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Purposes of These Notes

@ Define the likelihood, log-likelihood and score functions.
@ Summarize likelihood methods
@ Describe maximum likelihood estimation

o Give sequence of examples.
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Likelihood Methods of Inference

@ Toss a thumb tack 6 times and imagine it lands point up twice.
@ Let p be probability of landing points up.
@ Probability of getting exactly 2 point up is

15p°(1 — p)*

@ This function of p, is the likelihood function.
@ Definition: The likelihood function is map L: domain ©, values given
by
L(0) = f5(X)
@ Key Point: think about how the density depends on 6 not about how
it depends on X.

@ Notice: X, observed value of the data, has been plugged into the
formula for density.

@ Notice: coin tossing example uses the discrete density for f.
@ We use likelihood for most inference problems:

=
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List of likelihood techniques

@ Point estimation: we must compute an estimate = é(X) which lies
in ©. The maximum likelihood estimate (MLE) of 6 is the value 6
which maximizes L(0) over § € © if such a 6 exists.

@ Point estimation of a function of 8: we must compute an estimate
o = ¢(X) of ¢ = g(f). We use ¢ = g(#) where 0 is the MLE of 6.

@ Interval (or set) estimation. We must compute a set C = C(X) in ©
which we think will contain 8g. We will use

(00 L) >c)

for a suitable c.
@ Hypothesis testing: decide whether or not 8y € ©¢ where ©y C ©.
We base our decision on the likelihood ratio

sup{L(0);0 € ©\ ©p}

sup{L(0);0 € ©p}
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Maximum Likelihood Estimation

To find MLE maximize L.
Typical function maximization problem:

Set gradient of L equal to 0.

Examine some likelihood plots in examples:

0

°

0

@ Check root is maximum, not minimum or saddle point.

°

@ Focus on fact that each data set corresponds to its own function of
°

So the graph itself is a statistic.

s
=
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Cauchy Data

@ |ID sample X, ..., X, from Cauchy(f) density

1

0l =i —op

@ The likelihood function is

z 1
L(e) = ;I;I1: 71‘(]. 4 (Xi _ 9)2)

@ Here are some likelihood plots.
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Cauchy data n=5

Likelihood Function: Cauchy, n=5 Likelihood Function: Cauchy, n=5
g 5 g 5
2 5 2 5

Likelihood Function: Cauchy, n=5 Likelihood Function: Cauchy, n=5
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Cauchy data n =5 — close-up

Likelihood Function: Cauchy, n=5 Likelihood Function: Cauchy, n=5
E 51 E 7
E 2

Likelihood Function: Cauchy, n=5 Likelihood Function: Cauchy, n=5
g 81 B 21
S -
k) E

Likelihood Function: Cauchy, n=5 Likelihood Function: Cauchy, n=5
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Cauchy data n =25 up

Likelihood Function: Cauchy, n=25 Likelihood Function: Cauchy, n=25
3 % 3 2
2 o 2 o

Likelihood Function: Cauchy, n=25 Likelihood Function: Cauchy, n=25
z 81 z 81
2 2
2 2

Likelihood Function: Cauchy, n=25 Likelihood Function: Cauchy, n=25
E7 E 7
£ 2
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Cauchy data n = 25 — close-up

Likelihood Function: Cauchy, n=25 Likelihood Function: Cauchy, n=25
3 =1 F 27
2 2

Likelihood Function: Cauchy, n=25 Likelihood Function: Cauchy, n=25
z 81 z 81
2 2
2 2

Likelihood Function: Cauchy, n=25 Likelihood Function: Cauchy, n=25
E7 E 7
£ 2
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Things to see in the plots

@ The likelihood functions have peaks near the true value of 6 (which is
0 for the data sets | generated).

@ The peaks are narrower for the larger sample size.

@ The peaks have a more regular shape for the larger value of n.

o | actually plotted L(#)/L(#) which has exactly the same shape as L
but runs from 0 to 1 on the vertical scale.

