Modern statistics is dominated by computations made by simulation.
There are many many clever simulation ideas; here we discuss only the basics.
We imagine we are given random variables Xy, ..., X, whose joint distribu-
tion is somehow specified. We are interested in some statistic 7'( X7, ..., X,)
whose distribution we want.

Here is the basic Monte Carlo method to compute the survival function
of T', that is, to compute P(T" > t):

1. Generate Xy, ..., X, from the density f.
2. Compute T} = T(Xq,...,X,).

3. Repeat this process independently N times getting statistic values
Ty, ..., Ty.

4. Estimate p = P(T > t) by p = M /N where M is number of repetitions
where T; > t.

5. Estimate the accuracy of p using /p(1 — p)/N. In the jargon of later
chapters this is the estimated standard error of p.

Note: The accuracy of this computational method is inversely proportional

tO\/N.

Next: we review some tricks to make the method more accurate.

Warning: The tricks only change the constant of proportionality — the
standard error is still inversely proportional to v/ N.

0.0.1 Generating the Sample

Step 1 in the overall outline just presented calls for “generating” samples
from the known distribution of Xi,...,X,. In this subsection I want to
try to explain what is meant. The basic idea is to carry out an experiment
which is like performing the original experiment, generating an outcome w
and calculating the value of the random variables. Instead of doing a real
experiment we use a pseudo-random number generator, a computer program
which is intended to mimic the behaviour of a real random process. This relies
on a basic computing tool: pseudo uniform random numbers — variables
U which have (approximately) a Uniform|0, 1] distribution. I will not be
discussing the algorithms used for such generators. Instead we take them as



a given, ignore any flaws and pretend that we have a way of generating a
sequence of independent and identically distributed Uniform[0,1] variables.

0.0.2 Transformation

Other distributions are often then generated by transformation:

Example: Exponential: If U is Uniform[0,1] then X = —logU has an
exponential distribution:

P(X > xz) = P(—log(U) > z)
=PU<e"=¢e"

This generator has the following pitfall: random uniform variables generated
on a computer sometimes have only 6 or 7 digits. As a consequence the tail
of the generated distribution (using the transformation above) is grainy.
Here is a simplified explanation. Suppose the generated value of U is
always a multiple of 107¢. Then the largest possible value of X is 61og(10)
and the number of values larger than 31log(10) = 6.91 is 1000
Here is an improved algorithm

e Generate U a Uniform|0,1] variable.
e Pick a small € like 1073 say. If U > € take Y = —log(U).

o If U < ¢ we make use of the fact that the conditional distribution
of Y —y given Y > y is exponential. Generate an independent new
uniform variable U’. Compute Y’ = —log(U’). Take Y =Y’ —log(e).

The resulting Y has an exponential distribution. As an exercise you should
check this assertion by computing P(Y > y). The new Y has 1,000,000
possible values larger than 3log(10) and the largest possible values is now
91og(10). As a result the distribution is much less grainy.

0.0.3 General technique: inverse probability integral
transform

One standard technique which is closely connected to our exponential gener-
ator is called the inverse probability integral transformation. If Y is to have
cdf F we use the following general algorithm:

2



e Generate U ~ Uniform[0,1].
e Take Y = F~}(U):

P(Y <y)=P(F'(U)
= P(U < F(y))

IN

y)
= F(y)

Jargon: F~1(U) is the inverse probability integral transform. In fact U =
F(Y) is called the probability integral transform of Y.

Example: Suppose X has a standard exponential distribution. Then F'(z) =
1—e®and F7'(u) = —log(1 — u). Compare this generator to our previous
method where we used U instead of 1 —U. Of course U and 1 — U both have
Uniform|0,1].

Example: Normal: F' = & (this is common notation for the standard

normal cumulative distribution function). There is no closed form for F 1.

