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Purposes of These Notes

Describe likelihood ratio tests

Discuss large sample χ2 approximation.

Discuss level and power
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Likelihood Ratio Tests

For general composite hypotheses optimality theory is not usually
successful in producing an optimal test.

Instead we look for heuristics to guide our choices.

The simplest approach is to consider the likelihood ratio

fθ1(X )

fθ0(X )

and choose values of θ1 ∈ Θ1 and θ0 ∈ Θ0 which are reasonable
estimates of θ assuming respectively the alternative or null hypothesis
is true.

The simplest method is to make each θi a maximum likelihood
estimate, but maximized only over Θi .
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Example 1: N(µ, 1)
Test µ ≤ 0 against µ > 0. (Remember UMP test. )
Log likelihood is

−n(X̄ − µ)2/2

If X̄ > 0 then global maximum in Θ1 at X̄ .
If X̄ ≤ 0 global maximum in Θ1 at 0.
Thus µ̂1 which Max ℓ(µ) subject to µ > 0 at µ̂1 = X̄1(X̄ > 0).
Similarly, µ̂0 is X̄ if X̄ ≤ 0 and 0 if X̄ > 0.
Hence

fθ̂1
(X )

fθ̂0(X )
= exp{ℓ(µ̂1)− ℓ(µ̂0)} = exp{nX̄ |X̄ |/2}

Monotone increasing function of X̄ so rejection region has form
X̄ > K .
To get level α reject if n1/2X̄ > zα.
Notice simpler statistic is log likelihood ratio

λ ≡ 2 log

(

fµ̂1
(X )

fµ̂0
(X )

)

= nX̄ |X̄ |
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Example 2: Ho : µ = 0 in N(µ, 1)

Value of µ̂0 is 0

Maximum of log-likelihood over alternative µ 6= 0 occurs at X̄ .

This gives
λ = nX̄ 2

which has a χ2
1 distribution.

This test leads to the rejection region λ > (zα/2)
2 which is the usual

(UMPU) z-test.
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Example 3: N(µ, σ2) model, µ = 0 against µ 6= 0

Must find two estimates of µ, σ2.

Maximum likelihood over alternative occurs at global mle X̄ , σ̂2.

We find
ℓ(µ̂, σ̂2) = −n/2− n log(σ̂)

Maximize ℓ over null hypothesis.

Recall

ℓ(µ, σ) = −
1

2σ2

∑

(Xi − µ)2 − n log(σ)

On null µ = 0 so find σ̂0 by maximizing

ℓ(0, σ) = −
1

2σ2

∑

X 2
i − n log(σ)
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LRT – general description
This leads to

σ̂2
0 =

∑

X 2
i /n

and
ℓ(0, σ̂0) = −n/2− n log(σ̂0)

This gives
λ = −n log(σ̂2/σ̂2

0)

Since
σ̂2

σ̂2
0

=

∑

(Xi − X̄ )2
∑

(Xi − X̄ )2 + nX̄ 2

we can write
λ = n log(1 + t2/(n − 1))

where

t =
n1/2X̄

s
is the usual t statistic.
LRT rejects for large values of |t| — the usual test.
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LRT – general description

Notice that if n is large we have

λ ≈ n[t2/(n − 1) + OP(n
−2)] ≈ t2 .

Since t statistic is approximately standard normal if n large we see

λ = 2[ℓ(θ̂1)− ℓ(θ̂0)]

has nearly a χ2
1 distribution.

General phenomenon when null hypothesis has form φ = 0.

Here is the general theory.

Suppose vector θ of p + q parameters partitioned into θ = (φ, γ) with
φ a vector of p parameters and γ a vector of q parameters.

To test φ = φ0 we find two mles of θ.

First: global mle θ̂ = (φ̂, γ̂) maximizes likelihood over
Θ1 = {θ : φ 6= φ0} (typically Pθ(φ̂ = φ0) = 0).
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LRT – general description

Maximize likelihood over null hypothesis, that is find θ̂0 = (φ0, γ̂0) to
maximize

ℓ(φ0, γ)

The log-likelihood ratio statistic is

2[ℓ(θ̂)− ℓ(θ̂0)]

Now suppose that the true value of θ is φ0, γ0 (so that the null
hypothesis is true).

