, when I talk about conditional probability, I will be interested in
probabilities connected with the side which is face down on the table but here I just want
to list the elements of Ω and describe F and P .

I want you to imagine that the sides of the card are labelled (in your mind, not visibly
on the cards) in such a way that you can see that there are six sides of the card which could
end up being the one which is showing. One card, the RR card has red on both sides and
ω1 = RR1 means the first of these two sides is showing which ω2 = RR2 denotes the outcome
that the second of these two sides is showing. I use ω3 = RG1 to denote the outcome where
the Red / Green card is selected and the red side is up and ω4 = RG2 to denote the outcome
where the same card is drawn but the green side is up. The remaining two elementary
outcomes are ω5 = GG1 and ω6 = GG2 in what I hope is quite obvious notation.

So now Ω = {ω1, ω2, ω3, ω4, ω5, ω6} is the sample space with six elements. There are
many other possible notations for the elements of this sample space of course. I now turn to
describing F and P .

In problems where Ω is finite or countably infinite we almost always take F to be the
family of all possible subsets of Ω. So in this case F is the collection of all subsets of Ω. To
make a subset of Ω we must decide for each of the six elements of Ω whether or not to put
that element in the set. This makes 2 possible choices for ω1, then for each of these 2 choices
for ω2 and so on. So there are 26 = 64 subsets of Ω; all 64 are in F . In order to be definite
I will try to list the pattern:

F = {∅, {ω1}, . . . , {ω6}, {ω1, ω2}, {ω1, ω3}, . . . , {ω5, ω6}, . . . ,Ω}

My list includes 1 set with 0 elements, 6 sets with 1 element, 6 choose 2 sets with 2 elements
(total of 15), 6 choose 3 with 3 elements (20 such), 6 choose 4 (=15) with 4 elements, 6 with
5 elements and Ω.
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Finally I am supposed to describe P . The usual way, when Ω is finite, to assign proba-
bilities is to give some probability, say pi to the ith elementary outcome ωi. In our case it is
reasonable to assume that all 6 sides of the cards have the same chance of ending up visible
so all

pi = P ({ωi}) =
1

6
.

Then the probability of any subset of Ω is found by adding up the probabilities of the
elementary outcomes in that set. So, for instance

P ({ω1, ω3, ω4}) =
3

6
=

1

2
.

The event “the side showing is red” is a subset of Ω, namely,

{ω1, ω2, ω3}.
The event “the side face down is red” is also subset of Ω, namely,

{ω1, ω2, ω4}.
The event “the side face down is green” is

{ω3, ω5, ω6}.

Example 2: Coin Tossing till First Head Problem

Now imagine tossing a coin until you get “heads” which I denote H. To simplify the
problem I will assume that you quit tossing either when you get H OR when you have tossed
the coin three times without getting H. Letting T denote tails the elements of Ω are, in
obvious notation:

{ω1, ω2, ω3, ω4} ≡ {H, TH, TTH, TTT}
Again F is the collection of all 24 = 16 subsets of Ω and we specify P by assigning prob-
abilities to elementary outcomes. The most natural probabilities to assign are p1 = 1/2,
p2 = 1/4 and p3 = p4 = 1/8. I will return to this assumption when I discuss independence.

Example 3: Coin Tossing till First Head Problem, infinite case

Now imagine tossing the coin until you get “heads” no matter how many tosses are
required. Let ωk be a string of k tails T followed by H. Then

Ω = {ω0, ω1, ω2, · · · }
which has infinitely many elements. Again F is the collection of all subsets of Ω; the number
of such subsets is uncountably infinite so I won’t make a list! We specify P by assigning
probabilities to elementary outcomes. In order to add a bit to the example I will consider a
biased coin. The most natural probabilities to assign are then

pi = P ({ωi}) = p(1− p)i.

This list of numbers adds up to 1, as it must, to ensure P (Ω) = 1; you should recognize the
sum of a geometric series.
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Example 4: Coin Tossing forever

In order to discuss such things as the law of large numbers and many other probability
problems it is useful to imagine the conceptual experiment of tossing the coin forever. In
this case a single “elementary outcome”, ω is actually an infinite sequence of Hs and Ts.
One ω might be

HTHTHTHTHTHTHT · · ·
where the heads and tails alternate for ever. It would be typical to say

Ω = {ω = (ω1, ω2, . . .); such that each ωi ∈ {H, T}}.

You can think about how many elements there are in Ω by taking a typical ω and replacing
each H with a 1, then each T with a 0. Then put “0.” in front and think of the result as a
binary number between 0 and 1. So for instance the sequence above of alternating 0s and 1s
is

ω = 0.1010101010 · · · = 1

2

(

1 +
1

4
+

(

1

4

)2

+ · · ·
)

which is just 2/3 by summing a geometric series.
The summary is that there are as many elements in Ω as there are numbers between 0

and 1 – an uncountably infinite number. It turns out that this is the situation where we
just can’t cope, logically, with having F be the collection of all subsets of Ω. If you want to
know which subsets go into F you need to find out about Borel sets.

In fact we take F to be “the smallest σ-field” which contains all sets of the form

Bi ≡ {ω ∈ Ω : ωi = H}

which is the subset of Ω obtained by keeping only outcomes whose ith toss is H. There is
a bit of mathematical effort to prove the existence of any such “smallest” σ-field; it is the
intersection of all σ-fields which contain the given special sets. Much greater effort is needed
to understand the structure of this σ-field but I want to emphasize that if you can give a
truly clear and explicit description of a subset of Ω that subset will be a Borel set – a member
of F .

Finally we have to say something about how to compute probabilities. Let’s start with
an intuitive presentation using the idea that we might be talking about independent tosses
of a fair coin; I will define independence precisely later but for now I just want you to use
what you already know about independent events. Let

C = B1 ∩ Bc
2 ∩B3 ∩ Bc

4 ∩B5 ∩Bc
6 · · · .

The only point in C is the sequence of alternating heads and tails I wrote down up above.
So what is the probability of C. Certainly

P (C) ≥ P (B1 ∩ Bc
2 ∩B3 ∩ Bc

4 ∩B5 ∩Bc
6 · · ·Bc

2n)

for any n. For independent tosses of a fair coin we compute the probability of this intersection
by just multiplying 1/2 by itself 2n times to get 2−n. But if P (C) ≤ 2−n for all n then
P (C) = 0. In the same way we can check that P ({ω}) = 0 for every elementary outcome ω!
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This just means we cannot compute probabilities of an event by adding up probabilities
of elementary outcomes in the event – that always gives 0. Instead we use the idea of
independence and the assumption that the various Bi are independent and have probability
1/2 to compute any probability we want; sometimes this is hard.

2.1 Random Variables

:

Definition: A Vector valued random variable is a function function X : Ω 7→ Rp such
that, writing X = (X1, . . . , Xp),

P (X1 ≤ x1, . . . , Xp ≤ xp)

is defined for any constants (x1, . . . , xp). Formally the notation

X1 ≤ x1, . . . , Xp ≤ xp

describes a subset of Ω or event:

{ω ∈ Ω : X1(ω) ≤ x1, . . . , Xp(ω) ≤ xp} .

Remember X is a function on Ω so X1 is also a function on Ω; that is why we can stick in
the argument ω of the function.

ASIDE: In almost all of probability and statistics the dependence of a random variable
on a point in the probability space is hidden! You almost always see X not X(ω).

There is a subtle mathematical point being made here. Not every function from Ω to Rp

is a random variable or random vector. The problem is that the set

{ω ∈ Ω : X1(ω) ≤ x1, . . . , Xp(ω) ≤ xp}

might not be in F ! For our fourth example this is a potential mathematical (but not
practical) problem.

2.1.1 Borel sets

In this subsection I give a small presentation of the notion of Borel sets in Rp. The material
is not really part of this course.

Definition: The Borel σ-field in Rp is the smallest σ-field in Rp containing every open ball.

Definition: For clarity the open ball of radius r > 0 centred at x ∈ Rp is

{y ∈ Rp : ||y − x|| < r}

where

||u|| =

√

√

√

√

p
∑

1

u2
i
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for a vector u ∈ Rp. The quantity ||u|| is called the Euclidean norm of u; it is also the usual
notion of length of a vector.

Every common set is a Borel set, that is, in the Borel σ-field.

Definition: An Rp valued random variable is a map X : Ω 7→ Rp such that when A is
Borel then {ω ∈ Ω : X(ω) ∈ A} ∈ F . This is equivalent to

{ω ∈ Ω : X1(ω) ≤ x1, . . . , Xp(ω) ≤ xp} ∈ F

for all (x1, . . . , xp) ∈ Rp.
Jargon and notation: we write P (X ∈ A) for P ({ω ∈ Ω : X(ω) ∈ A}) and define the
distribution of X to be the map

A 7→ P (X ∈ A)

which is a probability on the set Rp with the Borel σ-field rather than the original Ω and F .
We also write

X−1(A) = {ω ∈ Ω : X(ω) ∈ A}
and call this set the inverse image of A under X . So the distribution of X is

PX(A) = P (X−1(A))

which is defined for all Borel sets A ∈ Rp.
Remark: The definition of a random variable depends only on the functions and the σ-fields
involved and NOT on the probability P .

Definition: The Cumulative Distribution Function (cdf) of X is the function FX on
Rp defined by

FX(x1, . . . , xp) = P (X1 ≤ x1, . . . , Xp ≤ xp) .

I will not always use the subscript X to indicate which random vector is being discussed.
When there is no real possibility of confusion I will just write F .

Here are some properties of F for p = 1:

1. 0 ≤ F (x) ≤ 1.

2. x > y ⇒ F (x) ≥ F (y) (monotone non-decreasing).

3. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

4. limxցy F (x) = F (y) (right continuous).

5. limxրy F (x) ≡ F (y−) exists.

6. F (x)− F (x−) = P (X = x).

7. FX(t) = FY (t) for all t implies that X and Y have the same distribution, that is,
P (X ∈ A) = P (Y ∈ A) for any (Borel) set A.
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Proof: The values of F are probabilities so they are between 0 and 1. If F is the cdf of X
and y < x then

{X ≤ y} ⊆ {X ≤ x}
so

F (y) = P (X ≤ y) ≤ P (X ≤ x) = F (x).

Since F is monotone the assertions about limits may be checked by considering a sequence
xn. For instance, to prove the first half of the third assertion we take xn to be any sequence
decreasing to −∞ – such as xn = −n, say. If

An = {X ≤ xn}

then

A1 ⊇ A2 ⊇ · · ·
and

∩∞
n=1An = ∅

so by the “continuity” of P

0 = P (∅) = lim
n→∞

P (An) = lim
n→∞

F (xn).

The argument at ∞ uses unions in place of intersections and a sequence xn increasing to ∞.
Assertion 4 considers a sequence xn decreasing to y and then with the Ai as above we

find

∩∞
n=1An = {X ≤ y}

so that right continuity of F comes from the continuity of P . Assertion 5 does the parallel
thing with unions and shows F (y−) = P (X < y).

Assertion 6 comes from the fact that

{X < x} ∪ {X = x} = {X ≤ x}.

The union is disjoint so

F (y−) + P (X = x) = F (y).

The final point, property 7, is much more sophisticated – much harder to prove. If you
want to read about it you can look at the appendix on Monotone Class arguments if I ever
get it done. •

For p = 1 any function F with properties 1, 2, 3 and 4 is the cumulative distribution
function of some random variable X . For p > 1 the situation is a bit more complicated.
Consider the case p = 2 and two points (u1, u2) and (v1, v2). If v1 ≥ u1 and v2 ≥ u2 then the
event X1 ≤ u1, X2 ≤ u2 is a subset of the event X1 ≤ v1, X2 ≤ v2. This means that

F (u1, u2) = P (X1 ≤ u1, X2 ≤ u2) ≤ P (X1 ≤ v1, X2 ≤ v2) = F (v1, v2).
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In this sense F is monotone non-decreasing. But even if F is continuous, monotone non-
decreasing and satisfies properties 1 and 3 above we cannot be sure it is a cdf. Think about
the rectangle

R ≡ {(x1, x2) : u1 < x1 ≤ v1, u2 < x2 ≤ v2}
The probability that X lands in this rectangle must be at least 0 but in terms of F you
should be able to check that

P (X ∈ R) = P (u1 < X1 ≤ v1, u2 < X2 ≤ v2)

= F (v1, v2)− F (u1, v2)− F (v1, u2) + F (u1, u2).

So this combination of values of F at the four corners of the rectangle must be non-negative.
For a thorough discussion of the properties of multivariate cumulative distributions see some
reference which I must add.

2.2 Discrete versus Continuous Distributions

Definition: The distribution of a random variable X is called discrete (we also say X is
discrete) if there is a countable set x1, x2, · · · such that

P (X ∈ {x1, x2 · · · }) = 1 =
∑

i

P (X = xi) .

In this case the discrete density or probability mass function of X is

fX(x) = P (X = x) .

Definition: The distribution of a random variable X is called absolutely continuous
(again we also say X is absolutely continuous) if there is a function f such that

P (X ∈ A) =

∫

A

f(x)dx (2.1)

for any (Borel) set A. This is a p dimensional integral in general. Equivalently

F (x) =

∫ x

−∞
f(y) dy .

Definition: Any f satisfying (??) is a density of X .
There are a few important warnings and observations here:

• Many statisticians use the word continuous instead of the phrase absolutely continuous
for this property.

• Others use the word continuous to mean only that F is a continuous function.
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• IfX is absolutely continuous then for most (almost all) x the function F is differentiable
at x and

F ′(x) = f(x) .

• Absolute continuity is the property which is needed for a function to be equal to the
integral of its derivative. If the function is continuously differentiable, for instance,
then it is continuous. If F is continuously differentiable except at a finite number of
points where it is continuous then F is absolutely continuous.

Example: The Uniform[0,1] distribution. We say that X is Uniform[0,1] if

F (x) =







0 x ≤ 0
x 0 < x < 1
1 x ≥ 1 .

which is equivalent to

f(x) =







1 0 < x < 1
undefined x ∈ {0, 1}
0 otherwise .

Example: The standard exponential distribution. We say that X is exponential with mean
1 (sometimes written Exp(1)) if

F (x) =

{

1− e−x x > 0
0 x ≤ 0 .

or equivalently

f(x) =







e−x x > 0
undefined x = 0
0 x < 0 .

