
Modern statistics is dominated by computations made by simulation.
There are many many clever simulation ideas; here we discuss only the basics.
We imagine we are given random variables X1, . . . , Xn whose joint distribu-
tion is somehow specified. We are interested in some statistic T (X1, . . . , Xn)
whose distribution we want.

Here is the basic Monte Carlo method to compute the survival function
of T , that is, to compute P (T > t):

1. Generate X1, . . . , Xn from the density f .

2. Compute T1 = T (X1, . . . , Xn).

3. Repeat this process independently N times getting statistic values
T1, . . . , TN .

4. Estimate p = P (T > t) by p̂ = M/N where M is number of repetitions
where Ti > t.

5. Estimate the accuracy of p̂ using
√
p̂(1− p̂)/N . In the jargon of later

chapters this is the estimated standard error of p̂.

Note: The accuracy of this computational method is inversely proportional
to
√
N .

Next: we review some tricks to make the method more accurate.

Warning: The tricks only change the constant of proportionality — the
standard error is still inversely proportional to

√
N .

0.0.1 Generating the Sample

Step 1 in the overall outline just presented calls for “generating” samples
from the known distribution of X1, . . . , Xn. In this subsection I want to
try to explain what is meant. The basic idea is to carry out an experiment
which is like performing the original experiment, generating an outcome ω
and calculating the value of the random variables. Instead of doing a real
experiment we use a pseudo-random number generator, a computer program
which is intended to mimic the behaviour of a real random process. This relies
on a basic computing tool: pseudo uniform random numbers — variables
U which have (approximately) a Uniform[0, 1] distribution. I will not be
discussing the algorithms used for such generators. Instead we take them as

1

a given, ignore any flaws and pretend that we have a way of generating a
sequence of independent and identically distributed Uniform[0,1] variables.

0.0.2 Transformation

Other distributions are often then generated by transformation:

Example: Exponential: If U is Uniform[0,1] then X = − logU has an
exponential distribution:

P (X > x) = P (− log(U) > x)

= P (U ≤ e−x) = e−x

This generator has the following pitfall: random uniform variables generated
on a computer sometimes have only 6 or 7 digits. As a consequence the tail
of the generated distribution (using the transformation above) is grainy.

Here is a simplified explanation. Suppose the generated value of U is
always a multiple of 10−6. Then the largest possible value of X is 6 log(10)
and the number of values larger than 3 log(10) = 6.91 is 1000

Here is an improved algorithm

• Generate U a Uniform[0,1] variable.

• Pick a small ε like 10−3 say. If U > ε take Y = − log(U).

• If U ≤ ε we make use of the fact that the conditional distribution
of Y − y given Y > y is exponential. Generate an independent new
uniform variable U ′. Compute Y ′ = − log(U ′). Take Y = Y ′ − log(ε).

The resulting Y has an exponential distribution. As an exercise you should
check this assertion by computing P (Y > y). The new Y has 1,000,000
possible values larger than 3 log(10) and the largest possible values is now
9 log(10). As a result the distribution is much less grainy.

0.0.3 General technique: inverse probability integral
transform

One standard technique which is closely connected to our exponential gener-
ator is called the inverse probability integral transformation. If Y is to have
cdf F we use the following general algorithm:

2

• Generate U ∼ Uniform[0, 1].

• Take Y = F−1(U):

P (Y ≤ y) = P (F−1(U) ≤ y)

= P (U ≤ F (y)) = F (y)

Jargon: F−1(U) is the inverse probability integral transform. In fact U =
F (Y) is called the probability integral transform of Y .

Example: SupposeX has a standard exponential distribution. Then F (x) =
1− e−x and F−1(u) = − log(1− u). Compare this generator to our previous
method where we used U instead of 1−U . Of course U and 1−U both have
Uniform[0,1].

Example: Normal: F = Φ (this is common notation for the standard
normal cumulative distribution function). There is no closed form for F−1.
One way to generate N(0, 1) is to use a numerical algorithm to compute F−1.

An alternative method is the Box Müller generator:

• Generate U1, U2, two independent Uniform[0,1] variables.

• Define
Y1 =

√
−2 log(U1) cos(2πU2)

and
Y2 =

√
−2 log(U1) sin(2πU2) .

• As an exercise: use the change of variables technique to prove that Y1
and Y2 are independent N(0, 1) variables.

