The Multivariate Normal Distribution

Defn: $Z \in R^{1} \sim N(0,1)$ iff

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

Defn: $Z \in R^{p} \sim \operatorname{MVN}(0, I)$ if and only if $Z=$ $\left(Z_{1}, \ldots, Z_{p}\right)^{t}$ with the Z_{i} independent and each $Z_{i} \sim N(0,1)$.

In this case according to our theorem

$$
\begin{aligned}
f_{Z}\left(z_{1}, \ldots, z_{p}\right) & =\prod \frac{1}{\sqrt{2 \pi}} e^{-z_{i}^{2} / 2} \\
& =(2 \pi)^{-p / 2} \exp \left\{-z^{t} z / 2\right\}
\end{aligned}
$$

superscript t denotes matrix transpose.

Defn: $X \in R^{p}$ has a multivariate normal distribution if it has the same distribution as $A Z+\mu$ for some $\mu \in R^{p}$, some $p \times p$ matrix of constants A and $Z \sim M V N(0, I)$.

Matrix A singular: X does not have a density.
A invertible: derive multivariate normal density by change of variables:

$$
\begin{gathered}
X=A Z+\mu \Leftrightarrow Z=A^{-1}(X-\mu) \\
\frac{\partial X}{\partial Z}=A \quad \frac{\partial Z}{\partial X}=A^{-1}
\end{gathered}
$$

So

$$
\begin{aligned}
f_{X}(x) & =f_{Z}\left(A^{-1}(x-\mu)\right)\left|\operatorname{det}\left(A^{-1}\right)\right| \\
& =\frac{\exp \left\{-(x-\mu)^{t}\left(A^{-1}\right)^{t} A^{-1}(x-\mu) / 2\right\}}{(2 \pi)^{p / 2}|\operatorname{det} A|} .
\end{aligned}
$$

Now define $\Sigma=A A^{t}$ and notice that

$$
\Sigma^{-1}=\left(A^{t}\right)^{-1} A^{-1}=\left(A^{-1}\right)^{t} A^{-1}
$$

and

$$
\operatorname{det} \Sigma=\operatorname{det} A \operatorname{det} A^{t}=(\operatorname{det} A)^{2} .
$$

Thus f_{X} is

$$
\frac{\exp \left\{-(x-\mu)^{t} \Sigma^{-1}(x-\mu) / 2\right\}}{(2 \pi)^{p / 2}(\operatorname{det} \Sigma)^{1 / 2}} ;
$$

the $M V N(\mu, \Sigma)$ density. Note density is the same for all A such that $A A^{t}=\Sigma$. This justifies the notation $M V N(\mu, \Sigma)$.

For which μ, Σ is this a density?

Any μ but if $x \in R^{p}$ then

$$
\begin{aligned}
x^{t} \Sigma x & =x^{t} A A^{t} x \\
& =\left(A^{t} x\right)^{t}\left(A^{t} x\right) \\
& =\sum_{1}^{p} y_{i}^{2} \geq 0
\end{aligned}
$$

where $y=A^{t} x$. Inequality strict except for $y=0$ which is equivalent to $x=0$. Thus Σ is a positive definite symmetric matrix.

Conversely, if Σ is a positive definite symmetric matrix then there is a square invertible matrix A such that $A A^{t}=\Sigma$ so that there is a $M V N(\mu, \Sigma)$ distribution. (A can be found via the Cholesky decomposition, e.g.)

When A is singular X will not have a density: $\exists a$ such that $P\left(a^{t} X=a^{t} \mu\right)=1 ; X$ is confined to a hyperplane.

Still true: distribution of X depends only on $\Sigma=A A^{t}$: if $A A^{t}=B B^{t}$ then $A Z+\mu$ and $B Z+\mu$ have the same distribution.

Properties of the $M V N$ distribution

1: All margins are multivariate normal: if

$$
\begin{aligned}
X & =\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \\
\mu & =\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]
\end{aligned}
$$

and

$$
\Sigma=\left[\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]
$$

then $X \sim \operatorname{MVN}(\mu, \Sigma) \Rightarrow X_{1} \sim \operatorname{MVN}\left(\mu_{1}, \Sigma_{11}\right)$.

2: All conditionals are normal: the conditional distribution of X_{1} given $X_{2}=x_{2}$ is $M V N\left(\mu_{1}+\right.$ $\left.\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)$

3: $M X+\nu \sim M V N\left(M \mu+\nu, M \Sigma M^{t}\right)$: affine transformation of MVN is normal.

