
STAT 801: Mathematical Statistics

Monte Carlo

Suppose you are given random variables X1, . . . , Xn whose joint density f
(or distribution) is specified and a statistic T (X1, . . . , Xn) whose distribution
you want to know. To compute something like P (T > t) you can proceed as
follows:

1. Generate X1, . . . , Xn from the density f .

2. Compute T1 = T (X1, . . . , Xn).

3. Repeat steps 1 and 2 N times getting T1, . . . , TN .

4. Estimate p = P (T > t) as p̂ = M/N where M is number of repetitions
where Ti > t.

5. Estimate the accuracy of p̂ using
√

p̂(1 − p̂)/N .

Notice that the accuracy is inversely proportional to
√
N . There are a num-

ber of tricks to make the method more accurate (but they only change the
constant of proportionality – the SE is still inversely proportional to the square
root of the sample size).

In the rest of this section I begin by discussing techniques for generating
random variables with a given distribution under the assumption that you have
a source of independent uniformly distributed variables. Then I survey a variety
of methods for improving the accuracy of Monte Carlo methods.

Generating the Sample

We will consider here several methods for converting a source of indepedent
Uniform[0,1] random variables to random variables with another desired joint
distribution. Most computer languages have a facility for generating pseudo
uniform random numbers, that is, variables U which have (approximately of
course) a Uniform[0, 1] distribution. They are produced by a deterministic al-
gorithm so they are not really random (that’s why we say “pseudo”) but the
algorithms are tested to check that they have approximately the properties of
such a sequence. Of course numbers stored in a computer are recorded only
to a certain number of bits so they are really discrete uniforms not continuous
uniforms. Sometimes this matters in programming.

The methods we will consider here are:

1. Transformation

2. Acceptance-Rejection sampling

3. Markov Chain Monte Carlo

1

Transformation

Other distributions are generated by transformation:
Exponential: X = − logU has an exponential distribution:

P (X > x) = P (− log(U) > x)

= P (U ≤ e−x) = e−x

Random uniforms generated on the computer sometimes have only 6 or 7 digits
or so of detail. This can make the tail of your distribution grainy. If U were
actually a multiple of 10−6 for instance then the largest possible value of X is
6 log(10). This problem can be ameliorated by the following algorithm:

• Generate U a Uniform[0,1] variable.

• Pick a small ǫ like 10−3 say. If U > ǫ take Y = − log(U).

• If U ≤ ǫ remember that the conditional distribution of Y − y given Y > y
is exponential. You use this by generating a new U ′ and computing Y ′ =
− log(U ′). Then take Y = Y ′− log(ǫ). The resulting Y has an exponential
distribution. You should check this by computing P (Y > y).

General technique: inverse probability integral transform.
If X is to have cdf F :
Generate U ∼ Uniform[0, 1].
Take X = F−1(U):

P (Y ≤ y) = P (F−1(U) ≤ y)

= P (U ≤ F (y)) = F (y)

Example: X exponential. F (x) = 1− e−x and F−1(u) = − log(1− u).
Compare to previous method. (Use U instead of 1− U .)
Normal: F = Φ (common notation for standard normal cdf).
No closed form for F−1.
One way: use numerical algorithm to compute F−1.
Alternative: Box Müller
Generate U1, U2 two independent Uniform[0,1] variables.
Define

Y1 =
√

−2 log(U1) cos(2πU2)

and
Y2 =

√

−2 log(U1) sin(2πU2) .

Exercise: (use change of variables) Y1 and Y2 are independent N(0, 1) vari-
ables.

2

Acceptance Rejection

Suppose: can’t calculate F−1 but know f .
Find density g and constant c such that

1. f(x) ≤ cg(x) for each x and

2. G−1 is computable or can generate observationsW1,W2, . . . independently
from g.

Algorithm:

1. Generate W1.

2. Compute p = f(W1)/(cg(W1)) ≤ 1.

3. Generate uniform[0,1] random variable U1 independent of all W s.

4. Let Y = W1 if U1 ≤ p.

5. Otherwise get new W,U ; repeat until you find Ui ≤ f(Wi)/(cg(Wi)).

6. Make Y be last W generated.

This Y has density f .

Markov Chain Monte Carlo

Recently popular tactic, particularly for generating multivariate observations.
Theorem Suppose W1,W2, . . . is an (ergodic) Markov chain with stationary

transitions and the stationary initial distribution of W has density f . Then
starting the chain with any initial distribution

1

n

n
∑

i=1

g(Wi) →
∫

g(x)f(x)dx .

Estimate things like
∫

A
f(x)dx by computing the fraction of the Wi which

land in A.
Many versions of this technique including Gibbs Sampling and Metropolis-

Hastings algorithm. The technique was invented in 1950s by physicists in a
paper by Metropolis et al. One of the authors was Edward Teller the so-called
“father of the hydrogen bomb”.

Importance Sampling

If you want to compute

θ ≡ E(T (X)) =

∫

T (x)f(x)dx

3

you can generate observations from a different density g and then compute

θ̂ = n−1
∑

T (Xi)f(Xi)/g(Xi)

Then

E(θ̂) = n−1
∑

E {T (Xi)f(Xi)/g(Xi)}

=

∫

{T (x)f(x)/g(x)}g(x)dx

=

∫

T (x)f(x)dx

= θ

Variance reduction

Consider the problem of estimating the distribution of the sample mean for a
Cauchy random variable. The Cauchy density is

f(x) =
1

π(1 + x2)

We generate U1, . . . , Un uniforms and then define Xi = tan−1(π(Ui − 1/2)).
Then we compute T = X̄. Now to estimate p = P (T > t) we would use

p̂ =

N
∑

i=1

1(Ti > t)/N

after generatingN samples of size n. This estimate is unbiased and has standard
error

√

p(1− p)/N .
We can improve this estimate by remembering that −Xi also has Cauchy

distribution. Take Si = −Ti. Remember that Si has the same distribution as
Ti. Then we try (for t > 0)

p̃ = [

N
∑

i=1

1(Ti > t) +

N
∑

i=1

1(Si > t)]/(2N)

which is the average of two estimates like p̂. The variance of p̃ is

(4N)−1V ar(1(Ti > t) + 1(Si > t)) = (4N)−1V ar(1(|T | > t))

which is
2p(1− 2p)

4N
=

p(1− 2p)

2N

Notice that the variance has an extra 2 in the denominator and that the nu-
merator is also smaller – particularly for p near 1/2. So this method of variance
reduction has resulted in a need for only half the sample size to get the same
accuracy.

4

Regression estimates

Suppose we want to compute
θ = E(|Z|)

where Z is standard normal. We generate N iid N(0, 1) variables Z1, . . . , ZN

and compute θ̂ =
∑ |Zi|/N . But we know that E(Z2

i
) = 1 and can see easily

that θ̂ is positively correlated with
∑

Z2

i
/N . So we consider using

θ̃ = θ̂ − c(
∑

Z2

i /N − 1)

Notice that E(θ̃) = θ and

V ar(θ̃) = V ar(θ̂)− 2cCov(θ̂,
∑

Z2

i /n) + c2V ar(
∑

Z2

i /N)

The value of c which minimizes this is

c =
Cov(θ̂,

∑

Z2

i /n)

V ar(
∑

Z2

i
/N)

and this value can be estimated by regressing the |Zi| on the Z2

i !

5

