STAT 801: Mathematical Statistics

Monte Carlo

Suppose you are given random variables X_{1}, \ldots, X_{n} whose joint density f (or distribution) is specified and a statistic $T\left(X_{1}, \ldots, X_{n}\right)$ whose distribution you want to know. To compute something like $P(T>t)$ you can proceed as follows:

1. Generate X_{1}, \ldots, X_{n} from the density f.
2. Compute $T_{1}=T\left(X_{1}, \ldots, X_{n}\right)$.
3. Repeat steps 1 and $2 N$ times getting T_{1}, \ldots, T_{N}.
4. Estimate $p=P(T>t)$ as $\hat{p}=M / N$ where M is number of repetitions where $T_{i}>t$.
5. Estimate the accuracy of \hat{p} using $\sqrt{\hat{p}(1-\hat{p}) / N}$.

Notice that the accuracy is inversely proportional to \sqrt{N}. There are a number of tricks to make the method more accurate (but they only change the constant of proportionality - the SE is still inversely proportional to the square root of the sample size).

In the rest of this section I begin by discussing techniques for generating random variables with a given distribution under the assumption that you have a source of independent uniformly distributed variables. Then I survey a variety of methods for improving the accuracy of Monte Carlo methods.

Generating the Sample

We will consider here several methods for converting a source of indepedent Uniform $[0,1]$ random variables to random variables with another desired joint distribution. Most computer languages have a facility for generating pseudo uniform random numbers, that is, variables U which have (approximately of course) a Uniform $[0,1]$ distribution. They are produced by a deterministic algorithm so they are not really random (that's why we say "pseudo") but the algorithms are tested to check that they have approximately the properties of such a sequence. Of course numbers stored in a computer are recorded only to a certain number of bits so they are really discrete uniforms not continuous uniforms. Sometimes this matters in programming.

The methods we will consider here are:

1. Transformation
2. Acceptance-Rejection sampling
3. Markov Chain Monte Carlo

Transformation

Other distributions are generated by transformation:
Exponential: $X=-\log U$ has an exponential distribution:

$$
\begin{aligned}
P(X>x) & =P(-\log (U)>x) \\
& =P\left(U \leq e^{-x}\right)=e^{-x}
\end{aligned}
$$

Random uniforms generated on the computer sometimes have only 6 or 7 digits or so of detail. This can make the tail of your distribution grainy. If U were actually a multiple of 10^{-6} for instance then the largest possible value of X is $6 \log (10)$. This problem can be ameliorated by the following algorithm:

- Generate U a Uniform $[0,1]$ variable.
- Pick a small ϵ like 10^{-3} say. If $U>\epsilon$ take $Y=-\log (U)$.
- If $U \leq \epsilon$ remember that the conditional distribution of $Y-y$ given $Y>y$ is exponential. You use this by generating a new U^{\prime} and computing $Y^{\prime}=$ $-\log \left(U^{\prime}\right)$. Then take $Y=Y^{\prime}-\log (\epsilon)$. The resulting Y has an exponential distribution. You should check this by computing $P(Y>y)$.

General technique: inverse probability integral transform.
If X is to have cdf F :
Generate $U \sim$ Uniform $[0,1]$.
Take $X=F^{-1}(U)$:

$$
\begin{aligned}
P(Y \leq y) & =P\left(F^{-1}(U) \leq y\right) \\
& =P(U \leq F(y))=F(y)
\end{aligned}
$$

Example: X exponential. $F(x)=1-e^{-x}$ and $F^{-1}(u)=-\log (1-u)$.
Compare to previous method. (Use U instead of $1-U$.)
Normal: $F=\Phi$ (common notation for standard normal cdf).
No closed form for F^{-1}.
One way: use numerical algorithm to compute F^{-1}.
Alternative: Box Müller
Generate U_{1}, U_{2} two independent Uniform[0,1] variables.
Define

$$
Y_{1}=\sqrt{-2 \log \left(U_{1}\right)} \cos \left(2 \pi U_{2}\right)
$$

and

$$
Y_{2}=\sqrt{-2 \log \left(U_{1}\right)} \sin \left(2 \pi U_{2}\right)
$$

Exercise: (use change of variables) Y_{1} and Y_{2} are independent $N(0,1)$ variables.

Acceptance Rejection

Suppose: can't calculate F^{-1} but know f.
Find density g and constant c such that

1. $f(x) \leq c g(x)$ for each x and
2. G^{-1} is computable or can generate observations W_{1}, W_{2}, \ldots independently from g.

