
STAT 830

The Multivariate Normal Distribution

In this section I present the basics of the multivariate normal distribution as
an example to illustrate our distribution theory ideas.

Definition: A random variable Z ∈ R1 has a standard normal distribution
(we write Z ∼ N(0, 1)) if and only if Z has the density

fZ(z) =
1√
2π
e−z

2/2 .

Note: To see that this is a density let

I =

∫ ∞
−∞

exp(−u2/2)du.

Then

I2 =

{∫ ∞
−∞

exp(−u2/2)du.

}2

=

{∫ ∞
−∞

exp(−u2/2)du

}{∫ ∞
−∞

exp(−v2/2)dv

}
=

∫ ∞
−∞

∫ ∞
−∞

exp{−(u2 + v2)/2}dudv

Now do this integral in polar co-ordinates by the substitution u = r cos θ and
v = r sin θ for 0 < r <∞ and −π < θ ≤ θ. The Jacobian is r and we get

I2 =

∫ ∞
0

∫ π

−π
r exp(−r2/2)dθdr

= 2π

∫ ∞
0

r exp(−r2/2)dr

= −2π exp(−r2/2)
∣∣∞
r=0

= 2π.

Thus
I =
√

2π.
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Definition: A random vector Z ∈ Rp has a standard multivariate normal
distribution, written Z ∼ MVN(0, I) if and only if Z = (Z1, . . . , Zp)

t with
the Zi independent and each Zi ∼ N(0, 1).

In this case according to our theorem ??

fZ(z1, . . . , zp) =
∏ 1√

2π
e−z

2
i /2

= (2π)−p/2 exp{−ztz/2} ;

here, superscript t denotes matrix transpose.

Definition: X ∈ Rp has a multivariate normal distribution if it has the
same distribution as AZ+µ for some µ ∈ Rp, some p×p matrix of constants
A and Z ∼MVN(0, I).

Remark: If the matrix A is singular then X does not have a density. This
is the case for example for the residual vector in a linear regression problem.

Remark: If the matrix A is invertible we can derive the multivariate normal
density by change of variables:

X = AZ + µ⇔ Z = A−1(X − µ)

∂X

∂Z
= A

∂Z

∂X
= A−1 .

So

fX(x) = fZ(A−1(x− µ))| det(A−1)|

=
exp{−(x− µ)t(A−1)tA−1(x− µ)/2}

(2π)p/2| detA|
.

Now define Σ = AAt and notice that

Σ−1 = (At)−1A−1 = (A−1)tA−1

and
det Σ = detA detAt = (detA)2 .

Thus fX is
exp{−(x− µ)tΣ−1(x− µ)/2}

(2π)p/2(det Σ)1/2
;
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the MVN(µ,Σ) density. Note that this density is the same for all A such
that AAt = Σ. This justifies the usual notation MVN(µ,Σ).

Here is a question: for which µ, Σ is this a density? The answer is that
this is a density for any µ but if x ∈ Rp then

xtΣx = xtAAtx

= (Atx)t(Atx)

=

p∑
1

y2i ≥ 0

where y = Atx. The inequality is strict except for y = 0 which is equivalent
to x = 0. Thus Σ is a positive definite symmetric matrix.

Conversely, if Σ is a positive definite symmetric matrix then there is a
square invertible matrix A such that AAt = Σ so that there is a MVN(µ,Σ)
distribution. (This square root matrix A can be found via the Cholesky
decomposition, e.g.)

When A is singular X will not have a density because ∃a such that
P (atX = atµ) = 1; in this case X is confined to a hyperplane. A hyper-
plane has p dimensional volume 0 so no density can exist.

It is still true that the distribution of X depends only on Σ = AAt: if
AAt = BBt then AZ + µ and BZ + µ have the same distribution. This
can be proved using the characterization properties of moment generating
functions.

I now make a list of three basic properties of the MVN distribution.

1. All margins of a multivariate normal distribution are multivariate nor-
mal. That is, if

X =

[
X1

X2

]
,

µ =

[
µ1

µ2

]
and

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
then X ∼MVN(µ,Σ)⇒ X1 ∼MVN(µ1,Σ11).

2. All conditionals are normal: the conditional distribution of X1 given
X2 = x2 is MVN(µ1 + Σ12Σ

−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21)
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3. If X ∼MVNp(µ,Σ) then MX + ν ∼MVN(Mµ+ ν,MΣM t). We say
that an affine transformation of a multivariate normal vector is normal.
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