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What I assume you already know

The basics of normal distributions in 1 dimension.
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The Multivariate Normal Distribution

Definition: Z ∈ R1 ∼ N(0, 1) iff

fZ (z) =
1√
2π

e−z2/2 .

Definition: Z ∈ Rp ∼ MVN(0, I ) if and only if Z = (Z1, . . . ,Zp)
T

with the Zi independent and each Zi ∼ N(0, 1).

In this case according to our theorem

fZ (z1, . . . , zp) =
∏ 1√

2π
e−z2

i
/2 = (2π)−p/2 exp{−zT z/2} ;

superscript T denotes matrix transpose.

Definition: X ∈ Rp has a multivariate normal distribution if it has
same distribution as AZ + µ for some µ ∈ Rp, some p × p matrix of
constants A and Z ∼ MVN(0, I ).
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The Multivariate Normal Density

Matrix A singular: X does not have a density.

A invertible: derive multivariate normal density by change of variables:

X = AZ + µ ⇔ Z = A−1(X − µ)
∂X

∂Z
= A

∂Z

∂X
= A−1 .

So

fX (x) = fZ (A
−1(x − µ))| det(A−1)|

=
exp{−(x − µ)T (A−1)TA−1(x − µ)/2}

(2π)p/2| detA| .
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The Multivariate Normal Density continued

Now define Σ = AAT and notice that

Σ−1 = (AT )−1A−1 = (A−1)TA−1

and
detΣ = detA detAT = (detA)2 .

Thus fX is
exp{−(x − µ)TΣ−1(x − µ)/2}

(2π)p/2(det Σ)1/2
;

the MVN(µ,Σ) density.

Note density is the same for all A such that AAT = Σ.

This justifies the notation MVN(µ,Σ).
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The Multivariate Normal Density continued

For which µ, Σ is this a density?

Any µ but if x ∈ Rp then, putting y = AT x ,

xTΣx = xTAATx = (AT x)T (AT x) =

p
∑

1

y2i ≥ 0

Inequality strict except for y = 0 which is equivalent to x = 0.

Thus Σ is a positive definite symmetric matrix.

Conversely, if Σ is a positive definite symmetric matrix then there is a
square invertible matrix A such that AAT = Σ so that there is a
MVN(µ,Σ) distribution.

A can be found via the Cholesky decomposition, e.g.
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Singular cases

When A is singular X will not have a density.

∃a such that P(aTX = aTµ) = 1

X is confined to a hyperplane.

Still true: distribution of X depends only on Σ = AAT

if AAT = BBT then AZ + µ and BZ + µ have the same distribution.

Proof by mgfs or characteristic functions.

Richard Lockhart (Simon Fraser University)STAT 830 The Multivariate Normal Distribution STAT 830 — Fall 2013 7 / 13



Equality in distribution

We say X and Y have the same distribution if, for all A,

P(X ∈ A) = P(Y ∈ A).

If X has density f then X and Y have the same distribution iff Y has
density f .

If X ∈ R
p then the moment generating function (mgf) of X is

MX (t) = E

[

et
TX
]

for t ∈ R
p.

If X ∈ R
p then the characteristic function (cf) of X is

φX (t) = E

[

e it
TX
]

for t ∈ R
p; the symbol i is the imaginary unit, i2 = −1.

cf is complex number defined for every t ∈ R
p. The mgf may well be

∞ for any t 6= 0.
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Equality in distribution 2

If there is an ǫ > 0 such that

MY (t) = MX (t)

for all t such that ||t|| =
√
tT t < ǫ then X and Y have the same

distribution.

If
φY (t) = φX (t)

for all t ∈ R
p then X and Y have the same distribution.
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Application to MVN

If Z is MVNp(0, I ) then

φZ (t) = E

(

exp{itZ}
)

= E



exp{
∑

j

itjZj}





= E

(

∏

h

exp{itjZj}
)

=
∏

h

E (exp{ithZh})

=
∏

j

φN(tj )

where φN denotes the cf of a N(0, 1) variate.
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Application to MVN 2

The cf of N(0, 1) is

φN(t) = E (exp{itZ}) =
∫

∞

−∞

exp{itz − z2/2}dz/
√
2π

=

∫

∞

−∞

exp{−t2/2 − (z − it)2/2}dz/
√
2π

= exp(−t2/2)

∫

∞

−∞

exp{−(z − it)2/2}dz/
√
2π = exp(−t2/2)

So the multivariate cf above is

φZ (t) =
∏

j

exp{−t2j /2} = exp{−tT t/2}.

Notice the use of normal density with mean µ = it; works by magic.
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General Case

If X = AZ + µ with Z ∈ R
q, A a p × q matrix and µ ∈ R

p then

E

(

exp{itTX}
)

= exp(itTµ)φZ (A
T t) = exp(itTµ− tTAAT t/2)

Depends only on µ and Σ = AAT so distribution of X depends only
on its mean and variance.

The mgf is
MX (t) == exp(tTµ+ tTAAT t/2)
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Properties of the MVN distribution

1 All margins are multivariate normal: if

X =

[

X1

X2

]

µ =

[

µ1

µ2

]

and

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

then X ∼ MVN(µ,Σ) ⇒ X1 ∼ MVN(µ1,Σ11).

2 All conditionals are normal: the conditional distribution of X1 given
X2 = x2 is MVN(µ1 +Σ12Σ

−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21)

3 MX + ν ∼ MVN(Mµ+ ν,MΣMT ): affine transformation of MVN is
normal.
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