=
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The log-likelihood

@ To maximize this likelihood: differentiate L, set result equal to 0.
@ Notice L is product of n terms; derivative is

2(Xi — 9)
ZH —9)2)7r(1+(X—9))

i= lﬁél

which is quite unpleasant.

@ Much easier to work with logarithm of L: log of product is sum and
logarithm is monotone increasing.

@ Definition: The Log Likelihood function is

€6) = log{L(9)} .

@ For the Cauchy problem we have

((0) = = log(1+ (X; — 6)%) — nlog()

@ Now we examine log likelihood plots.
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Cauchy log-likelihood n =5

Likelihood Ratio Intervals: Cauchy, n=5 Likelihood Ratio Intervals: Cauchy, n=5
E < E o=
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Likelihood Ratio Intervals: Cauchy, n=5 Likelihood Ratio Intervals: Cauchy, n=5
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=
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Cauchy log-likelihood n =5, close-up

Likelihood Ratio Intervals: Cauchy, n=5 Likelihood Ratio Intervals: Cauchy, n=5
o=
2
Likelihood Ratio Intervals: Cauchy, n=5 Likelihood Ratio Intervals: Cauchy, n=5
5 5
£ £
g ER
Likelihood Ratio Intervals: Cauchy, n=5 Likelihood Ratio Intervals: Cauchy, n=5
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Cauchy log-likelihood n = 25

Log kel

LgLietond

Logikeed

a0

a0

am
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Likelihood Ratio Intervals: Cauchy, n=25

Likelihood Ratio Intervals: Cauchy, n=25
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.
=
3
g 71
= |
Likelihood Ratio Intervals: Cauchy, n=2s Likelihood Ratio Intervals: Gauchy, n=25
E
2 34

STAT 830

Likelihood Methods

STAT 830 — Fall 2013

15 / 32



Cauchy log-likelihood n = 25, close-up

Log kel

LgLietond

Logikeed

Likelihood Ratio Intervals: Cauchy, n=25

Likelihood Ratio Intervals: Cauchy, n=25

Log kel

Likelihood Ratio Intervals: Cauchy, n=25

Likelihood Ratio Intervals: Cauchy, n=25

LgLielfond

Likelihood Ratio Intervals: Cauchy, n=25

Likelihood Ratio Intervals: Cauchy, n=25

Richard Lockhart (SFU)

STAT 830 Likelihood Methods

STAT 830 — Fall 2013

=

16 / 32



Things to notice

@ Plots of £ for n = 25 quite smooth, rather parabolic.

@ For n =5 many local maxima and minima of /.

@ Likelihood tends to 0 as || — oo so max of £ occurs at a root of ¢,
derivative of ¢ wrt 6.

@ Definition: Score Function is gradient of ¢

ol
u) = =
(0) 20
o MLE @ usually root of Likelihood Equations
U(®) =0

@ In our Cauchy example we find

2(X;— 6
vO =Sk gy

@ Now we examine plots of score functions.

@ Notice: often multiple roots of likelihood equations.
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Cauchy score n =5
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Cauchy score n = 25
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Binomial example

o Example: X ~ Binomial(n, )

o) = () oy
oo 5

00) = ) + X'log(8) + (n — X) log(1 — 0)
v = % - ,1_— 0

@ The function LisOat8=0and at @ =1 unless X =0 or X = n so
for 1 < X < n the MLE must be found by setting U = 0 and getting

0 =

3| X
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Binomial Continued

@ For X = n the log-likelihood has derivative

n
0)=—
u() ke 0
for all 0
@ So the likelihood is an increasing function of 6 which is maximized at
0=1=X/n.

o Similarly when X = 0 the maximum is at § =0 = X/n.
@ In all cases
=

3| X
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The Normal Distribution

@ Now we have X, ..., X, iid N(u,c?).
@ There are two parameters 6 = (u,0).

o We find
e~ L(Xi—n)?/(20?)
L(M? O-) = (27_(_),,/20_”
n X,' — 2
() =~ og(zm) — X1 piog(o)
and that U is
Z(Xiz_ﬂ)
SR n

@ Notice that U is a function with two components because § has two
components.
@ Setting the likelihood equal to 0 and solving gives
>o(Xi — X)?