Remark: I am not going to create notes on all the well known distributions. I expect you will
know something about all the famous distributions (including the uniform and exponential
distributions I just mentioned).

2.3 Independence, Conditioning and Bayes’ Theorem

2.4 Independence, conditional distributions and mod-

elling

When analyzing data statisticians need to specify a statistical model for the data. That is,
we regard the data as random variables and specify possible joint distributions for the data.
Sometimes the modelling proceeds by modelling the joint density of the data explicitly.
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More commonly, however, modelling amounts to a specification in terms of marginal and
conditional distributions.

We begin by describing independence. Our description is formal, mathematical and
precise. It should be said however that the definitions work two ways. Often we will assume
that events or random variables are independent. We will argue that such an assumption
is justified by a lack of causal connection between the events – in such a case knowledge of
whether or not one event happens should not affect the probability the other happens. This
is more subtle than it sounds, though, as we will see when we discuss Bayesian ideas.

Definition: Events A and B are independent if

P (AB) = P (A)P (B) .

(Notation: we often shorten the notation for intersections by omitting the intersection sign.
ThusAB is the event that both A and B happen, which is also written A ∩ B.)

Definition: A sequence of events Ai, i = 1, . . . , p are independent if

P (Ai1 · · ·Air) =

r
∏

j=1

P (Aij)

for any 1 ≤ i1 < · · · < ir ≤ p.

Example: If we have p = 3 independent events then the following equations hold:

P (A1A2A3) = P (A1)P (A2)P (A3)

P (A1A2) = P (A1)P (A2)

P (A1A3) = P (A1)P (A3)

P (A2A3) = P (A2)P (A3)

All these equations are needed for independence! If you have 4 events there are 11 equations;
for general p there are 2p − p− 1.

Example: Here is a small example to illustrate the fact that all these equations are really
needed. In the example there are three events any two of which are independent but where
it is not true that all three are independent. Toss a fair coin twice and define the following
events.

A1 = {first toss is a Head}
A2 = {second toss is a Head}
A3 = {first toss and second toss different}

Then P (Ai) = 1/2 for each i and for i 6= j

P (Ai ∩Aj) =
1

4



2.4. INDEPENDENCE, CONDITIONAL DISTRIBUTIONS AND MODELLING 15

but
P (A1 ∩A2 ∩A3) = 0 6= P (A1)P (A2)P (A3) .

Definition: We say that two random variables X and Y are independent if

P (X ∈ A; Y ∈ B) = P (X ∈ A)P (Y ∈ B)

for all A and B.

Definition: We say that a set of random variables X1, . . . , Xp are independent if, for any
A1, . . . , Ap, we have

P (X1 ∈ A1, · · · , Xp ∈ Ap) =

p
∏

i=1

P (Xi ∈ Ai).

Theorem 1 1. If X ∈ Rp and Y ∈ Rq are independent then for all x, y

FX,Y (x, y) = FX(x)FY (y) .

2. If X ∈ Rp and Y ∈ Rq are independent with joint density fX,Y (x, y) then X and Y
have densities fX and fY , and (for almost all, in the sense of Lebesgue measure) x and
y we have

fX,Y (x, y) = fX(x)fY (y) .

3. If X and Y independent with marginal densities fX and fY then (X, Y ) has a joint
density given by

fX,Y (x, y) = fX(x)fY (y) .

4. If FX,Y (x, y) = FX(x)FY (y) for all x, y then X and Y are independent.

5. If (X, Y ) has joint density f(x, y) and there exist g(x) and h(y) st f(x, y) = g(x)h(y)
for (almost) all (x, y) then X and Y are independent with densities given by

fX(x) = g(x)/

∫ ∞

−∞
g(u)du

fY (y) = h(y)/

∫ ∞

−∞
h(u)du .

6. If the pair (X, Y ) is discrete with joint probability mass function f(x, y) and there exist
functions g(x) and h(y) such that f(x, y) = g(x)h(y) for all (x, y) then X and Y are
independent with probability mass functions given by

fX(x) = g(x)/
∑

u

g(u)

and
fY (y) = h(y)/

∑

u

h(u) .
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Proof: Some of these assertions are quite technical – primarily those involving densities.
My class notes provide only the direct proofs. Here I give more detailed proofs but note that
they are based on ideas which are not really part of the course most years.

1. Since X and Y are independent so are the events X ≤ x and Y ≤ y; hence

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) .

2. It is notationally simpler to suppose X and Y real valued. General dimensions are not
really much harder, however. In assignment 2 I ask you to show that existence of the
joint density fX,Y implies the existence of marginal densities fX and fY . Since X, Y
have a joint density, we have, for any sets A and B

P (X ∈ A, Y ∈ B) =

∫

A

∫

B

fX,Y (x, y)dydx

P (X ∈ A)P (Y ∈ B) =

∫

A

fX(x)dx

∫

B

fY (y)dy

=

∫

A

∫

B

fX(x)fY (y)dydx .

Since P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

∫

A

∫

B

[fX,Y (x, y)− fX(x)fY (y)]dydx = 0 .

It follows (using ideas from measure theory) that the quantity in [] is 0 for almost every
pair (x, y).

3. For any A and B we have

P (X ∈ A, Y ∈B)

= P (X ∈ A)P (Y ∈ B)

=

∫

A

fX(x)dx

∫

B

fY (y)dy

=

∫

A

∫

B

fX(x)fY (y)dydx .

If we define g(x, y) = fX(x)fY (y) then we have proved that for C = A × B (the
Cartesian product of A and B)

P ((X, Y ) ∈ C) =

∫

C

g(x, y)dydx .

To prove that g is fX,Y we need only prove that this integral formula is valid for an
arbitrary Borel set C, not just a rectangle A× B.
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This is proved via a monotone class argument. The collection of sets C for which
identity holds has closure properties which guarantee that this collection includes the
Borel sets. Here are some details.

Definition: A collection M of subsets of some set E is called a monotone class if,
whenever A1, A2, . . . all belong to M and either

A1 ⊆ A2 ⊆ · · ·

or

A1 ⊇ A2 ⊇ · · ·
then, in the first case,

∪∞
i=1Ai ∈ M

and, in the second case,

∩∞
i=1Ai ∈ M.

Definition: A collection F of subsets of some set E is called a field if:

∅ ∈ F
A ∈ F =⇒ Ac ∈ F

A1, . . . , Ap ∈ F =⇒ ∪p
i=1Ai ∈ F .

This definition is simply the definition of a σ field but with the weaker requirement of
closure under finite rather than countable unions.

Lemma 1 The smallest monotone class containing a field F is the smallest σ-field
containing F .

Proof: The power set of E (the collection of all subsets of E) is both a σ-field and
a monotone class containing F . By “smallest” σ-field containing F we mean the
intersection of all σ-fields containing F ; the previous sentence says this is not an
empty intersection. The meaning of “smallest” monotone class is analogous. Let H
denote the smallest σ-field and M the smallest monotone class containing F .

Any σ field containing F is a monotone class so the smallest monotone class containing
F is a subset of the smallest σ-field containing F . That is, H ⊇ M. It remains to
prove the other direction. Let G be the collection of all sets A ∈ M such that Ac ∈ M.
If A ∈ calF then Ac ∈ F so G includes F . If A1 ⊆ A2 ⊆ · · · are all sets in G ⊆ M
then A ≡ ∪nAn ∈ M. On the other hand

Ac
1 ⊇ Ac

2 ⊇ · · ·
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are all sets in M. Since M is a monotone class we must have

∩nA
c
n ∈ M

but ∩nA
c
n = Ac so Ac ∈ M. That is, G is closed under monotone increasing unions

(one of the two properties of a monotone class.

Similarly if
A1 ⊇ A2 ⊇ · · ·

are all sets in G then A ≡ ∩nAn ∈ M and

Ac
1 ⊆ Ac

2 ⊆ · · ·

are all sets in M. Since M is a monotone class we must have

∪nA
c
n ∈ M.

But ∪nA
c
n = Ac so Ac ∈ M. Again we see that G is closed under monotone decreasing

unions. Thus G is a monotone class containing F . Since it was defined by taking only
sets from M we must have G = M. That is:

A ∈ M =⇒ Ac ∈ M.

Next I am going to show that M is closed under countable unions, that is, if A1, A2, . . .
are all in M then so is their union. (Notice that this union might not be a monotone
union.) If I can establish this assertion then I will have proved that M is a σ-field
containing F so M ⊇ H. This would finish the proof that M = H.

First fix a B ∈ F and let now G be the collection of all A ∈ M such that A∪B ∈ M.
Just as in the previous part of the argument prove that this new G is a monotone class
containing F . This shows G = M and that for every A ∈ M and every B ∈ F we
have A ∪ B ∈ M. Now let G be the collection of all B ∈ M such that for all A ∈ M
we have A ∪ B ∈ M. Again G contains F . Check that this third G is a monotone
class and deduce that for every A ∈ M and every B ∈ M we have A ∪ B ∈ M. In
other words: M is closed under finite unions (by induction on the number of sets in
the union).

We have now proved that M is a field and a monotone class. If A1, A2, . . . are all in
M define Bn = ∪n

i=1Ai. Then

(a) B1 ⊆ B2 ⊆ · · · .
(b) Each Bi ∈ M.

(c) A ≡ ∪nAn = ∪nBn

Since M is a monotone class this last union must be in M. That is ∪nAn ∈ M. This
proves M is a σ-field. •

4. Another monotone class argument.
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5.

P (X ∈ A, Y ∈ B) =

∫

A

∫

B

g(x)h(y)dydx

=

∫

A

g(x)dx

∫

B

h(y)dy .

Take B = R1 to see that

P (X ∈ A) = c1

∫

A

g(x)dx

where c1 =
∫

h(y)dy. So c1g is the density of X . Since
∫ ∫

fX,Y (xy)dxdy = 1 we see
that

∫

g(x)dx
∫

h(y)dy = 1 so that c1 = 1/
∫

g(x)dx. A similar argument works for Y .

6. The discrete case is easier.

Our next theorem asserts something students think is nearly obvious. It is proved by
another monotone class argument but the proof is less important than the meaning. The
idea is that if U , V , W , X , Y and Z are independent then, for instance U/V , W +X and
Y eZ are independent.

Theorem 2 If X1, . . . , Xp are independent and Yi = gi(Xi) then Y1, . . . , Yp are indepen-
dent. Moreover, (X1, . . . , Xq) and (Xq+1, . . . , Xp) are independent. Similarly X1, . . . , Xq1,
Xq1+1, . . . , Xq2 and so on are independent (provided q1 < q2 < · · · ).

Example: Suppose X and Y are independent standard exponential random variables. That
is, X and Y have joint density

fX,Y (x, y) = e−x1(x > 0)e−y1y > 0.

Let
U = min{X, Y } and W = max{X, Y }

I will find the joint cdf and joint density of U and W . Begin by considering the event
{U ≤ u,W ≤ w}. If u ≤ 0 or w ≤ 0 then the probability is 0 so now assume u > 0 and
w > 0. We then have

{U ≤ u,W ≤ w} = {min{X, Y } ≤ u,max{X, Y } −min{X, Y } ≤ w}
= {min{X, Y } ≤ u,max{X, Y } −min{X, Y } ≤ w,X < Y }

∪ {min{X, Y } ≤ u,max{X, Y } −min{X, Y } ≤ w,X > Y }
∪ {min{X, Y } ≤ u,max{X, Y } −min{X, Y } ≤ w,X = Y }

The first of these three events is

{X ≤ u,X < Y ≤ X + w}

while the second is
{Y ≤ u, Y < X ≤ Y + w}.
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The third event is a subset of {X = Y } which has probability 0. Thus

FU,W (u, w) = P (X ≤ u,X < Y ≤ X + w) + P (Y ≤ u, Y < X ≤ Y + w).

Since X and Y are independent and have the same distribution the two probabilities on the
right hand side are equal and we compute only the first. To do so we integrate the joint
density of the random variables over the set

{(x, y) : 0 < x ≤ u, x < y < x+ w}.

The second restriction makes it natural to integrate in the y direction first then in the x
direction second. We get

P (X ≤ u,X < Y ≤ X + w) =

∫ u

0

∫ x+w

x

e−xe−y dy dx.

The inside integral is just

e−x
(

e−x − e−(x+w)
)

= e−2x
(

1− e−w
)

so

P (X ≤ u,X < Y ≤ X + w) =
(

1− e−w
)

∫ u

0

e−2x dx =
(

1− e−w
) (

1− e−2u
)

/2.

Assembling the results we get

FU,W (u, w) =

{

(1− e−w) (1− e−2u) u, w > 0

0 otherwise.

This function can be rewritten using indicators

FU,W (u, w) =
(

1− e−w
)

1(w > 0)
(

1− e−2u
)

1(u > 0).

This evidently factors as the product FU(u)FW (w) where

FU(u) =
(

1− e−2u
)

1(u > 0)

FW (w) =
(

1− e−w
)

1(w > 0).

Thus we find U ⊥⊥ W and that U has an exponential distribution with mean 1/2 while W
has an exponential distribution with mean 1.

2.5 Conditional probability

The interpretation of probability as long run relative frequency motivates the following def-
initions of conditional probability. Suppose we have an experiment in which two events A
and B are defined and suppose that P (B) > 0. Imagine an infinite sequence of independent
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repetitions of the experiment. Amongst the first n repetitions there must be close to nP (B)
occasions where event B occurs in the sense that the ratio number of occurrences divided
by n gets close to (B). That is

# Bs in first n trials

n
→ P (B).

Also
# times both A and B occur in first n trials

n
→ P (AB).

So if we just pick out of the first n trials those trials where B occur and then see what
fraction of these also have A occurring we get

# times both A and B occur in first n trials

# Bs in first n trials
→ P (AB

P (B)
.

This leads to our basic definition.

Definition: We define the conditional probability of an event A given an event B with
P (B) > 0 by

P (A|B) = P (AB)/P (B).

