STAT 830
 Likelihood Ratio Tests

Richard Lockhart
Simon Fraser University

STAT 830 - Fall 2013

Purposes of These Notes

- Describe likelihood ratio tests
- Discuss large sample χ^{2} approximation.
- Discuss level and power

Likelihood Ratio Tests

- For general composite hypotheses optimality theory is not usually successful in producing an optimal test.
- Instead we look for heuristics to guide our choices.
- The simplest approach is to consider the likelihood ratio

$$
\frac{f_{\theta_{1}}(X)}{f_{\theta_{0}}(X)}
$$

and choose values of $\theta_{1} \in \Theta_{1}$ and $\theta_{0} \in \Theta_{0}$ which are reasonable estimates of θ assuming respectively the alternative or null hypothesis is true.

- The simplest method is to make each θ_{i} a maximum likelihood estimate, but maximized only over Θ_{i}.

Example 1: $N(\mu, 1)$

- Test $\mu \leq 0$ against $\mu>0$. (Remember UMP test.)
- Log likelihood is

$$
-n(\bar{X}-\mu)^{2} / 2
$$

- If $\bar{X}>0$ then global maximum in Θ_{1} at \bar{X}.
- If $\bar{X} \leq 0$ global maximum in Θ_{1} at 0 .
- Thus $\hat{\mu}_{1}$ which $\operatorname{Max} \ell(\mu)$ subject to $\mu>0$ at $\hat{\mu}_{1}=\bar{X} 1(\bar{X}>0)$.
- Similarly, $\hat{\mu}_{0}$ is \bar{X} if $\bar{X} \leq 0$ and 0 if $\bar{X}>0$.
- Hence

$$
\frac{f_{\hat{\theta}_{1}}(X)}{f_{\hat{\theta}_{0}}(X)}=\exp \left\{\ell\left(\hat{\mu}_{1}\right)-\ell\left(\hat{\mu}_{0}\right)\right\}=\exp \{n \bar{X}|\bar{X}| / 2\}
$$

- Monotone increasing function of \bar{X} so rejection region has form $\bar{X}>K$.
- To get level α reject if $n^{1 / 2} \bar{X}>z_{\alpha}$.
- Notice simpler statistic is log likelihood ratio

$$
\lambda \equiv 2 \log \left(\frac{f_{\hat{\mu}_{1}}(X)}{f_{\hat{\mu}_{0}}(X)}\right)=n \bar{X}|\bar{X}|
$$

Example 2: $H_{o}: \mu=0$ in $N(\mu, 1)$

- Value of $\hat{\mu}_{0}$ is 0
- Maximum of log-likelihood over alternative $\mu \neq 0$ occurs at \bar{X}.
- This gives

$$
\lambda=n \bar{X}^{2}
$$

which has a χ_{1}^{2} distribution.

- This test leads to the rejection region $\lambda>\left(z_{\alpha / 2}\right)^{2}$ which is the usual (UMPU) z-test.

Example 3: $N\left(\mu, \sigma^{2}\right)$ model, $\mu=0$ against $\mu \neq 0$

- Must find two estimates of μ, σ^{2}.
- Maximum likelihood over alternative occurs at global mle $\bar{X}, \hat{\sigma}^{2}$.
- We find

$$
\ell\left(\hat{\mu}, \hat{\sigma}^{2}\right)=-n / 2-n \log (\hat{\sigma})
$$

- Maximize ℓ over null hypothesis.
- Recall

$$
\ell(\mu, \sigma)=-\frac{1}{2 \sigma^{2}} \sum\left(X_{i}-\mu\right)^{2}-n \log (\sigma)
$$

- On null $\mu=0$ so find $\hat{\sigma}_{0}$ by maximizing

$$
\ell(0, \sigma)=-\frac{1}{2 \sigma^{2}} \sum X_{i}^{2}-n \log (\sigma)
$$

LRT - general description

- This leads to

$$
\hat{\sigma}_{0}^{2}=\sum X_{i}^{2} / n
$$

and

$$
\ell\left(0, \hat{\sigma}_{0}\right)=-n / 2-n \log \left(\hat{\sigma}_{0}\right)
$$

- This gives

$$
\lambda=-n \log \left(\hat{\sigma}^{2} / \hat{\sigma}_{0}^{2}\right)
$$

- Since

$$
\frac{\hat{\sigma}^{2}}{\hat{\sigma}_{0}^{2}}=\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}+n \bar{X}^{2}}
$$

we can write

$$
\lambda=n \log \left(1+t^{2} /(n-1)\right)
$$

where

$$
t=\frac{n^{1 / 2} \bar{X}}{s}
$$

is the usual t statistic.

