The Multivariate Normal Distribution

Defn: $Z \in R^1 \sim N(0, 1)$ iff

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

Defn: $Z \in R^p \sim MVN(0, I)$ if and only if $Z = (Z_1, \ldots, Z_p)^t$ with the Z_i independent and each $Z_i \sim N(0, 1)$.

In this case according to our theorem

$$f_Z(z_1, \dots, z_p) = \prod \frac{1}{\sqrt{2\pi}} e^{-z_i^2/2}$$
$$= (2\pi)^{-p/2} \exp\{-z^t z/2\};$$

superscript t denotes matrix transpose.

Defn: $X \in \mathbb{R}^p$ has a multivariate normal distribution if it has the same distribution as $AZ + \mu$ for some $\mu \in \mathbb{R}^p$, some $p \times p$ matrix of constants A and $Z \sim MVN(0, I)$.

Matrix A singular: X does not have a density.

A invertible: derive multivariate normal density by change of variables:

$$X = AZ + \mu \Leftrightarrow Z = A^{-1}(X - \mu)$$

∂X _ A	$\partial Z _ {}_{\Lambda-1}$
$\frac{\partial Z}{\partial Z} = A$	$\frac{\partial X}{\partial X} = A^{-1}.$

So

$$f_X(x) = f_Z(A^{-1}(x-\mu)) |\det(A^{-1})|$$

=
$$\frac{\exp\{-(x-\mu)^t (A^{-1})^t A^{-1}(x-\mu)/2\}}{(2\pi)^{p/2} |\det A|}$$

Now define $\Sigma = AA^t$ and notice that

$$\Sigma^{-1} = (A^t)^{-1} A^{-1} = (A^{-1})^t A^{-1}$$

and

$$\det \Sigma = \det A \det A^t = (\det A)^2.$$

Thus f_X is

$$\frac{\exp\{-(x-\mu)^t \Sigma^{-1}(x-\mu)/2\}}{(2\pi)^{p/2} (\det \Sigma)^{1/2}};$$

the $MVN(\mu, \Sigma)$ density. Note density is the same for all A such that $AA^t = \Sigma$. This justifies the notation $MVN(\mu, \Sigma)$.

For which μ , Σ is this a density?

Any μ but if $x \in R^p$ then

$$x^{t}\Sigma x = x^{t}AA^{t}x$$
$$= (A^{t}x)^{t}(A^{t}x)$$
$$= \sum_{1}^{p} y_{i}^{2} \ge 0$$

where $y = A^t x$. Inequality strict except for y = 0 which is equivalent to x = 0. Thus Σ is a positive definite symmetric matrix.

Conversely, if Σ is a positive definite symmetric matrix then there is a square invertible matrix A such that $AA^t = \Sigma$ so that there is a $MVN(\mu, \Sigma)$ distribution. (A can be found via the Cholesky decomposition, e.g.)

When A is singular X will not have a density: $\exists a \text{ such that } P(a^t X = a^t \mu) = 1; X \text{ is confined}$ to a hyperplane.

Still true: distribution of X depends only on $\Sigma = AA^t$: if $AA^t = BB^t$ then $AZ + \mu$ and $BZ + \mu$ have the same distribution.

Properties of the MVN distribution

1: All margins are multivariate normal: if

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$
$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$

and

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

then $X \sim MVN(\mu, \Sigma) \Rightarrow X_1 \sim MVN(\mu_1, \Sigma_{11}).$

2: All conditionals are normal: the conditional distribution of X_1 given $X_2 = x_2$ is $MVN(\mu_1 + \sum_{12}\sum_{22}^{-1}(x_2 - \mu_2), \sum_{11} - \sum_{12}\sum_{22}^{-1}\sum_{21})$

3: $MX + \nu \sim MVN(M\mu + \nu, M\Sigma M^t)$: affine transformation of MVN is normal.