Definition: For discrete random variables X and Y the conditional probability mass func-
tion of Y given X is

fY |X(y|x) = P (Y = y|X = x)

= fX,Y (x, y)/fX(x)

= fX,Y (x, y)/
∑

t

fX,Y (x, t)

For an absolutely continuous random variable X we have P (X = x) = 0 for all x. So
what is P (A|X = x) or fY |X(y|x) since we may not divide by 0? As is usual in mathematics
we define the ratio 0/0 by taking a suitable limit:

P (A|X = x) = lim
δx→0

P (A|x ≤ X ≤ x+ δx)

If, e.g., X, Y have joint density fX,Y then with A = {Y ≤ y} we have

P (A|x ≤ X ≤ x+ δx)

=
P (A ∩ {x ≤ X ≤ x+ δx})

P (x ≤ X ≤ x+ δx)

=

∫ y

−∞
∫ x+δx

x
fX,Y (u, v)dudv

∫ x+δx

x
fX(u)du

Divide the top and bottom by δx and let δx → 0. The denominator converges to fX(x); the
numerator converges to

∫ y

−∞
fX,Y (x, v)dv
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We now define the conditional cumulative distribution function of Y given X = x by

P (Y ≤ y|X = x) =

∫ y

−∞ fX,Y (x, v)dv

fX(x)

If we differentiate this formula by y we get the undergraduate definition of the conditional
density of Y given X = x, namely,

fY |X(y|x) = fX,Y (x, y)/fX(x) ;

in words we find “conditional = joint/marginal”.

Example: The 3 cards problem revisited. This is the problem where we have 3 cards – red
on both sides, green on both sides and red on one / green on the other. We draw a card and
see the colour on the side which is face up. Suppose we see Red. What is the chance the
side face down is Red?

Students sometimes think the answer is 1/2. They say: either I am looking at the all red
card or the red/green card. These are equally likely so this conditional probability is 1/2.
This is wrong – the two cards are not equally likely given that the side facing up is Red.

To see this clearly we should go back to the basics. Let A be the event that we see a red
side. In terms of the elementary outcomes in the example at the start of Chapter 2 we have

A = {ω1, ω2, ω3}.

Let B be the event that the side face down is red. Then

B = {ω1, ω2, ω4}.

We then have

P (B|A) = P (AB)

P (A)
=

2/6

3/6
=

2

3
.

It is also possible to do this more intuitively but to do so you have to be careful. You are
conditioning on the event that you are looking at 1 of the 3 red sides – all equally likely. Of
these three sides two have the property that the other side is red. That makes the conditional
probability 2/3.

2.5.1 Bayes Theorem

The definition of conditional probability shows that if P (A) > 0 and P (B) > 0 then we have

P (AB) = P (A|B)P (B) = P (B|A)P (A).

The crucial point about this observation is that one formula conditions on B and the other on
A. Bayes theorem just rewrites this formula to emphasize the change in order of conditioning:

Theorem 3 If A and B are two events with P (A) > 0 and P (B) > 0 then

P (B|A) = P (A|B)P (B)

P (A)
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It seems to me to be useful to relate this to some reasoning ideas. If a certain statement
P implies a statement Q then Q is always true whenever P is true. Of course if Q is not
true then neither is P . That is, the statement “not Q” implies the statement “not P”. In
terms of probabilities the analogy is that if P (B|A) = 1 then P (Ac|Bc) = 1 (assuming that
P (Bc) 6= 0). This follows from

P (Ac|Bc) =
P (AcBc)

P (Bc)

=
1− P (A ∪ B)

P (Bc)

=
1− P (A)− P (B) + P (B|A)P (A)

1− P (B)

=
1− P (A)− P (B) + P (A)

1− P (B)

=
1− P (B)

1− P (B)
= 1.

It is NOT a theorem of logic that if P implies Q then Q implies P . But there is a sense in
which if P usually happens and usually when P happens so does Q then Q usually happens
and when Q happens usually P does too. Let’s look at the formula with statements P and
Q replaced by events A and B. Imagine that P is “A happens” and Q is “B happens”.

Then
P (B|A)P (A) = P (A|B)P (B)

so if both terms on the left are nearly 1 (”usually happens”) then both terms on the right
must be nearly 1 (because if either were small the product would be too small to equal the
thing on the left which is nearly 1).

The idea underlying Bayes’ Theorem can be translated into the language of conditional
densities:

fX|Y =
fY |XfX
fY

Nowadays Bayesians like to write

(x|y) = (y|x)(x)/(y)

with the parentheses indicating densities and the letters indicating variables. This notation
uses the letter in the argument of a function to indicate which function is being discussed
and is at least a bit dangerous since

(1|2) = (2|1)(1)/(2)

doesn’t really tell you which variables are under discussion even though it a special case of
the formula above with x = 1 and y = 2.

More general formulas arise like

P (ABCD) = P (A|BCD)P (B|CD)P (C|D)P (D)
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This formula can be rewritten in many orders to get a variety of equivalent expressions which,
divided by some of the terms involved give theorems like that of Bayes. Also, if A1, . . . , Ak

are mutually exclusive and exhaustive then

P (A1|B) =
P (B|A1)P (A1)
∑

i P (B|Aj)P (Aj)

Bayes theorem is often written in this form. Of course the denominator is just P (B). I
remark that mutually exclusive means pairwise disjoint and exhaustive means

∪k
1Ai = Ω.

The density formula is really analogous to this more general looking version of Bayes’ theorem
since integrals are limits of sums and

fX|Y (x|y) =
fXY (x, y)

fY (y)
=

fY |X(y|x)fX(x)
∫

u
fXY (u, y)du

.



Chapter 3

Expectation and Moments

I begin by reviewing the usual undergraduate definitions of expected value. For absolutely
continuous random variables X we usually say:

Definition: If X has density f then

E{g(X)} =

∫

g(x)f(x) dx .

For discrete random variables we say:

Definition: If X has discrete density f then

E{g(X)} =
∑

x

g(x)f(x) .

There is something of a problem with these two definitions. They seem to define, for
instance, E(X2), in two different ways. If X has density fX then we would have

E(X2) =

∫

x2fX(x) dx.

But we could also define Y = X2 and try to figure out a density fY for Y . Then we would
have

E(Y ) =

∫

yfY (y)dy.

Are these two formulas the same? The answer is yes.

Fact: If Y = g(X) for some one-to-one smooth function g (by which I mean say g is
continuously differentiable) then

E(Y ) =

∫

yfY (y) dy =

∫

g(x)fY (g(x))g
′(x) dx

= E{g(X)}

25
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by change of variables formula for integration so we must have

fX(x) = fY (g(x))g
′(x).

For the moment I won’t prove this but let me consider the case where, for instance Y = e2X .
Then g(x) = e2x and g′(x) = 2e2x. Moreover

fX(x) =
d

dx
FX(x)

=
d

dx
P (X ≤ x)

=
d

dx
P (e2X ≤ e2x)

=
d

dx
P (Y ≤ e2x)

=
d

dx
FY (e

2x)

= fY (e
2x)

d

dx
e2x

as advertised.

3.0.2 General Definition of E

There are random variables which are neither absolutely continuous nor discrete. I now
give a definition of expected value which covers such cases and includes both discrete and
continuous random variables.

Definition: We say that a random variable X is simple if we can write

X(ω) =

n
∑

1

ai1(ω ∈ Ai)

for some constants a1, . . . , an and events Ai.

Definition: For a simple random variable X we define

E(X) =
∑

aiP (Ai) .

I remark that logically it might be possible to write X in two ways, say

n
∑

i=1

ai1(ω ∈ Ai) =

m
∑

i=1

bi1(ω ∈ Bi)

some constants a1, . . . , an, b1, . . . , bm and events A1, . . . , An and B1, . . . , Bm. I claim that if
this happens then we must have

n
∑

i=1

aiP (Ai) =

m
∑

i=1

biP (Bi).
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I won’t prove the claim!
For positive random variables which are not simple we extend our definition by approxi-

mation from below:

Definition: If X ≥ 0 then

E(X) = sup{E(Y ) : 0 ≤ Y ≤ X, Y simple} .

This notation hides the fact that for positive, simple, random variables X we appear to
have given 2 definitions for E(X). It is possible to prove they are the same.

Finally we extend the definition to general random variables:

Definition: A random variable X is integrable if

E(|X|) < ∞ .

In this case we define

E(X) = E{max(X, 0)} − E{max(−X, 0)} .

Again it might seem we have another definition for simple random variable or for non-negative
random variables but it is possible to prove all the definitions agree.

Fact: : E is a linear, monotone, positive operator. This means:

1. Linear: E(aX + bY ) = aE(X) + bE(Y ) provided X and Y are integrable.

2. Positive: P (X ≥ 0) = 1 implies E(X) ≥ 0.

3. Monotone: P (X ≥ Y ) = 1 and X , Y integrable implies E(X) ≥ E(Y ).

Jargon: An operator is a function whose domain is itself a set of functions. That makes
E an operator because random variables are functions. Sometimes we call operators whose
range is in real or complex numbers a functional.

3.0.3 Convergence Theorems

There are some important theorems about interchanging limits with integrals and our def-
inition of E is really the definition of an integral. In fact you will often see a variety of
notations:

E(g(X)) =

∫

g(x)F (dx)

=

∫

g(x)dF (x)

=

∫

gdF
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Sometimes the integral notations make it easier to see how a calculation works out. The
notation dF (x) has the advantage that if F has a density f = F ′ we can write

dF (x) = f(x)dx.

In calculus courses there is quite a bit of attention paid to such questions as when

d

dy

∫

g(x, y)dx =

∫

∂

∂y
g(x, y)dx.

The issue is that the definition of a derivative involves a limit. The left hand side is

lim
h→0

∫

g(x, y + h)− g(x, y)

h
dx

while the right hand side is

∫

lim
h→0

g(x, y + h)− g(x, y)

h
dx

and the issue is whether or not you can pull limits in and out of integrals. You often can;
the next two theorems give precise conditions for this to work.

Theorem 4 (Monotone Convergence) If 0 ≤ X1 ≤ X2 ≤ · · · and X = limXn (the
limit X automatically exists) then

E(X) = lim
n→∞

E(Xn) .

Remark: In the hypotheses we need P (Xn+1 ≥ Xn) = 1 and P (X1 ≥ 0) = 1.

Theorem 5 (Dominated Convergence) If |Xn| ≤ Yn and ∃ a random variable X such
that Xn → X (technical details of this convergence come later in the course) and a random
variable Y such that Yn → Y with limn→∞ E(Yn) = E(Y ) < ∞ then

lim
n→∞

E(Xn) = E(X) .

Remark: The dominated convergence theorem is often used with all Yn the same random
variable Y . In this case the hypothesis that limn→∞ E(Yn) = E(Y ) < ∞ is just the hypothesis
that E(Y ) < ∞.

Remark: These theorems are used in approximation. We compute the limit of the expected
values of a sequence of random variables Xn and then approximate E(X225) (or whatever n
we actually have instead of 225) by E(X).
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3.0.4 Connection to ordinary integrals

Theorem 6 With this definition of E:

1. if X has density f(x) (even in Rp say) and Y = g(X) then

E(Y ) =

∫

g(x)f(x)dx .

(This could be a multiple integral.)

2. If X has probability mass function f then

E(Y ) =
∑

x

g(x)f(x) .

3. The first conclusion works, e.g., even if X has a density but Y doesn’t.

3.0.5 Moments

• Definition: The rth moment (about the origin) of a real random variable X is µ′
r =

E(Xr) (provided it exists).

• We generally use µ for E(X).

• Definition: The rth central moment is

µr = E[(X − µ)r]

• We call σ2 = µ2 the variance.

• Definition: For an Rp valued random vector X

µX = E(X)

is the vector whose ith entry is E(Xi) (provided all entries exist).

• Definition: The (p× p) variance covariance matrix of X is

Var(X) = E
[

(X − µ)(X − µ)t
]

which exists provided each component Xi has a finite second moment.
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3.0.6 Moments and independence

Theorem 7 If X1, . . . , Xp are independent and each Xi is integrable then X = X1 · · ·Xp is
integrable and

E(X1 · · ·Xp) = E(X1) · · ·E(Xp) .

Proof: Suppose each Xi is simple:

Xi =
∑

j

xij1(Xi = xij)

where the xij are the possible values of Xi. Then

E(X1 · · ·Xp) =
∑

j1...jp

x1j1 · · ·xpjpE(1(X1 = x1j1) · · · 1(Xp = xpjp))

=
∑

j1...jp

x1j1 · · ·xpjpP (X1 = x1j1 · · ·Xp = xpjp)

=
∑

j1...jp

x1j1 · · ·xpjpP (X1 = x1j1) · · ·P (Xp = xpjp)

=
∑

j1

x1j1P (X1 = x1j1) · · ·
∑

jp

xpjpP (Xp = xpjp)

=
∏

E(Xi) .

Non-negative Case: Now consider non-negative random variables Xi, Let Xin be Xi

rounded down to the nearest multiple of 2−n to a maximum of n. That is: if

k

2n
≤ Xi <

k + 1

2n

then Xin = k/2n for k = 0, . . . , n2n. For Xi > n putXin = n. Now apply the case we have
just done:

E(
∏

Xin) =
∏

E(Xin) .

Monotone convergence applies to both sides to prove the result for non-negative Xi.
General case: now consider general Xi and write each Xi as the difference of positive and

negative parts:

Xi = max(Xi, 0)−max(−Xi, 0) .

Write out
∏

i |Xi| as a sum of products and apply the positive case to see that if all the Xi

are integrable then so is
∏

i Xi.

3.0.7 Conditional Expectations

• Abstract definition of conditional expectation is:
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• Definition: E(Y |X) is any function of X such that

E [R(X)E(Y |X)] = E [R(X)Y ]

for any bounded function R(X).

• Definition: E(Y |X = x) is a function g(x) such that

g(X) = E(Y |X)

• Fact: If X, Y has joint density fX,Y (x, y) and conditional density f(y|x) then

g(x) =

∫

yf(y|x)dy

satisfies these definitions.

Proof:

E(R(X)g(X)) =

∫

R(x)g(x)fX(x)dx

=

∫

R(x)

∫

yf(y|x)dyfX(x)dx

=

∫ ∫

R(x)yfX(x)f(y|x)dydx

=

∫ ∫

R(x)yfX,Y (x, y)dydx

= E(R(X)Y )

Interpretation of conditional expectation

• Intuition: Think of E(Y |X) as average Y holding X fixed.