0.0.4 Acceptance Rejection

Suppose we can’t calculate F−1 but know the density f . Find some density
g and constant c such that

1. f(x) ≤ cg(x) for each x and

2. either G−1 is computable or we can generate observations W1,W2, . . .
independently from g.

3

Then we use the following algorithm:

1. Generate W1.

2. Compute p = f(W1)/(cg(W1)) ≤ 1.

3. Generate a Uniform[0,1] random variable U1 independent of all W s.

4. Let Y = W1 if U1 ≤ p.

5. Otherwise get new W,U ; repeat until you find Ui ≤ f(Wi)/(cg(Wi)).

6. Make Y be the last W generated.

7. This Y has density f .

0.0.5 Markov Chain Monte Carlo

Recently popular tactic, particularly for generating multivariate observa-
tions.

Theorem Suppose W1,W2, . . . is an (ergodic) Markov chain with sta-
tionary transitions and the stationary initial distribution of W has density
f . Then starting the chain with any initial distribution

1

n

n∑
i=1

g(Wi)→
∫
g(x)f(x)dx .

Estimate things like
∫
A
f(x)dx by computing the fraction of the Wi which

land in A.
Many versions of this technique including Gibbs Sampling and Metropolis-

Hastings algorithm.
Technique invented in 1950s: Metropolis et al.
One of the authors was Edward Teller “father of the hydrogen bomb”.
Importance Sampling
If you want to compute

θ ≡ E(T (X)) =

∫
T (x)f(x)dx

you can generate observations from a different density g and then compute

θ̂ = n−1
∑

T (Xi)f(Xi)/g(Xi)

4

Then

E(θ̂) = n−1
∑

E {T (Xi)f(Xi)/g(Xi)}

=

∫
{T (x)f(x)/g(x)}g(x)dx

=

∫
T (x)f(x)dx

= θ

Variance reduction

Example: In this example we simulate to estimate the distribution of the
sample mean for a sample from the Cauchy distribution. The Cauchy density
is

f(x) =
1

π(1 + x2)

The basic algorithm is

1. Generate U1, . . . , Un uniforms.

The basic algorithm is

2. Define Xi = tan−1(π(Ui − 1/2)).

3. Compute T = X̄.

4. To estimate p = P (T > t) use

p̂ =
N∑
i=1

1(Ti > t)/N

after generating N samples of size n.

5. This estimate is unbiased.

6. Its standard error is
√
p(1− p)/N .

The algorithm can be improved by using antithetic variables. Note first
that −Xi also has a Cauchy distribution. Take Si = −Ti. Remember that
Si has the same distribution as Ti. Try (for t > 0)

p̃ = [
N∑
i=1

1(Ti > t) +
N∑
i=1

1(Si > t)]/(2N)

5

which is the average of two estimates like p̂. Then the variance of p̃ is

(4N)−1Var(1(Ti > t) + 1(Si > t))

= (4N)−1Var(1(|T | > t))

which is
2p(1− 2p)

4N
=
p(1− 2p)

2N

This variance has an extra 2 in the denominator and the numerator is also
smaller – particularly for p near 1/2. So we need only half the sample size
to get the same accuracy.

0.0.6 Regression estimates

Suppose Z ∼ N(0, 1). In this example we consider ways to compute

θ = E(|Z|) .

To begin with we generate N iid N(0, 1) variables Z1, . . . , ZN . Compute the
basic estimate θ̂ =

∑
|Zi|/N . But we know that E(Z2

i) = 1. We also know

that θ̂ is positively correlated with
∑
Z2

i /N . So we try

θ̃ = θ̂ − c(
∑

Z2
i /N − 1)

Notice that E(θ̃) = θ and

Var(θ̃) =

Var(θ̂)− 2cCov(θ̂,
∑

Z2
i /N)

+ c2Var(
∑

Z2
i /N)

The value of c which minimizes this is

c =
Cov(θ̂,

∑
Z2

i /N)

Var(
∑
Z2

i /N)

We can estimate c by regressing |Zi| on Z2
i ! Notice that minimization is

bound to produce a smaller variance than just using c = 0 which is the
original estimate.

6

	Generating the Sample
	Transformation
	General technique: inverse probability integral transform
	 Acceptance Rejection
	Markov Chain Monte Carlo
	Regression estimates

