STAT 801: Mathematical Statistics
Monte Carlo

Suppose you are given random variables X1, ..., X, whose joint density f
(or distribution) is specified and a statistic T'(X1, ..., X,) whose distribution
you want to know. To compute something like P(T > t) you can proceed as
follows:

1. Generate X1,..., X, from the density f.
2. Compute Ty = T(X1,...,Xn).
3. Repeat steps 1 and 2 N times getting T1,...,Tn.

4. Estimate p = P(T > t) as p = M/N where M is number of repetitions
where T; > t.

5. Estimate the accuracy of p using /p(1 — p)/N.

Notice that the accuracy is inversely proportional to v/N. There are a num-
ber of tricks to make the method more accurate (but they only change the
constant of proportionality — the SE is still inversely proportional to the square
root of the sample size).

In the rest of this section I begin by discussing techniques for generating
random variables with a given distribution under the assumption that you have
a source of independent uniformly distributed variables. Then I survey a variety
of methods for improving the accuracy of Monte Carlo methods.

Generating the Sample

We will consider here several methods for converting a source of indepedent
Uniform[0,1] random variables to random variables with another desired joint
distribution. Most computer languages have a facility for generating pseudo
uniform random numbers, that is, variables U which have (approximately of
course) a Uniform|0, 1] distribution. They are produced by a deterministic al-
gorithm so they are not really random (that’s why we say “pseudo”) but the
algorithms are tested to check that they have approximately the properties of
such a sequence. Of course numbers stored in a computer are recorded only
to a certain number of bits so they are really discrete uniforms not continuous
uniforms. Sometimes this matters in programming.
The methods we will consider here are:

1. Transformation
2. Acceptance-Rejection sampling

3. Markov Chain Monte Carlo



Transformation

Other distributions are generated by transformation:
Exponential: X = —logU has an exponential distribution:

P(X > x)=P(—1log(U) > x)
=PU<e *)=e"

Random uniforms generated on the computer sometimes have only 6 or 7 digits

or so of detail. This can make the tail of your distribution grainy. If U were

actually a multiple of 10~° for instance then the largest possible value of X is

61og(10). This problem can be ameliorated by the following algorithm:

e Generate U a Uniform[0,1] variable.
e Pick a small € like 1073 say. If U > € take Y = —log(U).

o If U < e remember that the conditional distribution of Y —y given Y > y
is exponential. You use this by generating a new U’ and computing Y’ =
—log(U’). Then take Y =Y’ —log(e). The resulting Y has an exponential
distribution. You should check this by computing P(Y > y).

General technique: inverse probability integral transform.
If X is to have cdf F:

Generate U ~ Uni form|0,1].

Take X = F~1(U):

P(Y <y)=PF 1 U)<y)
=P(U < F(y) = F(y)

Example: X exponential. F(z) =1 — e % and F~(u) = —log(1 — u).
Compare to previous method. (Use U instead of 1 — U.)

Normal: F'= & (common notation for standard normal cdf).

No closed form for F~1.

One way: use numerical algorithm to compute F~!.

Alternative: Box Miiller

Generate Uy, Us two independent Uniform[0,1] variables.

Define
Y1 = /—2log(Uy) cos(2nUs)
Y2 = v/—2log(Uy) sin(27Us) .

Exercise: (use change of variables) Y7 and Y, are independent N (0, 1) vari-
ables.

and



Acceptance Rejection

Suppose: can’t calculate F~! but know f.
Find density g and constant ¢ such that

1. f(z) < eg(x) for each x and

2. G~ is computable or can generate observations Wy, Wa, . .. independently
from g.

Algorithm:

1. Generate Wj.

2. Compute p = f(W1)/(cg(W1)) < 1.

Generate uniform[0,1] random variable U; independent of all Ws.
Let Y = Wi if Uy < p.

Otherwise get new W, U; repeat until you find U; < f(W;)/(cg(W5)).

A

Make Y be last W generated.

This Y has density f.

Markov Chain Monte Carlo

Recently popular tactic, particularly for generating multivariate observations.

Theorem Suppose W1, W, ... is an (ergodic) Markov chain with stationary
transitions and the stationary initial distribution of W has density f. Then
starting the chain with any initial distribution

230 = [ gl@)f(a)ds.
i=1

Estimate things like [, f(z)dz by computing the fraction of the W; which
land in A.

Many versions of this technique including Gibbs Sampling and Metropolis-
Hastings algorithm. The technique was invented in 1950s by physicists in a
paper by Metropolis et al. One of the authors was Edward Teller the so-called
“father of the hydrogen bomb”.

Importance Sampling

If you want to compute



you can generate observations from a different density g and then compute
b =0V SO T(X)F(X0) /9(Xo)
Then
E@) =0 3" E{T(X:)£(X:)/9(X:)}
- [r@s@/gta)gwis

- / T(2)f(a)da
—0

Variance reduction

Consider the problem of estimating the distribution of the sample mean for a
Cauchy random variable. The Cauchy density is

1

f(fl?):m

We generate Uy, ..., U, uniforms and then define X; = tan™'(x(U; — 1/2)).
Then we compute T' = X. Now to estimate p = P(T > t) we would use

N
p=>_ UTi>t)/N

=1

after generating N samples of size n. This estimate is unbiased and has standard
error /p(1 —p)/N.

We can improve this estimate by remembering that —X; also has Cauchy
distribution. Take S; = —T;. Remember that S; has the same distribution as
T;. Then we try (for t > 0)

N N

5= 1T > 1)+ S 1(S: > 1)/(2N)

i=1 i=1
which is the average of two estimates like p. The variance of p is
(AN)""War(1(T; > t) + 1(S; > 1)) = AN)" 'WVar(1(|T| > 1))

which is
2p(1 —2p)  p(1—2p)

4N 2N
Notice that the variance has an extra 2 in the denominator and that the nu-
merator is also smaller — particularly for p near 1/2. So this method of variance
reduction has resulted in a need for only half the sample size to get the same
accuracy.




Regression estimates

Suppose we want to compute
0= E(|Z])

where Z is standard normal. We generate N iid N(0, 1) variables Z1,..., Zy
and compute 6 = > |Z;|/N. But we know that E(Z?) = 1 and can see easily
that 6 is positively correlated with Y Z?/N. So we consider using

) =0-c()_ 2Z}/N-1)

Notice that E(6) = 6 and
Var(0) = Var(d) — 2¢Cov (0, Z Z2/n) + c2Var(Z Z2/N)

The value of ¢ which minimizes this is

B Cov(é, S Z2/n)
T Var(x Z2/N)

and this value can be estimated by regressing the |Z;| on the Z?!