• Behaves like ordinary expected value but functions of X only are like constants:

E(
∑

Ai(X)Yi|X) =
∑

Ai(X)E(Yi|X)

• Statement called Adam’s law by Jerzy Neyman – he used to say it comes before all
the others:

E[E(Y |X)] = E(Y )

which is just the definition of E(Y |X) with R(X) ≡ 1.

• In regression courses we say that the total sum of squares is the sum of the regression
sum of squares plus the residual sum of squares:

Var(Y) = Var(E(Y |X)) + E[Var(Y |X)]

• The conditional variance means

Var(Y |X) = E[(Y − E(Y |X))2|X ].
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3.0.8 Moments

Moment is an old word from physics used in such terms as moments of inertia. There is
actually a good analogy between the physics use of the term and our use. If you made a
block of wood shaped like the density of a random variable X and you tried to balance the
block (it will be thin, long, flat on the bottom and curved into the shape of the density on
the top) on a pencil the pencil would have to be located under the mean of the density. The
moment of force about this pencil would be 0. Warning: go elsewhere to learn physics.

Definition: The rth moment (about the origin) of a real random variable X is µ′
r = E(Xr)

(provided it exists – that is, provided Xr is integrable).

Notation: We generally use µ for E(X).

Definition: The rth central moment is

µr = E[(X − µ)r]

Notation: We call σ2 = µ2 the variance.

Definition: For an Rp valued random vector X

µX = E(X)

is the vector whose ith entry is E(Xi) (provided all entries exist). Similarly for matrices we
take expected values entry by entry.

Definition: The (p× p) variance covariance matrix of X is

Var(X) = E
[

(X − µ)(X − µ)t
]

which exists provided each component Xi has a finite second moment.
The ijth entry in (X − µ)(X − µ)t is (Xi − µi)(Xj − µj). As a result this matrix has

diagonal entries which are the usual variances of the individual Xi and off diagonal entries
which are covariances.

3.0.9 Moments and independence

Theorem 8 If X1, . . . , Xp are independent and each Xi is integrable then X = X1 · · ·Xp is
integrable and

E(X1 · · ·Xp) = E(X1) · · ·E(Xp) .

Proof: First suppose each Xi is simple:

Xi =
∑

j

xij1(Xi = xij)
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where the xij are the possible values of Xi. Then

E(X1 · · ·Xp) =
∑

j1...jp

x1j1 · · ·xpjpE(1(X1 = x1j1) · · ·1(Xp = xpjp))

=
∑

j1...jp

x1j1 · · ·xpjpP (X1 = x1j1 · · ·Xp = xpjp)

=
∑

j1...jp

x1j1 · · ·xpjpP (X1 = x1j1) · · ·P (Xp = xpjp)

=
∑

j1

x1j1P (X1 = x1j1) · · ·
∑

jp

xpjpP (Xp = xpjp)

=
∏

E(Xi) .

Now we consider the case of general Xi ≥ 0. Let Xin be Xi rounded down to nearest
multiple of 2−n (to maximum of n). That is, if

k

2n
≤ Xi <

k + 1

2n

then we define Xin = k/2n for k = 0, . . . , n2n and for Xi > n we put Xin = n.
Now we apply the case we have just done:

E(
∏

Xin) =
∏

E(Xin) .

Finally we apply the monotone convergence theorem to both sides.
It remains to consider Xi which might not be positive. Use the previous case to prove

that

|
∏

Xi| =
∏

|Xi|

is integrable. Then expend the product of positive minus negative parts,

Xi = max(Xi, 0)−max(−Xi, 0) .

Next check that all of the 2p terms you get, after expanding out, are integrable and apply
the previous case. The details are algebraically messy and not very informative in my view.
An alternative theory is that I am too lazy to write them out.

3.1 Conditional Expectations

I am going to give here the abstract “definition” of a conditional expectation. The definition
is indirect – it is a thing which has a certain property. That means that I ought to prove
there is a thing with that property and that the thing with the property is unique. As usual
– I won’t be doing that here.

The abstract definition of conditional expectation is:
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Definition: E(Y |X) is any function of X such that

E [R(X)E(Y |X)] = E [R(X)Y ]

for any bounded function R(X).

Definition: E(Y |X = x) is a function g(x) such that

g(X) = E(Y |X)

that is, such that g(X) satisfies the previous definition.

Fact: If X, Y has joint density fX,Y (x, y) and conditional density f(y|x) then

g(x) =

∫

yf(y|x)dy

satisfies these definitions.

Proof:

E(R(X)g(X)) =

∫

R(x)g(x)fX(x)dx

=

∫

R(x)

∫

yf(y|x)dyfX(x)dx

=

∫ ∫

R(x)yfX(x)f(y|x)dydx

=

∫ ∫

R(x)yfX,Y (x, y)dydx

= E(R(X)Y )

3.1.1 Interpretation and properties of conditional expectation

• Intuition: Think of E(Y |X) as average Y holding X fixed.

• Behaves like ordinary expected value but functions of X only are like constants:

E(
∑

Ai(X)Yi|X) =
∑

Ai(X)E(Yi|X)

• Statement called Adam’s law by Jerzy Neyman – he used to say it comes before all
the others:

E[E(Y |X)] = E(Y )

which is just the definition of E(Y |X) with R(X) ≡ 1.

• In regression courses we say that the total sum of squares is the sum of the regression
sum of squares plus the residual sum of squares:

Var(Y) = Var(E(Y |X)) + E[Var(Y |X)]

• The conditional variance means

Var(Y |X) = E[(Y − E(Y |X))2|X ].
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3.2 Generating Functions

3.2.1 Moment Generating Functions

There are many uses of generating functions in mathematics. We often study the properties
of a sequence an of numbers by creating the function

∞
∑

n=0

ans
n

In statistics the most commonly used generating functions are the probability generating
function (for discrete variables), the moment generating function, the characteristic function
and the cumulant generating function. I begin with moment generating functions:

Definition: The moment generating function of a real valued random variable X is

MX(t) = E(etX)

defined for those real t for which the expected value is finite.

Definition: The moment generating function of a random vector X ∈ Rp is

MX(u) = E[eu
tX ]

defined for those vectors u for which the expected value is finite.
This function has a formal connection to moments obtained by taking expected values

term by term; in fact if MX(t) is finite for all |t| < ǫ then it is legitimate to take expected
values term by term for |t| < ǫ. We get

MX(t) =

∞
∑

k=0

E[(tX)k]/k!

=

∞
∑

k=0

µ′
kt

k/k! .

Sometimes we can find the power series expansion of MX and read off the moments of X
from the coefficients of tk/k!.

Theorem 9 If M is finite for all t ∈ [−ǫ, ǫ] for some ǫ > 0 then

1. Every moment of X is finite.

2. M is C∞ (in fact M is analytic).

3. µ′
k =

dk

dtk
MX(0).

Note: A function is C∞ if it has continuous derivatives of all orders.

Note: Analytic means the function has a convergent power series expansion in neighbour-
hood of each t ∈ (−ǫ, ǫ).

The proof, and many other facts about moment generating functions, rely on advanced
techniques in the field of complex variables. I won’t be proving any of these assertions.
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3.2.2 Moment Generating Functions and Sums

One of the most useful facts about moment generating functions is that the moment gen-
erating function of a sum of independent variables is the product of the individual moment
generating functions.

Theorem 10 If X1, . . . , Xp are independent random vectors in Rp and Y =
∑

Xi then the
moment generating function of Y is the product of those of the individual Xi:

MY (u) = E(eu
tY ) =

∏

i

E(eu
tXi) =

∏

i

MXi
(u).

If we could find the power series expansion of MY then we could find the moments of
MY . The problem, however, is that the power series expansion of MY not nice function of
the expansions of individual MXi

. There is a related fact, namely, that the first 3 moments
(meaning µ, σ2 and µ3) of Y are sums of those of the Xi:

E(Y ) =
∑

E(Xi)

Var(Y ) =
∑

Var(Xi)

E[(Y − E(Y ))3] =
∑

E[(Xi − E(Xi))
3]

(I have given the univariate versions of these formulas but the multivariate versions are
correct as well. The first line is a vector, the second a matrix and the third an object with
3 subscripts.) However:

E[(Y − E(Y ))4] =
∑

{E[(Xi − E(Xi))
4]− 3E2[(Xi − E(Xi))

2]}

+ 3
{

∑

E[(Xi − E(Xi))
2]
}2

These observations lead us to consider cumulants and the cumulant generating function.
Since the logarithm of a product is a sum of logarithms we are led to consider taking logs of
the moment generating function. The result will give us cumulants which add up properly.

Definition: the cumulant generating function of a a random vector X by

KX(u) = log(MX(u)) .

Then if X1, . . . , Xn are independent and Y =
∑n

1 Xi we have

KY (t) =
∑

KXi
(t) .

Note that moment generating functions are all positive so that the cumulant generating
functions are defined wherever the moment generating functions are.

Now KY has a power series expansion. I consider here only the univariate case.

KY (t) =
∞
∑

r=1

κrt
r/r! .
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Definition: the κr are the cumulants of Y .
Observe that

κr(Y ) =
∑

κr(Xi) .

In other words cumulants of independent quantities add up. Now we examine the relation
between cumulants and moments by relating the power series expansion of M with that of
its logarithm. The cumulant generating function is

K(t) = log(M(t))

= log(1 + [µ1t+ µ′
2t

2/2 + µ′
3t

3/3! + · · · ])
Call the quantity in [. . .] x and expand

log(1 + x) = x− x2/2 + x3/3− x4/4 · · · .
Stick in the power series

x = µt+ µ′
2t

2/2 + µ′
3t

3/3! + · · · ;
Expand out powers of x and collect together like terms. For instance,

x2 = µ2t2 + µµ′
2t

3 + [2µ′
3µ/3! + (µ′

2)
2/4]t4 + · · ·

x3 = µ3t3 + 3µ′
2µ

2t4/2 + · · ·
x4 = µ4t4 + · · · .

Now gather up the terms. The power t1 occurs only in x with coefficient µ. The power t2

occurs in x and in x2 and so on. Putting these together gives

K(t) =µt+ [µ′
2 − µ2]t2/2 + [µ′

3 − 3µµ′
2 + 2µ3]t3/3!

+ [µ′
4 − 4µ′

3µ− 3(µ′
2)

2 + 12µ′
2µ

2 − 6µ4]t4/4! · · ·
Comparing coefficients of tr/r! we see that

κ1 = µ

κ2 = µ′
2 − µ2 = σ2

κ3 = µ′
3 − 3µµ′

2 + 2µ3 = E[(X − µ)3]

κ4 = µ′
4 − 4µ′

3µ− 3(µ′
2)

2 + 12µ′
2µ

2 − 6µ4

= E[(X − µ)4]− 3σ4 .

Reference: Kendall and Stuart (or a new version called Kendall’s Theory of Advanced
Statistics by Stuart and Ord) for formulas for larger orders r.

Example: The normal distribution: Suppose X1, . . . , Xp independent, Xi ∼ N(µi, σ
2
i ) so

that

MXi
(t) =

∫ ∞

−∞
etxe−

1

2
(x−µi)2/σ2

i dx/(
√
2πσi)

=

∫ ∞

−∞
et(σiz+µi)e−z2/2dz/

√
2π

=etµi

∫ ∞

−∞
e−(z−tσi)2/2+t2σ2

i /2dz/
√
2π

=eσ
2

i t
2/2+tµi .
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The cumulant generating function is then

KXi
(t) = log(MXi

(t)) = σ2
i t

2/2 + µit .

The cumulants are κ1 = µi, κ2 = σ2
i and every other cumulant is 0. Cumulant generating

function for Y =
∑

Xi is

KY (t) =
∑

σ2
i t

2/2 + t
∑

µi

which is the cumulant generating function of N(
∑

µi,
∑

σ2
i ).

Example: The χ2 distribution: In you homework I am asking you to derive the moment and
cumulant generating functions and moments of a Gamma random variable. Now suppose
Z1, . . . , Zν independent N(0, 1) rvs. By definition the random variable Sν =

∑ν
1 Z

2
i has χ2

ν

distribution. It is easy to check S1 = Z2
1 has density

(u/2)−1/2e−u/2/(2
√
π)

and then the moment generating function of S1 is

(1− 2t)−1/2 .

It follows that

MSν (t) = (1− 2t)−ν/2

which is (from the homework) the moment generating function of a Gamma(ν/2, 2) random
variable. So the χ2

ν distribution has a Gamma(ν/2, 2) density given by

(u/2)(ν−2)/2e−u/2/(2Γ(ν/2)) .

Example: The Cauchy distribution: The Cauchy density is

1

π(1 + x2)
;

the corresponding moment generating function is

M(t) =

∫ ∞

−∞

etx

π(1 + x2)
dx

which is +∞ except for t = 0 where we get 1. Every t distribution has exactly same moment
generating function. So we cannot use moment generating functions to distinguish such
distributions. The problem is that these distributions do not have infinitely many finite
moments. So we now develop a substitute substitute for the moment generating function
which is defined for every distribution, namely, the characteristic function.
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3.2.3 Aside on complex arithmetic

Complex numbers are a fantastically clever idea. The idea is to imagine that −1 has a
square root and see what happens. We add i ≡

√
−1 to the real numbers. Then, we insist

that all the usual rules of algebra are unchanged. So, if i and any real numbers a and b are
to be complex numbers then so must be a + bi. Now let us look at each of the arithmetic
operations to see how they have to work:

• Multiplication: If we multiply a complex number a + bi with a and b real by another
such number, say c + di then the usual rules of arithmetic (associative, commutative
and distributive laws) require

(a+ bi)(c + di) =ac + adi+ bci+ bdi2

=ac + bd(−1) + (ad+ bc)i

=(ac− bd) + (ad+ bc)i

so this is precisely how we define multiplication.

• Addition: we follow the usual rules (commutative, associative and distributive laws)
to get

(a+ bi) + (c+ di) = (a + c) + (b+ d)i .

• Additive inverses:
−(a+ bi) = −a + (−b)i.

Notice that 0 + 0i functions as 0 – it is an additive identity. In fact we normally just
write 0.

• Multiplicative inverses:

1

a+ bi
=

1

a + bi

a− bi

a− bi

=
a− bi

a2 − abi+ abi− b2i2
=

a− bi

a2 + b2
.