Algorithm:

1. Generate W_{1}.
2. Compute $p=f\left(W_{1}\right) /\left(c g\left(W_{1}\right)\right) \leq 1$.
3. Generate uniform $[0,1]$ random variable U_{1} independent of all $W \mathrm{~s}$.
4. Let $Y=W_{1}$ if $U_{1} \leq p$.
5. Otherwise get new W, U; repeat until you find $U_{i} \leq f\left(W_{i}\right) /\left(c g\left(W_{i}\right)\right)$.
6. Make Y be last W generated.

This Y has density f.

Markov Chain Monte Carlo

Recently popular tactic, particularly for generating multivariate observations.
Theorem Suppose W_{1}, W_{2}, \ldots is an (ergodic) Markov chain with stationary transitions and the stationary initial distribution of W has density f. Then starting the chain with any initial distribution

$$
\frac{1}{n} \sum_{i=1}^{n} g\left(W_{i}\right) \rightarrow \int g(x) f(x) d x
$$

Estimate things like $\int_{A} f(x) d x$ by computing the fraction of the W_{i} which land in A.

Many versions of this technique including Gibbs Sampling and MetropolisHastings algorithm. The technique was invented in 1950 s by physicists in a paper by Metropolis et al. One of the authors was Edward Teller the so-called "father of the hydrogen bomb".

Importance Sampling

If you want to compute

$$
\theta \equiv E(T(X))=\int T(x) f(x) d x
$$

you can generate observations from a different density g and then compute

$$
\hat{\theta}=n^{-1} \sum T\left(X_{i}\right) f\left(X_{i}\right) / g\left(X_{i}\right)
$$

Then

$$
\begin{aligned}
E(\hat{\theta}) & =n^{-1} \sum E\left\{T\left(X_{i}\right) f\left(X_{i}\right) / g\left(X_{i}\right)\right\} \\
& =\int\{T(x) f(x) / g(x)\} g(x) d x \\
& =\int T(x) f(x) d x \\
& =\theta
\end{aligned}
$$

Variance reduction

Consider the problem of estimating the distribution of the sample mean for a Cauchy random variable. The Cauchy density is

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

We generate U_{1}, \ldots, U_{n} uniforms and then define $X_{i}=\tan ^{-1}\left(\pi\left(U_{i}-1 / 2\right)\right)$. Then we compute $T=\bar{X}$. Now to estimate $p=P(T>t)$ we would use

$$
\hat{p}=\sum_{i=1}^{N} 1\left(T_{i}>t\right) / N
$$

after generating N samples of size n. This estimate is unbiased and has standard error $\sqrt{p(1-p) / N}$.

We can improve this estimate by remembering that $-X_{i}$ also has Cauchy distribution. Take $S_{i}=-T_{i}$. Remember that S_{i} has the same distribution as T_{i}. Then we try (for $t>0$)

$$
\tilde{p}=\left[\sum_{i=1}^{N} 1\left(T_{i}>t\right)+\sum_{i=1}^{N} 1\left(S_{i}>t\right)\right] /(2 N)
$$

which is the average of two estimates like \hat{p}. The variance of \tilde{p} is

$$
(4 N)^{-1} \operatorname{Var}\left(1\left(T_{i}>t\right)+1\left(S_{i}>t\right)\right)=(4 N)^{-1} \operatorname{Var}(1(|T|>t))
$$

which is

$$
\frac{2 p(1-2 p)}{4 N}=\frac{p(1-2 p)}{2 N}
$$

Notice that the variance has an extra 2 in the denominator and that the numerator is also smaller - particularly for p near $1 / 2$. So this method of variance reduction has resulted in a need for only half the sample size to get the same accuracy.

Regression estimates

Suppose we want to compute

$$
\theta=E(|Z|)
$$

where Z is standard normal. We generate N iid $N(0,1)$ variables Z_{1}, \ldots, Z_{N} and compute $\hat{\theta}=\sum\left|Z_{i}\right| / N$. But we know that $E\left(Z_{i}^{2}\right)=1$ and can see easily that $\hat{\theta}$ is positively correlated with $\sum Z_{i}^{2} / N$. So we consider using

$$
\tilde{\theta}=\hat{\theta}-c\left(\sum Z_{i}^{2} / N-1\right)
$$

Notice that $E(\tilde{\theta})=\theta$ and

$$
\operatorname{Var}(\tilde{\theta})=\operatorname{Var}(\hat{\theta})-2 c \operatorname{Cov}\left(\hat{\theta}, \sum Z_{i}^{2} / n\right)+c^{2} \operatorname{Var}\left(\sum Z_{i}^{2} / N\right)
$$

The value of c which minimizes this is

$$
c=\frac{\operatorname{Cov}\left(\hat{\theta}, \sum Z_{i}^{2} / n\right)}{\operatorname{Var}\left(\sum Z_{i}^{2} / N\right)}
$$

and this value can be estimated by regressing the $\left|Z_{i}\right|$ on the Z_{i}^{2} !