- LRT rejects for large values of $|t|$ - the usual test.

LRT - general description

- Notice that if n is large we have

$$
\lambda \approx n\left[t^{2} /(n-1)+O_{P}\left(n^{-2}\right)\right] \approx t^{2}
$$

- Since t statistic is approximately standard normal if n large we see

$$
\lambda=2\left[\ell\left(\hat{\theta}_{1}\right)-\ell\left(\hat{\theta}_{0}\right)\right]
$$

has nearly a χ_{1}^{2} distribution.

- General phenomenon when null hypothesis has form $\phi=0$.
- Here is the general theory.
- Suppose vector θ of $p+q$ parameters partitioned into $\theta=(\phi, \gamma)$ with ϕ a vector of p parameters and γ a vector of q parameters.
- To test $\phi=\phi_{0}$ we find two mles of θ.
- First: global mle $\hat{\theta}=(\hat{\phi}, \hat{\gamma})$ maximizes likelihood over
$\Theta_{1}=\left\{\theta: \phi \neq \phi_{0}\right\}$ (typically $P_{\theta}\left(\hat{\phi}=\phi_{0}\right)=0$).

LRT - general description

- Maximize likelihood over null hypothesis, that is find $\hat{\theta}_{0}=\left(\phi_{0}, \hat{\gamma}_{0}\right)$ to maximize

$$
\ell\left(\phi_{0}, \gamma\right)
$$

- The log-likelihood ratio statistic is

$$
2\left[\ell(\hat{\theta})-\ell\left(\hat{\theta}_{0}\right)\right]
$$

- Now suppose that the true value of θ is ϕ_{0}, γ_{0} (so that the null hypothesis is true).
- The score function is a vector of length $p+q$ and can be partitioned as $U=\left(U_{\phi}, U_{\gamma}\right)$.
- The Fisher information matrix can be partitioned as

$$
\left[\begin{array}{ll}
\mathcal{I}_{\phi \phi} & \mathcal{I}_{\phi \gamma} \\
\mathcal{I}_{\gamma \phi} & \mathcal{I}_{\gamma \gamma}
\end{array}\right]
$$

Large sample theory for LRT

- According to our large sample theory for the mle we have

$$
\hat{\theta} \approx \theta+\mathcal{I}^{-1} U
$$

and

$$
\hat{\gamma}_{0} \approx \gamma_{0}+\mathcal{I}_{\gamma \gamma}^{-1} U_{\gamma}
$$

- Two term Taylor expansions of both $\ell(\hat{\theta})$ and $\ell\left(\hat{\theta}_{0}\right)$ around θ_{0} give

$$
\ell(\hat{\theta}) \approx \ell\left(\theta_{0}\right)+U^{t} \mathcal{I}^{-1} U+\frac{1}{2} U^{t} \mathcal{I}^{-1} V(\theta) \mathcal{I}^{-1} U
$$

where V is the second derivative matrix of ℓ.

Large sample theory for LRT

- Remember that $V \approx-\mathcal{I}$ and you get

$$
2\left[\ell(\hat{\theta})-\ell\left(\theta_{0}\right)\right] \approx U^{t} \mathcal{I}^{-1} U
$$

- A similar expansion for $\hat{\theta}_{0}$ gives

$$
2\left[\ell\left(\hat{\theta}_{0}\right)-\ell\left(\theta_{0}\right)\right] \approx U_{\gamma}^{t} \mathcal{I}_{\gamma \gamma}^{-1} U_{\gamma}
$$

- If you subtract these you find that

$$
2\left[\ell(\hat{\theta})-\ell\left(\hat{\theta}_{0}\right)\right]
$$

can be written in the approximate form

$$
U^{t} M U
$$

for a suitable matrix M.