• Division:
a + bi

c+ di
=

(a + bi)

(c+ di)

(c− di)

(c− di)
=

ac− bd+ (bc + ad)i

c2 + d2
.

This rule for clearing the complex number from the denominator is a perfect match
for the technique taught in high school and used in calculus, for dealing with fractions
involving a + b

√
c in the denominator.

• You should now notice that the usual rules of arithmetic don’t require any more num-
bers than

x+ yi

where x and y are real. So the complex numbers C are just all these numbers.
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• Transcendental functions: For real x have ex =
∑

xk/k! and ea+b = eaeb so we
want to insist that

ex+iy = exeiy .

The problem is how to compute eiy?

• Remember i2 = −1 so i3 = −i, i4 = 1 i5 = i1 = i and so on. Then

eiy =

∞
∑

0

(iy)k

k!

=1 + iy + (iy)2/2 + (iy)3/6 + · · ·
=1− y2/2 + y4/4!− y6/6! + · · ·
+ iy − iy3/3! + iy5/5! + · · ·

=cos(y) + i sin(y)

• We can thus write
ex+iy = ex(cos(y) + i sin(y))

• Identify x+ yi with the corresponding point (x, y) in the plane.

• Picture the complex numbers as forming a plane.

• Now every point in the plane can be written in polar co-ordinates as (r cos θ, r sin θ)
and comparing this with our formula for the exponential we see we can write

x+ iy =
√

x2 + y2 eiθ = reiθ

for an angle θ ∈ [0, 2π).

• Multiplication revisited: if x + iy = reiθ and x′ + iy′ = r′eiθ
′

then when we multiply
we get

(x+ iy)(x′ + iy′) = reiθr′eiθ
′

= rr′ei(θ+θ′) .

• We will need from time to time a couple of other definitions:

• Definition: The modulus of x+ iy is

|x+ iy| =
√

x2 + y2 .

• Definition: The complex conjugate of x+ iy is x+ iy = x− iy.

• Some identities: z = x+ iy = reiθ and z′ = x′ + iy′ = r′eiθ
′

.

• Then
zz = x2 + y2 = r2 = |z|2
z′

z
=

z′z

|z|2 = rr′ei(θ
′−θ)

reiθ = re−iθ.
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3.2.4 Notes on calculus with complex variables

The rules for calculus with complex numbers are really very much like the usual rules. For
example,

d

dt
eit = ieit .

We will (mostly) be doing only integrals over the real line; the theory of integrals along paths
in the complex plane is a very important part of mathematics, however.

Fact: (This fact is not used explicitly in course). If f : C 7→ C is differentiable then f is
analytic (has power series expansion).

3.2.5 Characteristic Functions

Definition: The characteristic function of a real random variable X is

φX(t) = E(eitX)

where i =
√
−1 is the imaginary unit.

Since
eitX = cos(tX) + i sin(tX)

we find that
φX(t) = E(cos(tX)) + iE(sin(tX)) .

Since the trigonometric functions are bounded by 1 the expected values must be finite for
all t. This is precisely the reason for using characteristic rather than moment generating
functions in probability theory courses.

The characteristic function is called “characteristic” because if you know it you know the
distribution of the random variable involved. That is what is meant in mathematics when
we say something characterizes something else.

Theorem 11 For any two real random vectors X and Y (say p-dimensional) the following
are equivalent:

1. X and Y have the same distribution, that is, for any (Borel) set A ⊂ Rp we have

P (X ∈ A) = P (Y ∈ A) .

2. FX(t) = FY (t) for all t ∈ Rp.

3. φX(u) = E(eiu
tX) = E(eiu

tY ) = φY (u) for all u ∈ Rp.

Moreover, all these are implied if there is ǫ > 0 such that for all |t| ≤ ǫ

MX(t) = MY (t) < ∞ .
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3.3 Inversion Formulae

3.3.1 Inversion

The previous theorem is non-constructive characterization. That is, it says that φX deter-
mines FX and fX but it does not say how to find the latter from the former. This raises the
question: Can get from φX to FX or fX by inversion.

If X is a random variable taking only integer values then for each integer k

P (X = k) =
1

2π

∫ 2π

0

φX(t)e
−itkdt

=
1

2π

∫ π

−π

φX(t)e
−itkdt .

The proof proceeds from the formula

φX(t) =
∑

k

eiktP (X = k) .

You multiply this by e−ijt and integrate from 0 to 2π. This produces

∫ 2π

0

e−ijtφX(t) dt =
∑

k

P (X = k)

∫ 2π

0

ei(k−j)t dt.

Now for k 6= j the derivative of

ei(k−j)t

with respect to t is just

i(k − j)ei(k−j)t

so the integral is simply

ei(k−j)t

i(k − j)

∣

∣

∣

∣

t=2π

t=0

=
cos(2(k − j)π) + i sin(2(k − j)π)− cos(0)− i sin(0)

i(k − j)
=

1 + 0i− 1− 0i

i(k − j)
= 0.

The integral with k = j, however, is different. It is just

∫ 2π

0

ei0tdt =

∫ 2π

0

1dt = 2π.

So
∫ 2π

0

e−ijtφX(t) dt = 2πP (X = j).

Now suppose X has continuous bounded density f . Define

Xn = [nX ]/n
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where [a] denotes the integer part (rounding down to the next smallest integer). We have

P (k/n ≤ X < (k + 1)/n)

=P ([nX ] = k)

=
1

2π

∫ π

−π

φ[nX](t)× e−itkdt .

Make the substitution t = u/n, and get

nP (k/n ≤ X < (k + 1)/n) =
1

2π
×
∫ nπ

−nπ

φ[nX](u/n)e
−iuk/ndu .

Now, as n → ∞ we have

φ[nX](u/n) = E(eiu[nX]/n) → E(eiuX) .

(Dominated convergence: |eiu| ≤ 1.)
Range of integration converges to the whole real line.
If k/n → x left hand side converges to density f(x) while right hand side converges to

1

2π

∫ ∞

−∞
φX(u)e

−iuxdu

which gives the inversion formula

fX(x) =
1

2π

∫ ∞

−∞
φX(u)e

−iuxdu .

Many other such formulas are available to compute things like F (b) − F (a) and so on; the
book by Loève on probability is a good source for such formulas and their proofs.

All such formulas are called Fourier inversion formulas. The characteristic function
is also called the Fourier transform of f or F .

3.3.2 Inversion of the Moment Generating Function and Saddle-

point Approximations

The moment generating function and the characteristic function are related formally:

MX(it) = φX(t) .

When MX exists this relationship is not merely formal; the methods of complex variables
mean there is a “nice” (analytic) function which is E(ezX) for any complex z = x + iy for
which MX(x) is finite. So: there is an inversion formula for MX using a complex contour
integral:

If z1 and z2 are two points in the complex plane and C a path between these two points
we can define the path integral

∫

C

f(z)dz
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by the methods of line integration.
The inversion formula just derived was

2πif(x) =

∫ ∞

−∞
MX(it)e

−itxdt

Now imagine making a change of variables to z = it. As t, a real variable, goes from −∞
to ∞ the variable z runs up the imaginary axis. We also have dz = i dt. This leads to the
following inversion formula for the moment generating function

2πif(x) =

∫ i∞

−i∞
M(z)e−zxdz

(the limits of integration indicate a contour integral running up the imaginary axis.)
It is now possible to replace contour (using complex variables theory) with the line

Re(z) = c. (Re(Z) denotes the real part of z, that is, x when z = x+ iy with x and y real.)
We must choose c so that M(c) < ∞. In this case we rewrite the inversion formula using
the cumulant generating function K(t) = log(M(t)) in the following form:

2πif(x) =

∫ c+i∞

c−i∞
exp(K(z)− zx)dz .

Along the contour in question we have z = c+ iy so we can think of the integral as being

i

∫ ∞

−∞
exp(K(c + iy)− (c+ iy)x)dy .

Now we do a Taylor expansion of the exponent:

K(c+ iy)− (c+ iy)x = K(c)− cx+ iy(K ′(c)− x)− y2K ′′(c)/2 + · · · .

Ignore the higher order terms and select a c so that the first derivative

K ′(c)− x

vanishes. Such a c is called a saddlepoint. We get the formula

2πf(x) ≈ exp(K(c)− cx)

∫ ∞

−∞
exp(−y2K ′′(c)/2)dy .

The integral is a normal density calculation; it gives

√

2π/K ′′(c) .

Thus our saddlepoint approximation is

f(x) ≈ exp(K(c)− cx)
√

2πK ′′(c)
.



3.3. INVERSION FORMULAE 45

The tactic used here is essentially the same idea as in Laplace’s approximation whose
most famous example is Stirling’s formula

Example: Stirling’s approximation to a factorial. We may show, by induction on n and
integration by parts that

n! =

∫ ∞

0

exp(n log(x)− x)dx .

The exponent is maximized when x = n. For n large we approximate f(x) = n log(x)−x by

f(x) ≈ f(x0) + (x− x0)f
′(x0) + (x− x0)

2f ′′(x0)/2

and choose x0 = n to make f ′(x0) = 0. Then

n! ≈
∫ ∞

0

exp[n log(n)− n− (x− n)2/(2n)]dx .

Substitute y = (x− n)/
√
n; get approximation

n! ≈ n1/2nne−n

∫ ∞

−∞
e−y2/2dy

or
n! ≈

√
2πnn+1/2e−n .

Note: I am being quite sloppy about limits of integration; this is a fixable error but I won’t
be doing the fixing. A real proof must show that the integral over x not near n is negligible.



46 CHAPTER 3. EXPECTATION AND MOMENTS



Chapter 4

Distribution Theory

The basic problem of distribution is to compute the distribution of statistics when the data
come from some model. You start with assumptions about the density f or the cumulative
distribution function F of some random vector X = (X1, . . . , Xp); typically X is your data
and f or F come from your model. If you don’t know f you need to try to do this calculation
for all the densities which are possible according to your model. So now suppose Y =
g(X1, . . . , Xp) is some function of X — usually some statistic of interest.

How can we compute the distribution or CDF or density of Y ?

4.1 Univariate Techniques

Method 1: our first method is to compute the cumulative distribution function of Y by
integration and differentiate to find the density fY .

Example: Suppose U ∼ Uniform[0, 1] and Y = − logU .

FY (y) = P (Y ≤ y) = P (− logU ≤ y)

= P (logU ≥ −y) = P (U ≥ e−y)

=

{

1− e−y y > 0
0 y ≤ 0 .

so that Y has a standard exponential distribution.

Example: The χ2 density. Suppose Z ∼ N(0, 1), that is, that Z has density

fZ(z) =
1√
2π

e−z2/2

and let Y = Z2. Then

FY (y) = P (Z2 ≤ y)

=

{

0 y < 0
P (−√

y ≤ Z ≤ √
y) y ≥ 0 .

47
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Now differentiate
P (−√

y ≤ Z ≤ √
y) = FZ(

√
y)− FZ(−

√
y)

to get

fY (y) =







0 y < 0
d
dy

[

FZ(
√
y)− FZ(−

√
y)
]

y > 0

undefined y = 0 .

Now we differentiate:

d

dy
FZ(

√
y) = fZ(

√
y)

d

dy

√
y

=
1√
2π

exp
(

− (
√
y)2 /2

) 1

2
y−1/2

=
1

2
√
2πy

e−y/2 .

There is a similar formula for the other derivative. Thus

fY (y) =







1√
2πy

e−y/2 y > 0

0 y < 0
undefined y = 0 .

We will find indicator notation useful:

1(y > 0) =

{

1 y > 0
0 y ≤ 0

which we use to write

fY (y) =
1√
2πy

e−y/21(y > 0) .

This changes our definition unimportantly at y = 0.
Notice: I never evaluated FY before differentiating it. In fact FY and FZ are integrals I can’t
do but I can differentiate them anyway. Remember the fundamental theorem of calculus:

d

dx

∫ x

a

f(y) dy = f(x)

at any x where f is continuous.
This leads to the following summary: for Y = g(X) with X and Y each real valued

P (Y ≤ y) = P (g(X) ≤ y)

= P (X ∈ g−1(−∞, y]) .

Take d/dy to compute the density

fY (y) =
d

dy

∫

{x:g(x)≤y}
fX(x) dx .
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Often we can differentiate without doing the integral.
Method 2: One general case is handled by the method of change of variables. Suppose that
g is one to one. I will do the case where g is increasing and differentiable.

We begin from the interpretation of density (based on the notion that the density is give
by F ′):

fY (y) = lim
δy→0

P (y ≤ Y ≤ y + δy)

δy

= lim
δy→0

FY (y + δy)− FY (y)

δy

and

fX(x) = lim
δx→0

P (x ≤ X ≤ x+ δx)

δx
.

Now assume y = g(x). Define δy by y + δy = g(x+ δx). Then

P (y ≤ Y ≤ g(x+ δx)) = P (x ≤ X ≤ x+ δx) .

We get
P (y ≤ Y ≤ y + δy))

δy
=

P (x ≤ X ≤ x+ δx)/δx

{g(x+ δx)− y}/δx .

Take the limit as δx → 0 to get

fY (y) = fX(x)/g
′(x) or fY (g(x))g

′(x) = fX(x) .

Alternative view: we can now try to look at this calculation in a slightly different way:
each probability above is the integral of a density. The first is the integral of fY from y = g(x)
to y = g(x+ δx). The interval is narrow so fY is nearly constant over this interval and

P (y ≤ Y ≤ g(x+ δx)) ≈ fY (y)(g(x+ δx)− g(x)) .

Since g has a derivative g(x+ δx)− g(x) ≈ δxg′(x) so we get

P (y ≤ Y ≤ g(x+ δx)) ≈ fY (y)g
′(x)δx .

The same idea applied to P (x ≤ X ≤ x+ δx) gives

P (x ≤ X ≤ x+ δx) ≈ fX(x)δx

so that
fY (y)g

′(x)δx ≈ fX(x)δx

or, cancelling the δx in the limit

fY (y)g
′(x) = fX(x) .

If you remember y = g(x) then you get

fX(x) = fY (g(x))g
′(x) .



50 CHAPTER 4. DISTRIBUTION THEORY

It is often more useful to express the whole formula in terms of the new variable y to get
a formula for fY (y). We do this by solving y = g(x) to get x in terms of y, that is, find a
formula for x = g−1(y) and then see that

fY (y) = fX(g
−1(y))/g′(g−1(y)) .

