
The ideas of the previous sections can be used to prove the basic sampling
theory results for the normal family. Here is the theorem which describes the
distribution theory of the most important statistics.

Theorem 1 Suppose X1, . . . , Xn are independent N(µ, σ2) random variables.
Then

1. X̄ (sample mean)and s2 (sample variance) independent.

2. n1/2(X̄ − µ)/σ ∼ N(0, 1).

3. (n− 1)s2/σ2 ∼ χ2
n−1.

4. n1/2(X̄ − µ)/s ∼ tn−1.

Proof: Let Zi = (Xi − µ)/σ. Then Z1, . . . , Zp are independent N(0, 1). So
Z = (Z1, . . . , Zp)

t is multivariate standard normal.
Note that X̄ = σZ̄ + µ and s2 =

∑
(Xi − X̄)2/(n − 1) = σ2

∑
(Zi −

Z̄)2/(n− 1) Thus
n1/2(X̄ − µ)

σ
= n1/2Z̄

(n− 1)s2

σ2
=
∑

(Zi − Z̄)2

and

T =
n1/2(X̄ − µ)

s
=
n1/2Z̄

sZ

where (n− 1)s2Z =
∑

(Zi − Z̄)2. It is therefore enough to prove the theorem
in the case µ = 0 and σ = 1.
Step 1: Define

Y = (
√
nZ̄, Z1 − Z̄, . . . , Zn−1 − Z̄)t .

(So that Y has same dimension as Z.) Now

Y =


1√
n

1√
n
· · · 1√

n

1− 1
n
− 1
n
· · · − 1

n

− 1
n

1− 1
n
· · · − 1

n
...

...
...

...



Z1

Z2
...
Zn


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or letting M denote the matrix

Y = MZ .

It follows that Y ∼MVN(0,MM t) so we need to compute MM t:

MM t =


1 0 0 · · · 0
0 1− 1

n
− 1
n
· · · − 1

n
... − 1

n

. . . · · · − 1
n

0
... · · · 1− 1

n


=

 1 0

0 Q

 .

Solve for Z from Y : Zi = n−1/2Y1 + Yi+1 for 1 ≤ i ≤ n− 1. Use the identity

n∑
i=1

(Zi − Z̄) = 0

to get Zn = −
∑n

i=2 Yi + n−1/2Y1. So M is invertible:

Σ−1 ≡ (MM t)−1 =

 1 0

0 Q−1

 .

Now use the change of variables formula to find fY . Let y2 denote the vector
whose entries are y2, . . . , yn. Note that

ytΣ−1y = y21 + yt2Q
−1y2 .

Then

fY (y) =(2π)−n/2 exp[−ytΣ−1y/2]/| detM |

=
1√
2π
e−y

2
1/2×

(2π)−(n−1)/2 exp[−yt2Q
−1y2/2]

| detM |
.
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Note: fY is a function of y1 times a ftn of y2, . . . , yn. Thus
√
nZ̄ is indepen-

dent of Z1− Z̄, . . . , Zn−1− Z̄. Since s2Z is a function of Z1− Z̄, . . . , Zn−1− Z̄
we see that

√
nZ̄ and s2Z are independent.

Also, the density of Y1 is a multiple of the function of y1 in the factoriza-
tion above. But this factor is a standard normal density so

√
nZ̄ ∼ N(0, 1).

The first 2 parts of the theorem are now done. The third part is a
homework exercise.

I now present a derivation of the χ2 density; this is not part of the proof of
the theorem but is another distribution theory example. Suppose Z1, . . . , Zn
are independent N(0, 1). Define the χ2

n distribution to be that of U = Z2
1 +

· · ·+ Z2
n. Define angles θ1, . . . , θn−1 by

Z1 = U1/2 cos θ1

Z2 = U1/2 sin θ1 cos θ2
... =

...

Zn−1 = U1/2 sin θ1 · · · sin θn−2 cos θn−1

Zn = U1/2 sin θ1 · · · sin θn−1 .

