
Likelihood Ratio tests

For general composite hypotheses optimality theory is not usually suc-
cessful in producing an optimal test. instead we look for heuristics to guide
our choices. The simplest approach is to consider the likelihood ratio

fθ1(X)

fθ0(X)

and choose values of θ1 ∈ Θ1 and θ0 ∈ Θ0 which are reasonable estimates of θ
assuming respectively the alternative or null hypothesis is true. The simplest
method is to make each θi a maximum likelihood estimate, but maximized
only over Θi.
Example 1: Consider a sample of size n from the N(µ, 1) model and test
µ ≤ 0 against µ > 0. (Remember the uniformly most powerful test.) The
log-likelihood is

−n(X̄ − µ)2/2

If X̄ > 0 then the global maximum in Θ1 at X̄. If X̄ ≤ 0 the global maximum
in Θ1 is at 0. Thus µ̂1 which maximizes `(µ) subject to µ > 0 is X̄ if X̄ > 0
and 0 if X̄ ≤ 0. Similarly, µ̂0 is X̄ if X̄ ≤ 0 and 0 if X̄ > 0. Hence

fθ̂1(X)

fθ̂0(X)
= exp{`(µ̂1)− `(µ̂0)}

which simplifies to
exp{nX̄|X̄|/2}

This is a monotone increasing function of X̄ so the rejection region will be of
the form X̄ > K. To get level α we must reject if n1/2X̄ > zα. Notice that
a simpler statistic with the same rejection region is the log-likelihood ratio

λ ≡ 2 log

(
fµ̂1(X)

fµ̂0(X)

)
= nX̄|X̄|

Example 2: In the N(µ, 1) problem suppose we make the null µ = 0. Then
the value of µ̂0 is simply 0 while the maximum of the log-likelihood over the
alternative µ 6= 0 occurs at X̄. This gives

λ = nX̄2
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which has a χ2
1 distribution. This test leads to the rejection region λ > (zα/2)

2

which is the usual two sided t-test.
Example 3: For the N(µ, σ2) problem testing µ = 0 against µ 6= 0 we
must find two estimates of µ, σ2. The maximum of the likelihood over the
alternative occurs at the global mle X̄, σ̂2. We find

`(µ̂, σ̂2) = −n/2− n log(σ̂)

First we maximize ` over the null hypothesis. Recall that

`(µ, σ) = − 1

2σ2

∑
(Xi − µ)2 − n log(σ)

On the null µ = 0 so find we σ̂0 by maximizing

`(0, σ) = − 1

2σ2

∑
X2
i − n log(σ)

This leads to
σ̂2
0 =

∑
X2
i /n

and
`(0, σ̂0) = −n/2− n log(σ̂0)

This gives
λ = −n log(σ̂2/σ̂2

0)

Since
σ̂2

σ̂2
0

=

∑
(Xi − X̄)2∑

(Xi − X̄)2 + nX̄2

we can write
λ = n log(1 + t2/(n− 1))

where

t =
n1/2X̄

s
is the usual t statistic. Thus the likelihood ratio test rejects for large values
of |t| — the usual test. Notice that if n is large we have

λ ≈ n[1 + t2/(n− 1) +O(n−2)] ≈ t2 .

Since the t statistic is approximately standard normal if n is large we see
that

λ = 2[`(θ̂1)− `(θ̂0)]
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has nearly a χ2
1 distribution.

This is a general phenomenon when the null hypothesis being tested is
of the form φ = 0. Here is the general theory. Suppose that the vector of
p + q parameters θ can be partitioned into θ = (φ, γ) with φ a vector of
p parameters and γ a vector of q parameters. To test φ = φ0 we find two
mles of θ. First the global mle θ̂ = (φ̂, γ̂) maximizes the likelihood over
Θ1 = {θ : φ 6= φ0} (because typically the probability that φ̂ is exactly φ0 is
0).

Now we maximize the likelihood over the null hypothesis, that is we find
θ̂0 = (φ0, γ̂0) to maximize

`(φ0, γ)

The log-likelihood ratio statistic is

2[`(θ̂)− `(θ̂0)]

Now suppose that the true value of θ is φ0, γ0 (so that the null hypothesis
is true). The score function is a vector of length p+ q and can be partitioned
as U = (Uφ, Uγ). The Fisher information matrix can be partitioned as[

Iφφ Iφγ
Iγφ Iγγ

]
.

According to our large sample theory for the mle we have

θ̂ ≈ θ + I−1U

and
γ̂0 ≈ γ0 + I−1

γγ Uγ

If you carry out a two term Taylor expansion of both `(θ̂) and `(θ̂0) around
θ0 you get

`(θ̂) ≈ `(θ0) + U tI−1U +
1

2
U tI−1V (θ)I−1U

where V is the second derivative matrix of `. Remember that V ≈ −I and
you get

2[`(θ̂)− `(θ0)] ≈ U tI−1U .

A similar expansion for θ̂0 gives

2[`(θ̂0)− `(θ0)] ≈ U t
γI−1

γγ Uγ .
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If you subtract these you find that

2[`(θ̂)− `(θ̂0)]

can be written in the approximate form

U tMU

for a suitable matrix M . It is now possible to use the general theory of the
distribution of X tMX where X is MVN(0,Σ) to demonstrate that

Theorem 1 The log-likelihood ratio statistic

λ = 2[`(θ̂)− `(θ̂0)]

has, under the null hypothesis, approximately a χ2
p distribution.

Aside:

Theorem 2 Suppose X ∼ MVN(0,Σ) with Σ non-singular and M is a
symmetric matrix. If ΣMΣMΣ = ΣMΣ then X tMX has a χ2

ν distribution
with df ν = trace(MΣ).

Proof: We have X = AZ where AAt = Σ and Z is standard multivariate
normal. So X tMX = ZtAtMAZ. Let Q = AtMA. Since AAt = Σ condition
in the theorem is

AQQAt = AQAt

Since Σ is non-singular so is A. Multiply by A−1 on the left and by (At)−1

on the right to get the identity QQ = Q.
The matrix Q is symmetric so Q = PΛP t where Λ is a diagonal matrix

containing the eigenvalues of Q and P is orthogonal matrix whose columns
are the corresponding orthonormal eigenvectors. So rewrite

ZtQZ = (P tZ)tΛ(PZ) .

Notice that W = P tZ is MVN(0, P tP = I); i.e. W is standard multivariate
normal. Now

W tΛW =
∑

λiW
2
i

We have established that the general distribution of any quadratic form
X tMX is a linear combination of χ2 variables. Now go back to the condition
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QQ = Q. If λ is an eigenvalue of Q and v 6= 0 is a corresponding eigenvector
then QQv = Q(λv) = λQv = λ2v but also QQv = Qv = λv. Thus λ(1 −
λ)v = 0. It follows that either λ = 0 or λ = 1. This means that the weights
in the linear combination are all 1 or 0 and that X tMX has a χ2 distribution
with degrees of freedom, ν, equal to the number of λi which are equal to 1.
This is the same as the sum of the λi so

ν = trace(Λ)

But

trace(MΣ) = trace(MAAt)

= trace(AtMA)

= trace(Q)

= trace(PΛP t)

= trace(ΛP tP )

= trace(Λ)

In the application Σ is I the Fisher information and M = I−1− J where

J =

[
0 0
0 I−1

γγ

]
It is easy to check that MΣ becomes[

I 0
−IγφIφφ 0

]
where I is a p × p identity matrix. It follows that ΣMΣMΣ = ΣMΣ and
trace(MΣ) = p.
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