This is just the change of variables formula for doing integrals.

Remark: : For g decreasing g′ < 0 but then the interval (g(x), g(x+ δx)) is really (g(x+
δx), g(x)) so that g(x)− g(x+ δx) ≈ −g′(x)δx. In both cases this amounts to the formula

fX(x) = fY (g(x))|g′(x)| .

This leads to what I think is a very useful Mnemonic:

fY (y)dy = fX(x)dx .

To use the mnemonic to find a formula for fY (y) you solve that equation for fY (y). The
right hand side will have dx/dy which is the derivative of x with respect to y when you have
a formula for x in terms of y. The x is fX(x) must be replaced by the equivalent formula
using y to make sure your formula for fY (y) has only y in it – not x.

Example: Suppose X ∼ Weibull(shape α, scale β) or

fX(x) =
α

β

(

x

β

)α−1

exp {−(x/β)α} 1(x > 0) .

Let Y = logX or g(x) = log(x). Solve y = log x to get x = exp(y) or g−1(y) = ey. Then
g′(x) = 1/x and 1/g′(g−1(y)) = 1/(1/ey) = ey. Hence

fY (y) =
α

β

(

ey

β

)α−1

exp {−(ey/β)α} 1(ey > 0)ey .

For any y, ey > 0 so the indicator is always just 1. Thus

fY (y) =
α

βα
exp {αy − eαy/βα} .

Now define φ = log β and θ = 1/α; this is called a reparametrization. Then

fY (y) =
1

θ
exp

{

y − φ

θ
− exp

{

y − φ

θ

}}

.

This is the Extreme Value density with location parameter φ and scale parameter θ.
You should be warned that there are several distributions are called “Extreme Value”.
Marginalization. Sometimes we have a few variables which come from many variables and
we want the joint distribution of the few. For example we might want the joint distribution of
X̄ and s2 when we have a sample of size n from the normal distribution. We often approach
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this problem in two steps. The first step, which I describe later, involves padding out the list
of the few variables to make as many as the number of variables you started with (so padding
out the list with n − 2 other variables in the normal case). Then the second step is called
marginalization: compute the marginal density of the variables of interest by integrating
away the others.

Here is the simplest multivariate problem. We begin with

X = (X1, . . . , Xp), Y = X1

(or in general Y is any Xj). We know the joint density of X and want simply the density of
Y . The relevant theorem is one I have already described:

Theorem 12 If X has density f(x1, . . . , xp) and q < p then Y = (X1, . . . , Xq) has density

fY (x1, . . . , xq) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(x1, . . . , xp) dxq+1 . . . dxp .

In fact, fX1,...,Xq is the marginal density of X1, . . . , Xq and fX is the joint density of X .
Really they are both just densities. “Marginal” just serves to distinguish it from the joint
density of X .

Example: The function f(x1, x2) = Kx1x21(x1 > 0, x2 > 0, x1 + x2 < 1) is a density
provided

P (X ∈ R2) =

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2) dx1 dx2 = 1 .

The integral is

K

∫ 1

0

∫ 1−x1

0

x1x2 dx1 dx2 = K

∫ 1

0

x1(1− x1)
2 dx1/2

= K(1/2− 2/3 + 1/4)/2 = K/24

so K = 24. The marginal density of X1 is Beta(2, 3):

fX1
(x1) =

∫ ∞

−∞
24x1x21(x1 > 0, x2 > 0, x1 + x2 < 1) dx2

=24

∫ 1−x1

0

x1x21(0 < x1 < 1)dx2

=12x1(1− x1)
21(0 < x1 < 1) .

A more general problem has Y = (Y1, . . . , Yq) with Yi = gi(X1, . . . , Xp). We distinguish
the cases where q > p, q < p and q = p.
Case 1: q > p. In this case Y won’t have a density for “smooth” transformations g. In
fact Y will have a singular or discrete distribution. This problem is rarely of real interest.
(But, e.g., the vector of all residuals in a regression problem has a singular distribution.)
Case 2: q = p. In this case we use a multivariate change of variables formula. (See below.)
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Case 3: q < p. In this case we pad out Y –add on p−q more variables (carefully chosen) say
Yq+1, . . . , Yp. We define these extra variables by finding functions gq+1, . . . , gp and setting,
for q < i ≤ p, Yi = gi(X1, . . . , Xp) and then let Z = (Y1, . . . , Yp) . We need to choose gi so
that we can use the Case 2 change of variables on g = (g1, . . . , gp) to compute fZ . We then
hope to find fY by integration:

fY (y1, . . . , yq) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
fZ(y1, . . . , yq, zq+1, . . . , zp)dzq+1 . . . dzp

4.2 Multivariate Change of Variables

Suppose Y = g(X) ∈ Rp with X ∈ Rp having density fX . Assume g is a one to one
(“injective”) map, i.e., g(x1) = g(x2) if and only if x1 = x2. Find fY using the following
steps (sometimes they are easier said than done).

Step 1 : Solve for x in terms of y: x = g−1(y).

Step 2 : Use our basic equation

fY (y)dy = fX(x)dx

and rewrite it in the form

fY (y) = fX(g
−1(y))

dx

dy
.

Step 3 : Now we need an interpretation of the derivative dx
dy

when p > 1:

dx

dy
=

∣

∣

∣

∣

det

(

∂xi

∂yj

)
∣

∣

∣

∣

which is the so called Jacobian.

• Equivalent formula inverts the matrix:

fY (y) =
fX(g

−1(y))
∣

∣

dy
dx

∣

∣

• This notation means

∣

∣

∣

∣

dy

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

det







∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xp

...
∂yp
∂x1

∂yp
∂x2

· · · ∂yp
∂xp







∣

∣

∣

∣

∣

∣

∣

but with x replaced by the corresponding value of y, that is, replace x by g−1(y).
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Example: : The bivariate normal density. The standard bivariate normal density is

fX(x1, x2) =
1

2π
exp

{

−x2
1 + x2

2

2

}

.

Let Y = (Y1, Y2) where Y1 =
√

X2
1 +X2

2 and 0 ≤ Y2 < 2π is the angle from the positive
x axis to the ray from the origin to the point (X1, X2). I.e., Y is X in polar co-ordinates.
Solve for x in terms of y to get:

X1 = Y1 cos(Y2) X2 = Y1 sin(Y2)

This makes

g(x1, x2) = (g1(x1, x2), g2(x1, x2))

= (
√

x2
1 + x2

2, argument(x1, x2))

g−1(y1, y2) = (g−1
1 (y1, y2), g

−1
2 (y1, y2))

= (y1 cos(y2), y1 sin(y2))
∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

=

∣

∣

∣

∣

det

(

cos(y2) −y1 sin(y2)
sin(y2) y1 cos(y2)

)
∣

∣

∣

∣

= y1 .

It follows that

fY (y1, y2) =
1

2π
exp

{

−y21
2

}

y11(0 ≤ y1 < ∞)1(0 ≤ y2 < 2π) .

It remains to compute the marginal densities of Y1 and Y2. Factor fY as fY (y1, y2) =
h1(y1)h2(y2) where

h1(y1) = y1e
−y2

1
/21(0 ≤ y1 < ∞)

and
h2(y2) = 1(0 ≤ y2 < 2π)/(2π) .

Then

fY1
(y1) =

∫ ∞

−∞
h1(y1)h2(y2) dy2 = h1(y1)

∫ ∞

−∞
h2(y2) dy2

so the marginal density of Y1 is a multiple of h1. The multiplier makes
∫

fY1
= 1 but in this

case
∫ ∞

−∞
h2(y2) dy2 =

∫ 2π

0

(2π)−1dy2 = 1

so that Y1 has the Weibull or Rayleigh law

fY1
(y1) = y1e

−y2
1
/21(0 ≤ y1 < ∞) .

Similarly
fY2

(y2) = 1(0 ≤ y2 < 2π)/(2π)

which is the Uniform(0, 2π) density.
I leave you the following exercise: show that W = Y 2

1 /2 has a standard exponential
distribution. Recall: by definition U = Y 2

1 has a χ2 dist on 2 degrees of freedom. I also leave
you the exercise of finding the χ2

2 density. Notice that Y1 ⊥⊥ Y2.
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4.3 The Multivariate Normal Distribution

In this section I present the basics of the multivariate normal distribution as an example to
illustrate our distribution theory ideas.

Definition: A random variable Z ∈ R1 has a standard normal distribution (we write
Z ∼ N(0, 1)) if and only if Z has the density

fZ(z) =
1√
2π

e−z2/2 .

Note: To see that this is a density let

I =

∫ ∞

−∞
exp(−u2/2)du.

Then

I2 =

{
∫ ∞

−∞
exp(−u2/2)du.

}2

=

{
∫ ∞

−∞
exp(−u2/2)du

}{
∫ ∞

−∞
exp(−v2/2)dv

}

=

∫ ∞

−∞

∫ ∞

−∞
exp{−(u2 + v2)/2}dudv

Now do this integral in polar co-ordinates by the substitution u = r cos θ and v = r sin θ for
0 < r < ∞ and −π < θ ≤ θ. The Jacobian is r and we get

I2 =

∫ ∞

0

∫ π

−π

r exp(−r2/2)dθdr

= 2π

∫ ∞

0

r exp(−r2/2)dr

= −2π exp(−r2/2)
∣

∣

∞
r=0

= 2π.

Thus
I =

√
2π.

Definition: A random vector Z ∈ Rp has a standard multivariate normal distribution,
written Z ∼ MVN(0, I) if and only if Z = (Z1, . . . , Zp)

t with the Zi independent and each
Zi ∼ N(0, 1).

In this case according to our theorem ??

fZ(z1, . . . , zp) =
∏ 1√

2π
e−z2i /2

= (2π)−p/2 exp{−ztz/2} ;
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here, superscript t denotes matrix transpose.

Definition: X ∈ Rp has a multivariate normal distribution if it has the same distribution
as AZ + µ for some µ ∈ Rp, some p× p matrix of constants A and Z ∼ MV N(0, I).

Remark: If the matrix A is singular then X does not have a density. This is the case for
example for the residual vector in a linear regression problem.

Remark: If the matrix A is invertible we can derive the multivariate normal density by
change of variables:

X = AZ + µ ⇔ Z = A−1(X − µ)

∂X

∂Z
= A

∂Z

∂X
= A−1 .

So

fX(x) = fZ(A
−1(x− µ))| det(A−1)|

=
exp{−(x− µ)t(A−1)tA−1(x− µ)/2}

(2π)p/2| detA| .

Now define Σ = AAt and notice that

Σ−1 = (At)−1A−1 = (A−1)tA−1

and
det Σ = detA detAt = (detA)2 .

Thus fX is
exp{−(x− µ)tΣ−1(x− µ)/2}

(2π)p/2(det Σ)1/2
;

the MVN(µ,Σ) density. Note that this density is the same for all A such that AAt = Σ.
This justifies the usual notation MV N(µ,Σ).

Here is a question: for which µ, Σ is this a density? The answer is that this is a density
for any µ but if x ∈ Rp then

xtΣx = xtAAtx

= (Atx)t(Atx)

=

p
∑

1

y2i ≥ 0

where y = Atx. The inequality is strict except for y = 0 which is equivalent to x = 0. Thus
Σ is a positive definite symmetric matrix.

Conversely, if Σ is a positive definite symmetric matrix then there is a square invertible
matrix A such that AAt = Σ so that there is a MVN(µ,Σ) distribution. (This square root
matrix A can be found via the Cholesky decomposition, e.g.)
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When A is singular X will not have a density because ∃a such that P (atX = atµ) = 1;
in this case X is confined to a hyperplane. A hyperplane has p dimensional volume 0 so no
density can exist.

It is still true that the distribution of X depends only on Σ = AAt: if AAt = BBt then
AZ+µ and BZ+µ have the same distribution. This can be proved using the characterization
properties of moment generating functions.

I now make a list of three basic properties of the MVN distribution.

1. All margins of a multivariate normal distribution are multivariate normal. That is, if

X =

[

X1

X2

]

,

µ =

[

µ1

µ2

]

and

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

then X ∼ MVN(µ,Σ) ⇒ X1 ∼ MV N(µ1,Σ11).

2. All conditionals are normal: the conditional distribution of X1 given X2 = x2 is
MVN(µ1 + Σ12Σ

−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21)

3. If X ∼ MVNp(µ,Σ) then MX + ν ∼ MVN(Mµ + ν,MΣM t). We say that an affine
transformation of a multivariate normal vector is normal.

4.4 Samples from the Normal Distribution

The ideas of the previous sections can be used to prove the basic sampling theory results for
the normal family. Here is the theorem which describes the distribution theory of the most
important statistics.

Theorem 13 Suppose X1, . . . , Xn are independent N(µ, σ2) random variables. Then

1. X̄ (sample mean)and s2 (sample variance) independent.

2. n1/2(X̄ − µ)/σ ∼ N(0, 1).

3. (n− 1)s2/σ2 ∼ χ2
n−1.

4. n1/2(X̄ − µ)/s ∼ tn−1.

Proof: Let Zi = (Xi−µ)/σ. Then Z1, . . . , Zp are independent N(0, 1). So Z = (Z1, . . . , Zp)
t

is multivariate standard normal.
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Note that X̄ = σZ̄ + µ and s2 =
∑

(Xi − X̄)2/(n− 1) = σ2
∑

(Zi − Z̄)2/(n− 1) Thus

n1/2(X̄ − µ)

σ
= n1/2Z̄

(n− 1)s2

σ2
=
∑

(Zi − Z̄)2

and

T =
n1/2(X̄ − µ)

s
=

n1/2Z̄

sZ

where (n−1)s2Z =
∑

(Zi− Z̄)2. It is therefore enough to prove the theorem in the case µ = 0
and σ = 1.
Step 1: Define

Y = (
√
nZ̄, Z1 − Z̄, . . . , Zn−1 − Z̄)t .

(So that Y has same dimension as Z.) Now

Y =











1√
n

1√
n

· · · 1√
n

1− 1
n

− 1
n

· · · − 1
n

− 1
n

1− 1
n

· · · − 1
n

...
...

...
...





















Z1

Z2
...
Zn











or letting M denote the matrix
Y = MZ .

