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Purposes of These Notes

@ Describe likelihood ratio tests

@ Discuss large sample x? approximation.

@ Discuss level and power

=
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Likelihood Ratio Tests

@ For general composite hypotheses optimality theory is not usually
successful in producing an optimal test.

@ Instead we look for heuristics to guide our choices.

@ The simplest approach is to consider the likelihood ratio

fo, (X)
foo (X)

and choose values of #; € ©1 and 6y € ©g which are reasonable
estimates of 6 assuming respectively the alternative or null hypothesis
is true.

@ The simplest method is to make each 6; a maximum likelihood
estimate, but maximized only over ©;.
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Example 1: N(u, 1)

@ Test ;1 < 0 against u > 0. (Remember UMP test. )
@ Log likelihood is
—n(X — p)?/2
@ If X > 0 then global maximum in ©; at X.
e If X <0 global maximum in ©71 at 0.
@ Thus fi; which Max £(1) subject to x> 0 at fi; = X1(X > 0).
o Similarly, fig is X if X <0 and 0 if X > 0.
°

Hence
fél(X) R R _
= exp{€(fin) — {(fio)} = exp{nX|X][/2}
f,(X)
@ Monotone increasing function of X so rejection region has form

X > K.
o To get level a reject if n'/2X > z,.
@ Notice simpler statistic is log likelihood ratio

A=2log <;Z:E§;> = nX|X|
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Example 2: H, : =0 in N(u,1)

@ Value of fig is 0
@ Maximum of log-likelihood over alternative y # 0 occurs at X.

@ This gives
A = nX?

which has a x3 distribution.

@ This test leads to the rejection region A > (Za/2)2 which is the usual
(UMPU) z-test.

=
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Example 3: N(u,0?) model, 1 = 0 against u # 0

Must find two estimates of u, 2.

@ Maximum likelihood over alternative occurs at global mle X, §2.
o We find
Up,6%) = —n/2 — nlog(5)
@ Maximize ¢ over null hypothesis.
@ Recall
Up.0) =55 (Xi— p)? — nlog(c)
@ On null g =0 so find &y by maximizing

=
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LRT — general description
@ This leads to

and
£(0,60) = —n/2 — nlog(6o)
@ This gives
A = —nlog(6/63)
@ Since

6 Y(Xi—X)?

6'(2) N Z(X, — )_<)2 + n)_<2
we can write
A = nlog(1+ t?/(n—1))

where
nt/2X
s
is the usual t statistic.
@ LRT rejects for large values of |t| — the usual test.
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LRT — general description

@ Notice that if n is large we have
A= n[t?/(n— 1)+ Op(n2)] ~ t2.
@ Since t statistic is approximately standard normal if n large we see
A = 2[((61) — €(bo)]

has nearly a x? distribution.
@ General phenomenon when null hypothesis has form ¢ = 0.
@ Here is the general theory.

@ Suppose vector 0 of p + g parameters partitioned into § = (¢,~y) with
¢ a vector of p parameters and v a vector of g parameters.

o To test ¢ = ¢p we find two mles of 6.

o First: global mle 6 = ($,79) maximizes likelihood over
1= {0: 6 # do} (typically Py($ = 6o) = 0). &
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LRT — general description

@ Maximize likelihood over null hypothesis, that is find 6y = (¢o,%0) to
maximize

U(0,7)
@ The log-likelihood ratio statistic is
2[¢(8) — £(0o)]

@ Now suppose that the true value of 6 is ¢g,70 (so that the null
hypothesis is true).

@ The score function is a vector of length p 4+ g and can be partitioned

as U = (Uy, Uy).
@ The Fisher information matrix can be partitioned as
[Iqsqb Lgy ] .
Lyy Ly

=
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Large sample theory for LRT

@ According to our large sample theory for the mle we have
d~0+17'U

and
'3/0 ~ +I;71U'y

@ Two term Taylor expansions of both £(A) and () around 6y give

00) = £(60) + UT7U + %UtI‘l V() Ztu

where V is the second derivative matrix of /.

=
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Large sample theory for LRT
@ Remember that V =~ —Z7 and you get
2[0(0) — £(ho)] =~ UtZ7MU.
@ A similar expansion for bo gives

2[¢(6o) — €(60)] ~ ULZ MU, .

@ If you subtract these you find that

2[¢(8) — £(0o)]

can be written in the approximate form

UtmMu

for a suitable matrix M.

@ Now use general theory of distribution of X*MX where X is
MVN(0, X).
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The theorem: large sample theory of LRT

The ideas above lead to a proof of the following theorem.
Theorem
The log-likelihood ratio statistic

A = 2[6(8) — (o))

has, under the null hypothesis, approximately a X2 distribution.
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Quadratic forms and y?

In proving the main theorem we need some facts about quadratic forms.

Theorem

Suppose X ~ MVN(0,X) with ¥ non-singular and M is a symmetric
matrix. If EMEMY = MY then XtMX has a x?2 distribution with df
v = trace(MX). The condition simplifies to MM = M

=
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Proof

)

We have X = AZ where AAt =¥ and Z is standard multivariate
normal.

So XtMX = Z'A*MAZ.
Let Q = ATMA.

Since AA! = ¥ condition in the theorem is
AQQA! = AQA?

Since X is non-singular so is A.
Multiply by A=t on left and (Af)~! on right; get QQ = Q.
Q is symmetric so @ = PAP! where A is diagonal matrix containing

the eigenvalues of @ and P is orthogonal matrix whose columns are
the corresponding orthonormal eigenvectors.

So rewrite

7tQZ = (P'2)'\(PZ). &
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More proof

W = PtZ is MVN(0, PtP = I); i.e. W is standard multivariate
normal.

@ Now
WIAW = " \WP
@ We have established that the general distribution of any quadratic
form XtMX is a linear combination of x? variables.
@ Now go back to the condition QQ = Q.

@ If X is an eigenvalue of @ and v # 0 is a corresponding eigenvector
then QQv = Q(\v) = AQv = )\?v but also QQv = Qv = \v.

@ Thus A(1—X)v =0.

@ [t follows that either A =0 or A = 1.
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End of proof

@ This means that the weights in the linear combination are all 1 or 0
and that XtMX has a x? distribution with degrees of freedom, v,
equal to the number of A; which are equal to 1.

@ This is the same as the sum of the \; so
v = trace(N)

@ But

trace(MX) = trace(MAAY)
= trace(A' MA)
= trace(Q)
= trace(PAPY)
= trace(AP'P)
= trace(N)

=
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Application to LRT

@ In the application ¥ is Z the Fisher information and M =71 — J

where
0 O
3]
0 Iw

@ It is easy to check that M¥ becomes

| zz o]
~LypLeg O
where | is a p X p identity matrix.
o It follows that LMY MY = X MX and trace(MX) = p.
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