The score function is a vector of length p + q and can be partitioned
as U = (Uφ,Uγ).

The Fisher information matrix can be partitioned as

[

Iφφ Iφγ
Iγφ Iγγ

]

.
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Large sample theory for LRT

According to our large sample theory for the mle we have

θ̂ ≈ θ + I−1U

and
γ̂0 ≈ γ0 + I−1

γγ Uγ

Two term Taylor expansions of both ℓ(θ̂) and ℓ(θ̂0) around θ0 give

ℓ(θ̂) ≈ ℓ(θ0) + UtI−1U +
1

2
UtI−1V (θ)I−1U

where V is the second derivative matrix of ℓ.
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Large sample theory for LRT

Remember that V ≈ −I and you get

2[ℓ(θ̂)− ℓ(θ0)] ≈ UtI−1U .

A similar expansion for θ̂0 gives

2[ℓ(θ̂0)− ℓ(θ0)] ≈ Ut
γI

−1
γγ Uγ .

If you subtract these you find that

2[ℓ(θ̂)− ℓ(θ̂0)]

can be written in the approximate form

UtMU

for a suitable matrix M.

Now use general theory of distribution of X tMX where X is
MVN(0,Σ).
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The theorem: large sample theory of LRT

The ideas above lead to a proof of the following theorem.

Theorem

The log-likelihood ratio statistic

λ = 2[ℓ(θ̂)− ℓ(θ̂0)]

has, under the null hypothesis, approximately a χ2
p distribution.
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Quadratic forms and χ
2

In proving the main theorem we need some facts about quadratic forms.

Theorem

Suppose X ∼ MVN(0,Σ) with Σ non-singular and M is a symmetric

matrix. If ΣMΣMΣ = ΣMΣ then X tMX has a χ2
ν distribution with df

ν = trace(MΣ). The condition simplifies to MΣM = M
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Proof

We have X = AZ where AAt = Σ and Z is standard multivariate
normal.

So X tMX = Z tAtMAZ .

Let Q = AtMA.

Since AAt = Σ condition in the theorem is

AQQAt = AQAt

Since Σ is non-singular so is A.

Multiply by A−1 on left and (At)−1 on right; get QQ = Q.

Q is symmetric so Q = PΛP t where Λ is diagonal matrix containing
the eigenvalues of Q and P is orthogonal matrix whose columns are
the corresponding orthonormal eigenvectors.

So rewrite
Z tQZ = (P tZ )tΛ(PZ ) .
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More proof

W = P tZ is MVN(0,P tP = I ); i.e. W is standard multivariate
normal.

Now
W tΛW =

∑

λiW
2
i

We have established that the general distribution of any quadratic
form X tMX is a linear combination of χ2 variables.

Now go back to the condition QQ = Q.

If λ is an eigenvalue of Q and v 6= 0 is a corresponding eigenvector
then QQv = Q(λv) = λQv = λ2v but also QQv = Qv = λv .

Thus λ(1− λ)v = 0.

It follows that either λ = 0 or λ = 1.
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End of proof

This means that the weights in the linear combination are all 1 or 0
and that X tMX has a χ2 distribution with degrees of freedom, ν,
equal to the number of λi which are equal to 1.

This is the same as the sum of the λi so

ν = trace(Λ)

But

trace(MΣ) = trace(MAAt)

= trace(AtMA)

= trace(Q)

= trace(PΛP t)

= trace(ΛP tP)

= trace(Λ)
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Application to LRT

In the application Σ is I the Fisher information and M = I−1 − J

where

J =

[

0 0
0 I−1

γγ

]

It is easy to check that MΣ becomes

[

I 0
−IγφIφφ 0

]

where I is a p × p identity matrix.

It follows that ΣMΣMΣ = ΣMΣ and trace(MΣ) = p.
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