It follows that Y ∼ MV N(0,MM t) so we need to compute MM t:

MM t =











1 0 0 · · · 0
0 1− 1

n
− 1

n
· · · − 1

n
... − 1

n

. . . · · · − 1
n

0
... · · · 1− 1

n











=





1 0

0 Q



 .

Solve for Z from Y : Zi = n−1/2Y1 + Yi+1 for 1 ≤ i ≤ n− 1. Use the identity

n
∑

i=1

(Zi − Z̄) = 0

to get Zn = −∑n
i=2 Yi + n−1/2Y1. So M is invertible:

Σ−1 ≡ (MM t)−1 =





1 0

0 Q−1



 .
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Now use the change of variables formula to find fY . Let y2 denote the vector whose entries
are y2, . . . , yn. Note that

ytΣ−1y = y21 + yt
2Q

−1y2 .

Then

fY (y) =(2π)−n/2 exp[−ytΣ−1y/2]/| detM |

=
1√
2π

e−y2
1
/2×

(2π)−(n−1)/2 exp[−yt
2Q

−1y2/2]

| detM | .

Note: fY is a function of y1 times a ftn of y2, . . . , yn. Thus
√
nZ̄ is independent of Z1 −

Z̄, . . . , Zn−1 − Z̄. Since s2Z is a function of Z1 − Z̄, . . . , Zn−1 − Z̄ we see that
√
nZ̄ and s2Z

are independent.
Also, the density of Y1 is a multiple of the function of y1 in the factorization above. But

this factor is a standard normal density so
√
nZ̄ ∼ N(0, 1).

The first 2 parts of the theorem are now done. The third part is a homework exercise.
I now present a derivation of the χ2 density; this is not part of the proof of the theorem

but is another distribution theory example. Suppose Z1, . . . , Zn are independent N(0, 1).
Define the χ2

n distribution to be that of U = Z2
1 + · · ·+ Z2

n. Define angles θ1, . . . , θn−1 by

Z1 = U1/2 cos θ1

Z2 = U1/2 sin θ1 cos θ2
... =

...

Zn−1 = U1/2 sin θ1 · · · sin θn−2 cos θn−1

Zn = U1/2 sin θ1 · · · sin θn−1 .

(These are k spherical co-ordinates in n dimensions. The θ values run from 0 to π except
last θ from 0 to 2π.) Here are the derivative formulae:

∂Zi

∂U
=

1

2U
Zi

and

∂Zi

∂θj
=







0 j > i
−Zi tan θi j = i
Zi cot θj j < i .

Fix n = 3 to clarify the formulae. Use the shorthand R =
√
U The matrix of partial

derivatives is












cos θ1
2R

−R sin θ1 0

sin θ1 cos θ2
2R

R cos θ1 cos θ2 −R sin θ1 sin θ2

sin θ1 sin θ2
2R

R cos θ1 sin θ2 R sin θ1 cos θ2













.
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We can find the determinant by adding 2U1/2 cos θj/ sin θj times col 1 to col j+1 (no change
in the determinant). The resulting matrix is lower triangular with diagonal entries given by

cos θ1
R

,
R cos θ2
cos θ1

,
R sin θ1
cos θ2

Multiply these together to get
U1/2 sin(θ1)/2

which I observe is non-negative for all U and θ1. For general n every term in the first column
contains a factor U−1/2/2 while every other entry has a factor U1/2.

Fact: multiplying a column in a matrix by c multiplies the determinant by c.
So: the Jacobian of the transformation is

u(n−1)/2u−1/2/2× h(θ1, θn−1)

for some function, h, which depends only on the angles. Thus the joint density of U, θ1, . . . θn−1

is
(2π)−n/2 exp(−u/2)u(n−2)/2h(θ1, · · · , θn−1)/2 .

To compute the density of U we must do an n−1 dimensional multiple integral dθn−1 · · · dθ1.
The answer has the form

cu(n−2)/2 exp(−u/2)

for some c. We can evaluate c by making

∫

fU(u)du = c

∫ ∞

0

u(n−2)/2 exp(−u/2)du

= 1.

Substitute y = u/2, du = 2dy to see that

c2n/2
∫ ∞

0

y(n−2)/2e−ydy = c2n/2Γ(n/2)

= 1.

Conclusion: the χ2
n density is

1

2Γ(n/2)

(u

2

)(n−2)/2

e−u/21(u > 0) .

The fourth part of the theorem is a consequence of first 3 parts and the definition of the
tν distribution.

Definition: T ∼ tν if T has same distribution as

Z/
√

U/ν
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for Z ∼ N(0, 1), U ∼ χ2
ν and Z, U independent.

Though the proof of the theorem is now finished I will Derive the density of T in this
definition as a further example of the techniques of distribution theory. Begin with the
cumulative distribution function of T written in terms of Z and U :

P (T ≤ t) = P (Z ≤ t
√

U/ν)

=

∫ ∞

0

∫ t
√

u/ν

−∞
fZ(z)fU(u)dzdu

Differentiate this cdf with respect to t by differentiating the inner integral:

∂

∂t

∫ bt

at

f(x)dx = bf(bt)− af(at)

by the fundamental theorem of calculus. Hence

d

dt
P (T ≤ t) =

∫ ∞

0

fU(u)√
2π

(u

ν

)1/2

exp

(

−t2u

2ν

)

du .

Plug in

fU(u) =
1

2Γ(ν/2)
(u/2)(ν−2)/2e−u/2

to get

fT (t) =

∫∞
0
(u/2)(ν−1)/2e−u(1+t2/ν)/2du

2
√
πνΓ(ν/2)

.

Substitute y = u(1 + t2/ν)/2, to get

dy = (1 + t2/ν)du/2

(u/2)(ν−1)/2 = [y/(1 + t2/ν)](ν−1)/2

leading to

fT (t) =
(1 + t2/ν)−(ν+1)/2

√
πνΓ(ν/2)

∫ ∞

0

y(ν−1)/2e−ydy

or

fT (t) =
Γ((ν + 1)/2)√

πνΓ(ν/2)

1

(1 + t2/ν)(ν+1)/2
.



Chapter 5

Convergence in Distribution

In the previous chapter I showed you examples in which we worked out precisely the distribu-
tion of some statistics. Usually this is not possible. Instead we are reduced to approximation.
One method, nowadays likely the default method, is Monte Carlo simulation. The method
can be very effective for computing the first two digits of a probability. That generally re-
quires about 10,000 replicates of the basic experiment. Each succeeding digit required forces
you to multiply the sample size by 100. I note that in this case leading zeros after the decimal
point count – so to get a decent estimate of a probability down around 10−4 requires more
than 108 simulations (or some extra cleverness –see the chapter later on Monte Carlo.

In this chapter I discuss a second method – large sample, or limit, theory – in which we
compute limits as n → ∞ to approximate probabilities. I begin with the most famous limit
of this type – the central limit theorem.

In undergraduate courses we often teach the following version of the central limit theorem:
if X1, . . . , Xn are an iid sample from a population with mean µ and standard deviation σ
then n1/2(X̄ − µ)/σ has approximately a standard normal distribution. Also we say that a
Binomial(n, p) random variable has approximately a N(np, np(1− p)) distribution.

What is the precise meaning of statements like “X and Y have approximately the same
distribution”? The desired meaning is that X and Y have nearly the same cdf. But care is
needed. Here are some questions designed to try to highlight why care is needed.

Q1) If n is a large number is the N(0, 1/n) distribution close to the distribution of X ≡ 0?

Q2) Is N(0, 1/n) close to the N(1/n, 1/n) distribution?

Q3) Is N(0, 1/n) close to N(1/
√
n, 1/n) distribution?

Q4) If Xn ≡ 2−n is the distribution of Xn close to that of X ≡ 0?

Answers depend on how close close needs to be so it’s a matter of definition. In practice
the usual sort of approximation we want to make is to say that some random variable X ,
say, has nearly some continuous distribution, like N(0, 1). So: we want to know probabilities
like P (X > x) are nearly P (N(0, 1) > x). The real difficulties arise in the case of discrete
random variables or in infinite dimensions: the latter is not done in this course. For discrete
variables the following discussion highlights some of the problems. See the homework for an
example of the so-called local central limit theorem.

61
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Mathematicians mean one of two things by “close”: Either they can provide an upper
bound on the distance between the two things or they are talking about taking a limit. In
this course we take limits.

Definition: A sequence of random variables Xn converges in distribution to a random
variable X if

E(g(Xn)) → E(g(X))

for every bounded continuous function g.

Theorem 14 For real random variables Xn, X the following are equivalent:

1. Xn converges in distribution to X.

2. P (Xn ≤ x) → P (X ≤ x) for each x such that P (X = x) = 0

3. The limit of the characteristic functions of Xn is the characteristic function of X:

E(eitXn) → E(eitX)

for every real t.

These are all implied by
MXn(t) → MX(t) < ∞

for all |t| ≤ ǫ for some positive ǫ.

Now let’s go back to the questions I asked:

• Take Xn ∼ N(0, 1/n) and X = 0. Then

P (Xn ≤ x) →







1 x > 0
0 x < 0
1/2 x = 0

Now the limit is the cdf of X = 0 except for x = 0 and the cdf of X is not continuous
at x = 0 so yes, Xn converges to X in distribution.

• I asked if Xn ∼ N(1/n, 1/n) had a distribution close to that of Yn ∼ N(0, 1/n). The
definition I gave really requires me to answer by finding a limit X and proving that
both Xn and Yn converge to X in distribution. Take X = 0. Then

E(etXn) = et/n+t2/(2n) → 1 = E(etX)

and
E(etYn) = et

2/(2n) → 1

so that both Xn and Yn have the same limit in distribution.
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Figure 5.1: Comparison of the N(0, 1/n) distribution and point mass at 0.
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Figure 5.2: Comparison of the N(0, 1/n) distribution and the N(1/n, 1/n) distribution.
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Figure 5.3: Comparison of the N(n−1/2, 1/n) distribution and the N(0, 1/n) distribution.
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• Multiply both Xn and Yn by n1/2 and let X ∼ N(0, 1). Then
√
nXn ∼ N(n−1/2, 1)

and
√
nYn ∼ N(0, 1). Use characteristic functions to prove that both

√
nXn and

√
nYn

converge to N(0, 1) in distribution.

• If you now let Xn ∼ N(n−1/2, 1/n) and Yn ∼ N(0, 1/n) then again both Xn and Yn

converge to 0 in distribution.

• If you multiply Xn and Yn in the previous point by n1/2 then n1/2Xn ∼ N(1, 1) and
n1/2Yn ∼ N(0, 1) so that n1/2Xn and n1/2Yn are not close together in distribution.

• You can check that 2−n → 0 in distribution.

Summary: to derive approximate distributions:
Show that a sequence of random variables Xn converges to some X . The limit distribu-

tion (i.e. the distribution of X) should be non-trivial, like say N(0, 1). Don’t say: Xn is
approximately N(1/n, 1/n). Do say: n1/2(Xn − 1/n) converges to N(0, 1) in distribution.

Theorem 15 The Central Limit Theorem If X1, X2, · · · are iid with mean 0 and vari-
ance 1 then n1/2X̄ converges in distribution to N(0, 1). That is,

P (n1/2X̄ ≤ x) → 1√
2π

∫ x

−∞
e−y2/2dy .
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Proof: As before
E(eitn

1/2X̄) → e−t2/2

This is the characteristic function of aN(0, 1) random variable so we are done by our theorem.

5.0.1 Edgeworth expansions

It is possible to improve the normal approximation, though sometimes n has to be even larger.
For the moment introduce the notation γ = E(X3) (remember that X is standardized to
have mean 0 and standard deviation 1). Then

φ(t) ≈ 1− t2/2− iγt3/6 + · · ·

keeping one more term than I did for the central limit theorem. Then

log(φ(t)) = log(1 + u)

where
u = −t2/2− iγt3/6 + · · ·

Use log(1 + u) = u− u2/2 + · · · to get

log(φ(t)) ≈
[−t2/2− iγt3/6 + · · · ]

− [· · · ]2/2 + · · ·

which rearranged is
log(φ(t)) ≈ −t2/2− iγt3/6 + · · ·

Now apply this calculation to

log(φT (t)) ≈ −t2/2− iE(T 3)t3/6 + · · ·

Remember E(T 3) = γ/
√
n and exponentiate to get

φT (t) ≈ e−t2/2 exp{−iγt3/(6
√
n) + · · · }

You can do a Taylor expansion of the second exponential around 0 because of the square
root of n and get

φT (t) ≈ e−t2/2(1− iγt3/(6
√
n))

neglecting higher order terms. This approximation to the characteristic function of T can
be inverted to get an Edgeworth approximation to the density (or distribution) of T which
looks like

fT (x) ≈
1√
2π

e−x2/2[1− γ(x3 − 3x)/(6
√
n) + · · · ]

Remarks:
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1. The error using the central limit theorem to approximate a density or a probability is
proportional to n−1/2

2. This is improved to n−1 for symmetric densities for which γ = 0.

3. These expansions are asymptotic. This means that the series indicated by · · · usually
does not converge. For instance, when n = 25 it may help to take the second term
but get worse if you include the third or fourth or more.

4. You can integrate the expansion above for the density to get an approximation for the
cdf.

Multivariate convergence in distribution

Definition: Xn ∈ Rp converges in distribution to X ∈ Rp if

E(g(Xn)) → E(g(X))

for each bounded continuous real valued function g on Rp. This is equivalent to either of
Cramér Wold Device: atXn converges in distribution to atX for each a ∈ Rp

or
Convergence of characteristic functions:

E(eia
tXn) → E(eia

tX)

for each a ∈ Rp.

Extensions of the CLT

1. Y1, Y2, · · · iid in Rp, mean µ, variance covariance Σ then n1/2(Ȳ − µ) converges in
distribution to MVN(0,Σ).

2. Lyapunov CLT: for each n Xn1, . . . , Xnn independent rvs with

E(Xni) = 0

V ar(
∑

i

Xni) = 1

∑

E(|Xni|3) → 0

then
∑

i Xni converges to N(0, 1).

3. Lindeberg CLT: 1st two conditions of Lyapunov and
∑

E(X2
ni1(|Xni| > ǫ)) → 0

each ǫ > 0. Then
∑

i Xni converges in distribution to N(0, 1). (Lyapunov’s condition
implies Lindeberg’s.)
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4. Non-independent rvs: m-dependent CLT, martingale CLT, CLT for mixing processes.