- Now use general theory of distribution of $X^{t} M X$ where X is $\operatorname{MVN}(0, \Sigma)$.

The theorem: large sample theory of LRT

The ideas above lead to a proof of the following theorem.
Theorem
The log-likelihood ratio statistic

$$
\lambda=2\left[\ell(\hat{\theta})-\ell\left(\hat{\theta}_{0}\right)\right]
$$

has, under the null hypothesis, approximately a χ_{p}^{2} distribution.

Quadratic forms and χ^{2}

In proving the main theorem we need some facts about quadratic forms.

Theorem

Suppose $X \sim \operatorname{MVN}(0, \Sigma)$ with Σ non-singular and M is a symmetric matrix. If $\Sigma M \Sigma M \Sigma=\Sigma M \Sigma$ then $X^{t} M X$ has a χ_{ν}^{2} distribution with $d f$ $\nu=\operatorname{trace}(M \Sigma)$. The condition simplifies to $M \Sigma M=M$

Proof

- We have $X=A Z$ where $A A^{t}=\Sigma$ and Z is standard multivariate normal.
- So $X^{t} M X=Z^{t} A^{t} M A Z$.
- Let $Q=A^{t} M A$.
- Since $A A^{t}=\Sigma$ condition in the theorem is

$$
A Q Q A^{t}=A Q A^{t}
$$

- Since Σ is non-singular so is A.
- Multiply by A^{-1} on left and $\left(A^{t}\right)^{-1}$ on right; get $Q Q=Q$.
- Q is symmetric so $Q=P \wedge P^{t}$ where Λ is diagonal matrix containing the eigenvalues of Q and P is orthogonal matrix whose columns are the corresponding orthonormal eigenvectors.
- So rewrite

$$
Z^{t} Q Z=\left(P^{t} Z\right)^{t} \Lambda(P Z)
$$

More proof

- $W=P^{t} Z$ is $\operatorname{MVN}\left(0, P^{t} P=I\right)$; i.e. W is standard multivariate normal.
- Now

$$
W^{t} \Lambda W=\sum \lambda_{i} W_{i}^{2}
$$

- We have established that the general distribution of any quadratic form $X^{t} M X$ is a linear combination of χ^{2} variables.
- Now go back to the condition $Q Q=Q$.
- If λ is an eigenvalue of Q and $v \neq 0$ is a corresponding eigenvector then $Q Q v=Q(\lambda v)=\lambda Q v=\lambda^{2} v$ but also $Q Q v=Q v=\lambda v$.
- Thus $\lambda(1-\lambda) v=0$.
- It follows that either $\lambda=0$ or $\lambda=1$.

End of proof

- This means that the weights in the linear combination are all 1 or 0 and that $X^{t} M X$ has a χ^{2} distribution with degrees of freedom, ν, equal to the number of λ_{i} which are equal to 1 .
- This is the same as the sum of the λ_{i} so

$$
\nu=\operatorname{trace}(\Lambda)
$$

- But

$$
\begin{aligned}
\operatorname{trace}(M \Sigma) & =\operatorname{trace}\left(M A A^{t}\right) \\
& =\operatorname{trace}\left(A^{t} M A\right) \\
& =\operatorname{trace}(Q) \\
& =\operatorname{trace}\left(P \wedge P^{t}\right) \\
& =\operatorname{trace}\left(\Lambda P^{t} P\right) \\
& =\operatorname{trace}(\Lambda)
\end{aligned}
$$

Application to LRT

- In the application Σ is \mathcal{I} the Fisher information and $M=\mathcal{I}^{-1}-J$ where

$$
J=\left[\begin{array}{cc}
0 & 0 \\
0 & \mathcal{I}_{\gamma \gamma}^{-1}
\end{array}\right]
$$

- It is easy to check that $M \Sigma$ becomes

$$
\left[\begin{array}{cc}
I & 0 \\
-\mathcal{I}_{\gamma \phi} \mathcal{I}_{\phi \phi} & 0
\end{array}\right]
$$

where I is a $p \times p$ identity matrix.

- It follows that $\Sigma M \Sigma M \Sigma=\Sigma M \Sigma$ and $\operatorname{trace}(M \Sigma)=p$.