A:)_< d o = _— S
i an o - i/
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Normal example continued

@ Check this is maximum by computing one more derivative.
@ Matrix H of second derivatives of 7 is
—n =23 (Xi—n)
a2 o3
—23(Xi—p) =33 (Xi—p)? + 0
o3 ot 02
@ Plugging in the mle gives
—n
HO = | T 3 |
0 =
g
which is negative definite.
@ Both its eigenvalues are negative.
@ So A must be a local maximum.
@ Examine contour and perspective plots of /. &

=
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Normal likelihood perspective plot
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Normal likelihood perspective plot
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Observations

@ Notice that the contours are quite ellipsoidal for the larger sample
size.

@ For Xi,..., X, iid log likelihood is
((0) = log(f(X;,0)).
@ The score function is

u) = Y 78 (x.0).

MLE & maximizes /.

@ If maximum occurs in interior of parameter space and the log
likelihood continuously differentiable then 6 solves the likelihood
equations

U#) =0.

=
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Solving U(#) = 0: Examples

° N(p,0?)
@ Unique root of likelihood equations is a global maximum.
@ Remark: Suppose we called 7 = 02 the parameter.

» Score function still has two components: first component same as
before but second component is

9, SC-wf
or 272 2T

v

Setting the new likelihood equations equal to O still gives

? =67

v

General invariance (or equivariance) principal:

If & = g(0) is some reparametrization of a model (a one to one
relabelling of the parameter values) then ¢ = g(6).

Does not apply to other estimators.

v

\{

=
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Examples

@ Cauchy, location 6
@ At least 1 root of likelihood equations but often several more.

@ One root is a global maximum; others, if they exist may be local
minima or maxima.

o Binomial(n, )

@ If X =0 or X = n: no root of likelihood equations; likelihood is
monotone.

@ Other values of X: unique root, a global maximum.

@ Global maximum at § = X/n even if X =0 or n.

=
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Examples: 2 parameter exponential

@ The density is
f(x;a,B) = %e_(x_a)/ﬁl(x > )

@ Log-likelihood is —oo for ae > min{Xi,..., X,} and otherwise is
{(a, B) = —nlog(B) — > _(Xi — a)/B
@ Increasing function of « till « reaches
& = Xq) = min{Xy,..., Xy}

which gives mle of «.

@ Now plug in & for «; get profile likelihood for f3:

gprofile(/B) =—-n |og(6) - Z(X’ - X(l))/ﬁ
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2 parameter exponential continued

@ Set 3 derivative equal to 0 to get
B=>(Xi—Xu)/n

o Notice mle § = (&, 3) does not solve likelihood equations; we had to
look at the edge of the possible parameter space.

@ « is called a support or truncation parameter.

@ ML methods behave oddly in problems with such parameters.

=
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Three parameter Weibull

@ The density in question is

i) = 5 (552) xel- - a)/8) Tt > )

@ Three likelihood equations:

@ Set [ derivative equal to 0; get

Blon) =[S0 —ay/n]

where 3(,~) indicates mle of 3 could be found by finding the mles of
the other two parameters and then plugging in to the formula above.

@ No explicit solution for remaining par ests; numerical methods needed.

® But putting v <1 and letting av — X(1) will make the log likelihood
go to oo.

@ MLE is not uniquely defined: any v < 1 and any 8 will do. =
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Three parameter Weibull continued

@ Subscript 0 indicates true parameter values.

@ If 79 > 1 then probability that there is a root of the likelihood
equations is high.

@ In this case there must be two more roots: a local maximum and a
saddle point!

@ For 79 > 1 theory to come applies to the local maximum and not to
the global maximum of the likelihood equations.

s
=
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