5. Not sums: Slutsky’s theorem, δ method.

Theorem 16 Slutsky’s Theorem: If Xn converges in distribution to X and Yn converges
in distribution (or in probability) to c, a constant, then Xn + Yn converges in distribution to
X + c. More generally, if f(x, y) is continuous then f(Xn, Yn) ⇒ f(X, c).

Warning: the hypothesis that the limit of Yn be constant is essential.

Definition: We say Yn converges to Y in probability if

P (|Yn − Y | > ǫ) → 0

for each ǫ > 0.
The fact is that for Y constant convergence in distribution and in probability are the

same. In general convergence in probability implies convergence in distribution. Both of
these are weaker than almost sure convergence:

Definition: We say Yn converges to Y almost surely if

P ({ω ∈ Ω : lim
n→∞

Yn(ω) = Y (ω)}) = 1 .

The delta method:

Theorem 17 The δ method: Suppose:

• the sequence Yn of random variables converges to some y, a constant.

• there is a sequence of constants an → 0 such that if we define Xn = an(Yn − y) then
Xn converges in distribution to some random variable X.

• the function f is differentiable ftn on range of Yn.

Then an{f(Yn) − f(y)} converges in distribution to f ′(y)X. (If Xn ∈ Rp and f : Rp 7→ Rq

then f ′ is q × p matrix of first derivatives of components of f .)

Example: Suppose X1, . . . , Xn are a sample from a population with mean µ, variance σ2,
and third and fourth central moments µ3 and µ4. Then

n1/2(s2 − σ2) ⇒ N(0, µ4 − σ4)

where ⇒ is notation for convergence in distribution. For simplicity I define s2 = X2 − X̄2.
Take Yn = (X2, X̄). Then Yn converges to y = (µ2 + σ2, µ). Take an = n1/2. Then

n1/2(Yn − y)
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converges in distribution to MV N(0,Σ) with

Σ =

[

µ4 − σ4 µ3 − µ(µ2 + σ2)
µ3 − µ(µ2 + σ2) σ2

]

Define f(x1, x2) = x1−x2
2. Then s2 = f(Yn). The gradient of f has components (1,−2x2).

This leads to

n1/2(s2 − σ2) ≈

n1/2[1,−2µ]

[

X2 − (µ2 + σ2)
X̄ − µ

]

which converges in distribution to (1,−2µ)Y . This random variable isN(0, atΣa) = N(0, µ4−
σ2) where a = (1,−2µ)t.

Remark: In this sort of problem it is best to learn to recognize that the sample variance is
unaffected by subtracting µ from each X . Thus there is no loss in assuming µ = 0 which
simplifies Σ and a.

Special case: if the observations are N(µ, σ2) then µ3 = 0 and µ4 = 3σ4. Our calculation
has

n1/2(s2 − σ2) ⇒ N(0, 2σ4)

You can divide through by σ2 and get

n1/2(
s2

σ2
− 1) ⇒ N(0, 2)

In fact (n − 1)s2/σ2 has a χ2
n−1 distribution and so the usual central limit theorem shows

that
(n− 1)−1/2[(n− 1)s2/σ2 − (n− 1)] ⇒ N(0, 2)

(using mean of χ2
1 is 1 and variance is 2). Factoring out n− 1 gives the assertion that

(n− 1)1/2(s2/σ2 − 1) ⇒ N(0, 2)

which is our δ method calculation except for using n − 1 instead of n. This difference is
unimportant as can be checked using Slutsky’s theorem.

5.0.2 The sample median

In this subsection I consider an example which is intended to illustrate the fact that many
statistics which do not seem to be directly functions of sums can nevertheless be analyzed
by thinking about sums. Later we will see examples in maximum likelihood estimation and
estimating equations but here I consider the sample median.

The example has a number of irritating little points surrounding the median. First,
the median of a distribution might not be unique. Second, it turns out that the sample
median can be badly behaved even if the population median is unique – if the density of the
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distribution being studied is 0 at the population median. Third the definition of the sample
median is not unique when the sample size is even. We will avoid all these complications by
giving an restricting our attention to distributions with a unique median, m, and a density
f which is continuous and has f(m) > 0.

Here is the framework. We have a sample X1, . . . , Xn drawn from a cdf F . We assume:

1. There is a unique solution x = m of the equation

F (x) = 1/2.

2. The distribution F has a density f which is continuous and has

f(m) > 0.

We will define the sample median as follows. If the sample size n is odd, say n = 2k − 1
then the sample median, m̂, is the kth smallest (=kth largest) Xi. If n is even, n = 2k then
again we let m̂ be the kth smallest Xi. The most important point in what follows is this:

{m̂ ≤ x} = {
∑

i

1(Xi ≤ x) ≥ k).

The random variable
Un(x) =

∑

i

1(Xi ≤ x)

has a Binomial(n, p) distribution with p = F (x). Thus

{Un(x) ≥ k} =

{√
n[Un(x)/n− p]
√

p(1− p)
≥

√
n(k/n− p)
√

p(1− p)

}

Now put x = m+ y/
√
n and compute

lim
n→∞

√
n(k/n− p)
√

p(1− p)

First note that p(1− p) → 1/4. Then
√
n(k/n− 1/2) → 0. Next

lim
n→∞

√
n(1/2− F (x)) = f(m).

Assembling these pieces we find

lim
n→∞

√
n(k/n− p)
√

p(1− p)
= −2f(m)y.

Finally applying the central limit theorem we find

√
n[Un(x)/n− p]
√

p(1− p)

d→ N(0, 1).
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This gives
P (

√
n(m̂−m) ≤ y) → 1− Φ(−2f(m)y) = Φ(2f(m)y)

Setting u = 2f(m)y shows
√
n(m̂−m)

d→ N(0, 1/(4f 2(m))).

The important take-away point is that this is another example of how the behaviour of
many statistics is determined by the behaviour of averages (because Un(x)/n is an average).
I remark that similar calculations apply to other quantiles.

5.1 Monte Carlo Techniques

Modern statistics is dominated by computations made by simulation. There are many many
clever simulation ideas; here we discuss only the basics. We imagine we are given random
variables X1, . . . , Xn whose joint distribution is somehow specified. We are interested in
some statistic T (X1, . . . , Xn) whose distribution we want.

Here is the basic Monte Carlo method to compute the survival function of T , that is, to
compute P (T > t):

1. Generate X1, . . . , Xn from the density f .

2. Compute T1 = T (X1, . . . , Xn).

3. Repeat this process independently N times getting statistic values T1, . . . , TN .

4. Estimate p = P (T > t) by p̂ = M/N where M is number of repetitions where Ti > t.

5. Estimate the accuracy of p̂ using
√

p̂(1− p̂)/N . In the jargon of later chapters this is
the estimated standard error of p̂.

Note: The accuracy of this computational method is inversely proportional to
√
N .

Next: we review some tricks to make the method more accurate.

Warning: The tricks only change the constant of proportionality — the standard error is
still inversely proportional to

√
N .

5.1.1 Generating the Sample

Step 1 in the overall outline just presented calls for “generating” samples from the known
distribution of X1, . . . , Xn. In this subsection I want to try to explain what is meant. The
basic idea is to carry out an experiment which is like performing the original experiment,
generating an outcome ω and calculating the value of the random variables. Instead of
doing a real experiment we use a pseudo-random number generator, a computer program
which is intended to mimic the behaviour of a real random process. This relies on a basic
computing tool: pseudo uniform random numbers — variables U which have (approximately)
a Uniform[0, 1] distribution. I will not be discussing the algorithms used for such generators.
Instead we take them as a given, ignore any flaws and pretend that we have a way of
generating a sequence of independent and identically distributed Uniform[0,1] variables.
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5.1.2 Transformation

Other distributions are often then generated by transformation:

Example: Exponential: If U is Uniform[0,1] then X = − logU has an exponential distri-
bution:

P (X > x) = P (− log(U) > x)

= P (U ≤ e−x) = e−x

This generator has the following pitfall: random uniform variables generated on a computer
sometimes have only 6 or 7 digits. As a consequence the tail of the generated distribution
(using the transformation above) is grainy.

Here is a simplified explanation. Suppose the generated value of U is always a multiple
of 10−6. Then the largest possible value of X is 6 log(10) and the number of values larger
than 3 log(10) = 6.91 is 1000

Here is an improved algorithm

• Generate U a Uniform[0,1] variable.

• Pick a small ǫ like 10−3 say. If U > ǫ take Y = − log(U).

• If U ≤ ǫ we make use of the fact that the conditional distribution of Y − y given
Y > y is exponential. Generate an independent new uniform variable U ′. Compute
Y ′ = − log(U ′). Take Y = Y ′ − log(ǫ).

The resulting Y has an exponential distribution. As an exercise you should check this
assertion by computing P (Y > y). The new Y has 1,000,000 possible values larger than
3 log(10) and the largest possible values is now 9 log(10). As a result the distribution is
much less grainy.

5.1.3 General technique: inverse probability integral transform

One standard technique which is closely connected to our exponential generator is called
the inverse probability integral transformation. If Y is to have cdf F we use the following
general algorithm:

• Generate U ∼ Uniform[0, 1].

• Take Y = F−1(U):

P (Y ≤ y) = P (F−1(U) ≤ y)

= P (U ≤ F (y)) = F (y)
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Jargon: F−1(U) is the inverse probability integral transform. In fact U = F (Y ) is called
the probability integral transform of Y .

Example: Suppose X has a standard exponential distribution. Then F (x) = 1 − e−x and
F−1(u) = − log(1 − u). Compare this generator to our previous method where we used U
instead of 1− U . Of course U and 1− U both have Uniform[0,1].

Example: Normal: F = Φ (this is common notation for the standard normal cumulative
distribution function). There is no closed form for F−1. One way to generate N(0, 1) is to
use a numerical algorithm to compute F−1.

An alternative method is the Box Müller generator:

• Generate U1, U2, two independent Uniform[0,1] variables.

• Define
Y1 =

√

−2 log(U1) cos(2πU2)

and
Y2 =

√

−2 log(U1) sin(2πU2) .

• As an exercise: use the change of variables technique to prove that Y1 and Y2 are
independent N(0, 1) variables.

5.1.4 Acceptance Rejection

Suppose we can’t calculate F−1 but know the density f . Find some density g and constant
c such that

1. f(x) ≤ cg(x) for each x and

2. either G−1 is computable or we can generate observations W1,W2, . . . independently
from g.

Then we use the following algorithm:

1. Generate W1.

2. Compute p = f(W1)/(cg(W1)) ≤ 1.

3. Generate a Uniform[0,1] random variable U1 independent of all W s.

4. Let Y = W1 if U1 ≤ p.

5. Otherwise get new W,U ; repeat until you find Ui ≤ f(Wi)/(cg(Wi)).

6. Make Y be the last W generated.

7. This Y has density f .
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5.1.5 Markov Chain Monte Carlo

Recently popular tactic, particularly for generating multivariate observations.
Theorem Suppose W1,W2, . . . is an (ergodic) Markov chain with stationary transitions

and the stationary initial distribution of W has density f . Then starting the chain with any
initial distribution

1

n

n
∑

i=1

g(Wi) →
∫

g(x)f(x)dx .

Estimate things like
∫

A
f(x)dx by computing the fraction of the Wi which land in A.

Many versions of this technique including Gibbs Sampling and Metropolis-Hastings al-
gorithm.

Technique invented in 1950s: Metropolis et al.
One of the authors was Edward Teller “father of the hydrogen bomb”.
Importance Sampling
If you want to compute

θ ≡ E(T (X)) =

∫

T (x)f(x)dx

you can generate observations from a different density g and then compute

θ̂ = n−1
∑

T (Xi)f(Xi)/g(Xi)

Then

E(θ̂) = n−1
∑

E {T (Xi)f(Xi)/g(Xi)}

=

∫

{T (x)f(x)/g(x)}g(x)dx

=

∫

T (x)f(x)dx

= θ

Variance reduction

Example: In this example we simulate to estimate the distribution of the sample mean for
a sample from the Cauchy distribution. The Cauchy density is

f(x) =
1

π(1 + x2)

The basic algorithm is

1. Generate U1, . . . , Un uniforms.

The basic algorithm is

2. Define Xi = tan−1(π(Ui − 1/2)).
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3. Compute T = X̄.

4. To estimate p = P (T > t) use

p̂ =
N
∑

i=1

1(Ti > t)/N

after generating N samples of size n.

5. This estimate is unbiased.

6. Its standard error is
√

p(1− p)/N .

The algorithm can be improved by using antithetic variables. Note first that −Xi also
has a Cauchy distribution. Take Si = −Ti. Remember that Si has the same distribution as
Ti. Try (for t > 0)

p̃ = [

N
∑

i=1

1(Ti > t) +

N
∑

i=1

1(Si > t)]/(2N)

which is the average of two estimates like p̂. Then the variance of p̃ is

(4N)−1Var(1(Ti > t) + 1(Si > t))

= (4N)−1Var(1(|T | > t))

which is
2p(1− 2p)

4N
=

p(1− 2p)

2N

This variance has an extra 2 in the denominator and the numerator is also smaller – partic-
ularly for p near 1/2. So we need only half the sample size to get the same accuracy.

5.1.6 Regression estimates

Suppose Z ∼ N(0, 1). In this example we consider ways to compute

θ = E(|Z|) .

To begin with we generate N iid N(0, 1) variables Z1, . . . , ZN . Compute the basic estimate
θ̂ =

∑ |Zi|/N . But we know that E(Z2
i ) = 1. We also know that θ̂ is positively correlated

with
∑

Z2
i /N . So we try

θ̃ = θ̂ − c(
∑

Z2
i /N − 1)

Notice that E(θ̃) = θ and

Var(θ̃) =

Var(θ̂)− 2cCov(θ̂,
∑

Z2
i /N)

+ c2Var(
∑

Z2
i /N)
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The value of c which minimizes this is

c =
Cov(θ̂,

∑

Z2
i /N)

Var(
∑

Z2
i /N)

We can estimate c by regressing |Zi| on Z2
i ! Notice that minimization is bound to produce

a smaller variance than just using c = 0 which is the original estimate.