One way to generate N (0, 1) is to use a numerical algorithm to compute F~1.
An alternative method is the Box Miiller generator:

e Generate Uy, U, two independent Uniform|0,1] variables.

e Define

Y1 = v/ —2log(U;) cos(2nU3)

and
Yy = v/ —2log(Uy) sin(2nUs) .

e As an exercise: use the change of variables technique to prove that Y;

and Y5 are independent N (0, 1) variables.

0.0.4 Acceptance Rejection

Suppose we can’t calculate F~! but know the density f. Find some density
g and constant ¢ such that

1. f(z) < cg(x) for each x and

2. either G™! is computable or we can generate observations Wy, W, ...
independently from g.



Then we use the following algorithm:
1. Generate Wj.
2. Compute p = f(Wy)/(cg(W7)) < 1.

Generate a Uniform[0,1] random variable U; independent of all Ws.

- W

Let Y =Wy if U; < p.

5. Otherwise get new W, U; repeat until you find U; < f(W;)/(cg(W;)).
6. Make Y be the last W generated.

7. This Y has density f.

0.0.5 Markov Chain Monte Carlo

Recently popular tactic, particularly for generating multivariate observa-
tions.

Theorem Suppose Wi, W, ... is an (ergodic) Markov chain with sta-
tionary transitions and the stationary initial distribution of W has density
f. Then starting the chain with any initial distribution

230 = [ gl (s,

Estimate things like [ 4 f(x)dx by computing the fraction of the 1¥; which
land in A.

Many versions of this technique including Gibbs Sampling and Metropolis-
Hastings algorithm.

Technique invented in 1950s: Metropolis et al.

One of the authors was Edward Teller “father of the hydrogen bomb”.

Importance Sampling

If you want to compute

0=E(T(X)) = /T(:r;)f(x)dx
you can generate observations from a different density g and then compute
0=n""> T(X)f(X:)/9(X;)

4



Then

=0
Variance reduction

Example: In this example we simulate to estimate the distribution of the
sample mean for a sample from the Cauchy distribution. The Cauchy density
1s

1
f(ZE) - 7T(]_ +ZE2)
The basic algorithm is
1. Generate Uy, ..., U, uniforms.
The basic algorithm is
2. Define X; = tan™!(7(U; — 1/2)).
3. Compute T = X.
4. To estimate p = P(T > t) use
N
p= WT; > t)/N
i=1

after generating N samples of size n.

5. This estimate is unbiased.

6. Its standard error is \/p(1 — p)/N.

The algorithm can be improved by using antithetic variables. Note first
that —X; also has a Cauchy distribution. Take S; = —T;. Remember that
S; has the same distribution as 7;. Try (for ¢ > 0)

N N

p=1> 1T > 1)+ (S, > 1)]/(2N)

i=1 i=1



which is the average of two estimates like p. Then the variance of p is

(4N)"'Var(1(T; > t) + 1(S; > 1))
= (4N)""Var(1(|T| > t))

which is
2p(1—2p)  p(1—2p)

4N 2N
This variance has an extra 2 in the denominator and the numerator is also
smaller — particularly for p near 1/2. So we need only half the sample size
to get the same accuracy.

0.0.6 Regression estimates

Suppose Z ~ N(0,1). In this example we consider ways to compute
0=E(Z|).

To begin with we generate N iid N(0, 1) variables 71, ..., Zy. Compute the
basic estimate § = > |Z;|/N. But we know that E(Z?) = 1. We also know
that 6 is positively correlated with Y Z2/N. So we try

)=0—c(>_ Z}/N —1)

Notice that E(#) = 6 and

Var(6) =
Var(0) — 2cCov(6, Z Z2/N)
+ cZVar(Z Z2/N)
The value of ¢ which minimizes this is

_ Covd, 5 2/N)
~ Var(>. Z?/N)

We can estimate ¢ by regressing |Z;| on Z?! Notice that minimization is
bound to produce a smaller variance than just using ¢ = 0 which is the
original estimate.



	Generating the Sample
	Transformation
	General technique: inverse probability integral transform
	 Acceptance Rejection
	Markov Chain Monte Carlo
	Regression estimates

