STAT 830
 Convergence of RVs

Richard Lockhart

Simon Fraser University
STAT 830 - Fall 2013

Purposes of These Notes

- Define convergence in probability, in mean, in quadratic mean.
- Define almost sure convergence.
- Define convergence in distribution.
- Compare and contrast these definitions.

Intuition about convergences

pp 71-72

- Contrast two statements:
- X and Y are close together.
- X and Y have similar distributions.
- Truth of first statement depends on joint distribution of X and Y.
- Truth of second statement depends on marginal distributions of X and Y.
- Both ideas used in large sample theory: describing behaviour of statistical procedures approximately in presence of lots of data.

Relation between convergence and approximation

- Some approximations and the limits they come from.
- Stirling's approximation:

$$
n!\approx \sqrt{2 \pi} n^{n+1 / 2} e^{-n} \equiv s_{n}
$$

n	$n!$	s_{n}	$n!/ s_{n}$
5	120	118.019	1.01678
10	3628800	3598695.619	1.008365

- Normal approximation to Binomial. Toss coin 100 times, get X heads.

$$
P(40 \leq X \leq 60) \approx \Phi\left(\frac{60-50}{\sqrt{25}}\right)-\Phi\left(\frac{40-50}{\sqrt{25}}\right)=0.9544997 .
$$

- Same context better approximation

$$
P(40 \leq X \leq 60) \approx \Phi\left(\frac{60.5-50}{\sqrt{25}}\right)-\Phi\left(\frac{39.5-50}{\sqrt{25}}\right)=0.9642712
$$

- Same context

$$
P(X=50) \approx ?
$$

Associated Limits

- Theorem:

$$
\lim _{n \rightarrow \infty} \frac{n!}{\sqrt{2 \pi} n^{n+1 / 2} e^{-n}}=1
$$

- Used when $n=100$ to give, for instance,

$$
100!\approx \sqrt{2 \pi 100} 100^{100} e^{-100}=9.3326215443944152682 \times 10^{157}
$$

- All those digits are right!
- Theorem: if $X_{n} \sim \operatorname{Binomial}(n, 1 / 2)$ then

$$
\lim _{n \rightarrow \infty} P\left(\frac{x_{n}-n / 2}{\sqrt{n / 4}} \leq x\right)=\Phi(x)
$$

- Used with $x \sqrt{100 / 4}+100 / 2$ equal to 60 and 40 or 60.5 and 39.5.
- Used with 49.5 and 50.5 to get $P\left(X_{100}=50\right)$ approximately.

Summary

- If we want to compute x_{100} we compute $y=\lim _{n \rightarrow \infty} x_{n}$ and approximate $x_{100} \approx y$.
- There are often many different ways to think of x_{100} as an entry in some sequence! Get slightly different approximations.
- And some of the approximations are lousy; some are great.

Limits of Random Variables NOT Distributions

- We do an experiment to measure probability that a dropped tack lands point up.
- Drop tack n times, observe $X_{n} \sim \operatorname{Binomial}(n, p)$, which is number of times tack lands point up.
- Two common random variables to study:

$$
U_{n} \equiv \frac{X_{n}-n p}{\sqrt{n p(1-p)}} \quad \text { and } \quad V_{n} \equiv \frac{X_{n}-n p}{\sqrt{n \hat{p}(1-\hat{p})}}
$$

where $\hat{p}=X / n$.

- First used in testing, second to form confidence intervals.
- Approximation is

$$
U_{n} \approx V_{n}
$$

- Generate 1000 values of X with $p=0.4$. Plot U vs V.

Effect of estimating standard error

Convergence in Probability and Almost Surely pp 72-75,81

- In this case the plot shows

$$
P\left(\left|U_{n}-V_{n}\right| \text { is big }\right)
$$

is small. (The points are close to the line $y=x$.)

- Definition: A sequence of random variables X_{n} converges in probability to a random variable X if for every $\epsilon>0$ we have

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right|>\epsilon\right)=0
$$

- Definition: A sequence of random variables X_{n} converges almost surely to a random variable X if

$$
P\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1
$$

Convergence in p th mean especially quadratic

- Definition: A sequence of random variables X_{n} converges in mean or converges in L_{1} to a random variable X if

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left(\left|X_{n}-X\right|\right)=0
$$

- Definition: A sequence of random variables X_{n} converges in quadratic mean or converges in L_{2} to a random variable X if

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left(\left|X_{n}-X\right|^{2}\right)=0
$$

- For p th mean we use

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left(\left|X_{n}-X\right|^{p}\right)=0
$$

Back to our example

- In fact $U_{n}-V_{n}$ converges to 0 in probability.
- And $U_{n}-V_{n}$ converges to 0 almost surely.
- But they do not converge in p th mean because V_{n} does not have a finite mean $(P(\hat{p}=0)>0)$.