(These are k spherical co-ordinates in n dimensions. The θ values run from
0 to π except last θ from 0 to 2π.) Here are the derivative formulae:

∂Zi
∂U

=
1

2U
Zi

and

∂Zi
∂θj

=


0 j > i
−Zi tan θi j = i
Zi cot θj j < i .

Fix n = 3 to clarify the formulae. Use the shorthand R =
√
U The matrix

of partial derivatives is
cos θ1
2R

−R sin θ1 0

sin θ1 cos θ2
2R

R cos θ1 cos θ2 −R sin θ1 sin θ2

sin θ1 sin θ2
2R

R cos θ1 sin θ2 R sin θ1 cos θ2

 .
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We can find the determinant by adding 2U1/2 cos θj/ sin θj times col 1 to col
j+1 (no change in the determinant). The resulting matrix is lower triangular
with diagonal entries given by

cos θ1
R

,
R cos θ2
cos θ1

,
R sin θ1
cos θ2

Multiply these together to get

U1/2 sin(θ1)/2

which I observe is non-negative for all U and θ1. For general n every term
in the first column contains a factor U−1/2/2 while every other entry has a
factor U1/2.

Fact: multiplying a column in a matrix by c multiplies the determinant by
c.

So: the Jacobian of the transformation is

u(n−1)/2u−1/2/2× h(θ1, θn−1)

for some function, h, which depends only on the angles. Thus the joint
density of U, θ1, . . . θn−1 is

(2π)−n/2 exp(−u/2)u(n−2)/2h(θ1, · · · , θn−1)/2 .

To compute the density of U we must do an n − 1 dimensional multiple
integral dθn−1 · · · dθ1.

The answer has the form

cu(n−2)/2 exp(−u/2)

for some c. We can evaluate c by making∫
fU(u)du = c

∫ ∞
0

u(n−2)/2 exp(−u/2)du

= 1.

Substitute y = u/2, du = 2dy to see that

c2n/2
∫ ∞
0

y(n−2)/2e−ydy = c2n/2Γ(n/2)

= 1.
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Conclusion: the χ2
n density is

1

2Γ(n/2)

(u
2

)(n−2)/2
e−u/21(u > 0) .

The fourth part of the theorem is a consequence of first 3 parts and the
definition of the tν distribution.

Definition: T ∼ tν if T has same distribution as

Z/
√
U/ν

for Z ∼ N(0, 1), U ∼ χ2
ν and Z,U independent.

Though the proof of the theorem is now finished I will Derive the density
of T in this definition as a further example of the techniques of distribution
theory. Begin with the cumulative distribution function of T written in terms
of Z and U :

P (T ≤ t) = P (Z ≤ t
√
U/ν)

=

∫ ∞
0

∫ t
√
u/ν

−∞
fZ(z)fU(u)dzdu

Differentiate this cdf with respect to t by differentiating the inner integral:

∂

∂t

∫ bt

at

f(x)dx = bf(bt)− af(at)

by the fundamental theorem of calculus. Hence

d

dt
P (T ≤ t) =

∫ ∞
0

fU(u)√
2π

(u
ν

)1/2
exp

(
−t

2u

2ν

)
du .

Plug in

fU(u) =
1

2Γ(ν/2)
(u/2)(ν−2)/2e−u/2

to get

fT (t) =

∫∞
0

(u/2)(ν−1)/2e−u(1+t
2/ν)/2du

2
√
πνΓ(ν/2)

.

Substitute y = u(1 + t2/ν)/2, to get

dy = (1 + t2/ν)du/2
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(u/2)(ν−1)/2 = [y/(1 + t2/ν)](ν−1)/2

leading to

fT (t) =
(1 + t2/ν)−(ν+1)/2

√
πνΓ(ν/2)

∫ ∞
0

y(ν−1)/2e−ydy

or

fT (t) =
Γ((ν + 1)/2)√
πνΓ(ν/2)

1

(1 + t2/ν)(ν+1)/2
.
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