Likelihood Ratio tests

For general composite hypotheses optimality theory is not usually suc-
cessful in producing an optimal test. instead we look for heuristics to guide
our choices. The simplest approach is to consider the likelihood ratio

f91<X)
f90<X)

and choose values of #; € ©; and 8, € ©, which are reasonable estimates of #
assuming respectively the alternative or null hypothesis is true. The simplest
method is to make each #; a maximum likelihood estimate, but maximized
only over ©;.

Example 1: Consider a sample of size n from the N(u,1) model and test
i < 0 against 4 > 0. (Remember the uniformly most powerful test.) The
log-likelihood is

—n(X — p)*/2

If X > 0 then the global maximum in ©; at X. If X < 0 the global maximum
in Oy is at 0. Thus fi; which maximizes (1) subject to u > 0is X if X >0
and 0 if X < 0. Similarly, jip is X if X <0 and 0 if X > 0. Hence

fo,(X)
fa,(X)

= exp{{(ji1) — €(fi0)}

which simplifies to o
exp{nX|X|/2}
This is a monotone increasing function of X so the rejection region will be of

the form X > K. To get level a we must reject if n'/2X > z,. Notice that
a simpler statistic with the same rejection region is the log-likelihood ratio

=2 (g ) <

Example 2: In the N(u, 1) problem suppose we make the null g = 0. Then
the value of fig is simply 0 while the maximum of the log-likelihood over the
alternative p # 0 occurs at X. This gives

A =nX?



which has a x7 distribution. This test leads to the rejection region A > (z4/2)?
which is the usual two sided ¢-test.

Example 3: For the N(u,o?) problem testing u = 0 against u # 0 we
must find two estimates of i, 0?. The maximum of the likelihood over the

alternative occurs at the global mle X, 2. We find
U(f1,6%) = —n/2 — nlog(6)

First we maximize ¢ over the null hypothesis. Recall that

1
Up,0) = =55 ) (Xi— p1)* — nlog(o)
o
On the null = 0 so find we 7y by maximizing

1
00,0)=—5 > X7 —nlog(o)

6= X2/n

This leads to

and
E(O, (3'0) = —n/2 — nlog([fo)
This gives
A\ = —nlog(6?/63)
Since

o8 N > (X —X)2 +nX?2

?_ S X7

we can write
A =nlog(l+#*/(n—1))

where

n'2X
t =
s
is the usual ¢ statistic. Thus the likelihood ratio test rejects for large values
of |t| — the usual test. Notice that if n is large we have

Axn[l+t2/(n—1)+0(n )] ~t*.

Since the t statistic is approximately standard normal if n is large we see
that

~ A~

A = 2[0(61) — £(6o)]
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has nearly a x? distribution.

This is a general phenomenon when the null hypothesis being tested is
of the form ¢ = 0. Here is the general theory. Suppose that the vector of
p + ¢q parameters f can be partitioned into 8 = (¢,v) with ¢ a vector of
p parameters and v a vector of ¢ parameters. To test ¢ = ¢y we find two
mles of 6. First the global mle 0 = (gﬁ, %) maximizes the likelihood over
©, = {0 : ¢ # ¢o} (because typically the probability that ¢ is exactly ¢y is
0).

Now we maximize the likelihood over the null hypothesis, that is we find
0y = (o, 0) to maximize

é(gbov ’7)
The log-likelihood ratio statistic is

A ~

2[6(6) — €(6o)]

Now suppose that the true value of 0 is ¢g, 7o (so that the null hypothesis
is true). The score function is a vector of length p+ ¢ and can be partitioned
as U = (Uy, U,). The Fisher information matrix can be partitioned as

and

If you carry out a two term Taylor expansion of both ¢(6) and ¢(6) around
0y you get

A~

1
0(0) ~ L(6y) + U'T'U + §UtI‘1V(9)I‘1U

where V is the second derivative matrix of ¢. Remember that V ~ —Z and
you get X
2[0(0) — £(60)) = U'T™'U .

A similar expansion for 0y gives

A

2[0(60) — £(60)] =~ U'Z MU, .

Y
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If you subtract these you find that

~

2[¢(0) — £(6o)]
can be written in the approximate form
U'MU

for a suitable matrix M. It is now possible to use the general theory of the
distribution of X*M X where X is MV N(0,X) to demonstrate that

Theorem 1 The log-likelihood ratio statistic
A = 2[0(6) — £(0o)]
has, under the null hypothesis, approximately a X;% distribution.

Aside:

Theorem 2 Suppose X ~ MV N(0,%) with ¥ non-singular and M is a
symmetric matriz. If SMYXMY = SMY then XM X has a x? distribution
with df v = trace(MX).

Proof: We have X = AZ where AA" = ¥ and Z is standard multivariate
normal. So X'MX = Z'AIMAZ. Let Q = APM A. Since AA* = 3 condition
in the theorem is

AQQA! = AQA!

Since Y is non-singular so is A. Multiply by A~! on the left and by (A*)™!
on the right to get the identity QQ = Q.

The matrix @ is symmetric so @ = PAP! where A is a diagonal matrix
containing the eigenvalues of () and P is orthogonal matrix whose columns
are the corresponding orthonormal eigenvectors. So rewrite

7'Q7Z = (P'Z)'A(PZ) .

Notice that W = P'Z is MV N(0, P'P = I); i.e. W is standard multivariate
normal. Now

WIAW = N7

We have established that the general distribution of any quadratic form
X'MX is a linear combination of x? variables. Now go back to the condition
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QRQ = Q. If X\ is an eigenvalue of () and v # 0 is a corresponding eigenvector
then QQv = Q(Av) = AQuv = X\?v but also QQv = Qv = Av. Thus A\(1 —
A)v = 0. It follows that either A = 0 or A = 1. This means that the weights
in the linear combination are all 1 or 0 and that X*M X has a y? distribution
with degrees of freedom, v, equal to the number of \; which are equal to 1.
This is the same as the sum of the A; so

v = trace(/\)
But

trace(MX) = trace(MAAt)
= trace(A'M

= trace(Q)

= trace(PAP")

= trace(AP'P)

= trace(A)

In the application ¥ is Z the Fisher information and M = Z~! — J where
0 0
=0 2]
0 I,
It is easy to check that M3 becomes

|z 0]
—Zy3Zpp O

where I is a p X p identity matrix. It follows that XM MY = M3 and
trace(MY) =



