0.0.1 Intuition about convergences

I want to contrast two statements:

1. X and Y are close together.
2. X and Y have similar distributions.

The truth of the first statement depends on the joint distribution of X and Y. On the other hand, the truth of the second statement depends only on the marginal distributions of X and Y. Both ideas are used in large sample theory which is the process of describing mathematically the behaviour of statistical procedures approximately in the presence of lots of data.

0.0.2 Relation between convergence and approximation

In this subsection I present some approximations and the limits they come from.

Example: Stirling's approximation for the factorial function is

$$
n!\approx \sqrt{2 \pi} n^{n+1 / 2} e^{-n} \equiv s_{n}
$$

Here is a small table which shows that the approximation is actually about ratios; it has small relative error and large absolute error:

n	$n!$	s_{n}	$n!/ s_{n}$
5	120	118.019	1.01678
10	3628800	3598695.619	1.008365

Example: The normal approximation to the Binomial distribution. Toss a fair coin 100 times, and let X denote the number of heads. Then

$$
P(40 \leq X \leq 60) \approx \Phi\left(\frac{60-50}{\sqrt{25}}\right)-\Phi\left(\frac{40-50}{\sqrt{25}}\right)=0.9544997 .
$$

In the same context here is a slightly better approximation, usually called a continuity correction:

$$
P(40 \leq X \leq 60) \approx \Phi\left(\frac{60.5-50}{\sqrt{25}}\right)-\Phi\left(\frac{39.5-50}{\sqrt{25}}\right)=0.9642712
$$

In the same context how should we approximate

$$
P(X=50) \approx ?
$$

0.0.3 Associated Limits

Now I want to describe limit theorems which correspond to these approximations. For Stirling's formula we have

Theorem 1

$$
\lim _{n \rightarrow \infty} \frac{n!}{\sqrt{2 \pi} n^{n+1 / 2} e^{-n}}=1
$$

The theorem is used when $n=100$ to give, for instance,

$$
100!\approx \sqrt{2 \pi 100} 100^{1} 00 e^{-100}=9.3326215443944152682 \times 10^{157}
$$

All those digits are right (but the absolute error which is the approximation minus 100 factorial) is huge.

Theorem 2 if $X_{n} \sim \operatorname{Binomial}(n, 1 / 2)$ then

$$
\lim _{n \rightarrow \infty} P\left(\frac{X_{n}-n / 2}{\sqrt{n / 4}} \leq x\right)=\Phi(x)
$$

This theorem is used with $x \sqrt{100 / 4}+100 / 2$ equal to 60 and 40 or 60.5 and 39.5. It is used with 49.5 and 50.5 to get $P\left(X_{100}=50\right)$ approximately. Summary

- If we want to compute x_{100} we compute $y=\lim _{n \rightarrow \infty}$ and approximate $x_{100} \approx y$.
- There are often many different ways to think of x_{100} as an entry in some sequence. These can lead to different approximations. Some of the approximations are lousy while some are great.

Now I want to contrast taking limits of random variables with taking limits of distributions. I want to begin with a motivating example. We do an experiment to measure probability that a dropped tack lands point up. We drop a tack n times and observe $X_{n} \sim \operatorname{Binomial}(n, p)$, which is the number of times tack lands point up. Here are two common random variables to study:

$$
U_{n} \equiv \frac{X_{n}-n p}{\sqrt{n p(1-p)}} \quad \text { and } \quad V_{n} \equiv \frac{X_{n}-n p}{\sqrt{n \hat{p}(1-\hat{p})}}
$$

where $\hat{p}=X / n$.
The first of these is used in hypothesis testing and the second is used to form confidence intervals. One approximation is

$$
U_{n} \approx V_{n}
$$

The idea is that this approximation is correct because the estimated and theoretical standard errors of $\hat{p}=X_{n} / n$ are very similar. To get a feeling for the meaning of this assertion I did the following experimented. I generated (using the R function rbinom) 1000 values of X with $p=0.4$. For each value of X I worked out U and V. Here is a plot of U vs V.

In this case the plot shows

$$
P\left(\left|U_{n}-V_{n}\right| \text { is big }\right)
$$

is small. (The points are close to the line $y=x$.)
Definition: A sequence of random variables X_{n} converges in probability to a random variable X if for every $\epsilon>0$ we have

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right|>\epsilon\right)=0
$$

Definition: A sequence of random variables X_{n} converges almost surely to a random variable X if

$$
P\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1
$$

Definition: A sequence of random variables X_{n} converges in mean or converges in L_{1} to a random variable X if

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left(\left|X_{n}-X\right|\right)=0
$$

Definition: A sequence of random variables X_{n} converges in quadratic mean or converges in L_{2} to a random variable X if

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left(\left|X_{n}-X\right|^{2}\right)=0
$$

For p th mean we use

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left(\left|X_{n}-X\right|^{p}\right)=0
$$

Now I return to our example. In fact $U_{n}-V_{n}$ converges to 0 in probability and $U_{n}-V_{n}$ converges to 0 almost surely. But they do not converge in p th mean because V_{n} does not have a finite mean ($P(\hat{p}=$ $0)>0$).

