STAT 830 Likelihood Methods

Richard Lockhart

SFU

STAT 830 — Fall 2013

Purposes of These Notes

- Define the likelihood, log-likelihood and score functions.
- Summarize likelihood methods
- Describe maximum likelihood estimation
- Give sequence of examples.

Likelihood Methods of Inference

- Toss a thumb tack 6 times and imagine it lands point up twice.
- Let *p* be probability of landing points up.
- Probability of getting exactly 2 point up is

$$15p^2(1-p)^4$$

- This function of p, is the **likelihood** function.
- **Definition**: The likelihood function is map L: domain Θ , values given by

$$L(\theta) = f_{\theta}(X)$$

- Key Point: think about how the density depends on θ not about how it depends on X.
- Notice: X, observed value of the data, has been plugged into the formula for density.
- Notice: coin tossing example uses the discrete density for f.
- We use likelihood for most inference problems:

List of likelihood techniques

- Point estimation: we must compute an estimate $\hat{\theta} = \hat{\theta}(X)$ which lies in Θ . The **maximum likelihood estimate (MLE)** of θ is the value $\hat{\theta}$ which maximizes $L(\theta)$ over $\theta \in \Theta$ if such a $\hat{\theta}$ exists.
- Point estimation of a function of θ : we must compute an estimate $\hat{\phi} = \hat{\phi}(X)$ of $\phi = g(\theta)$. We use $\hat{\phi} = g(\hat{\theta})$ where $\hat{\theta}$ is the MLE of θ .
- Interval (or set) estimation. We must compute a set C = C(X) in Θ which we think will contain θ_0 . We will use

$$\{\theta \in \Theta : L(\theta) > c\}$$

for a suitable c.

• Hypothesis testing: decide whether or not $\theta_0 \in \Theta_0$ where $\Theta_0 \subset \Theta$. We base our decision on the likelihood ratio

$$\frac{\sup\{L(\theta); \theta \in \Theta \setminus \Theta_0\}}{\sup\{L(\theta); \theta \in \Theta_0\}}.$$

Maximum Likelihood Estimation

- To find MLE maximize L.
- Typical function maximization problem:
- Set gradient of L equal to 0.
- Check root is maximum, not minimum or saddle point.
- Examine some likelihood plots in examples:
- ullet Focus on fact that each data set corresponds to its own function of heta
- So the graph itself is a statistic.

Cauchy Data

• IID sample X_1, \ldots, X_n from Cauchy(θ) density

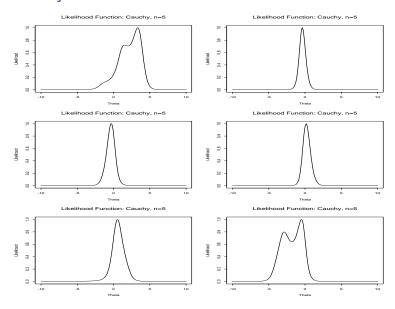
$$f(x;\theta) = \frac{1}{\pi(1+(x-\theta)^2)}$$

The likelihood function is

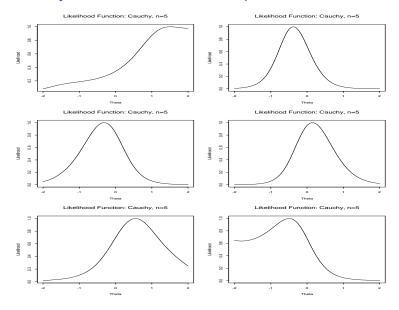
$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\pi(1 + (X_i - \theta)^2)}$$

Here are some likelihood plots.

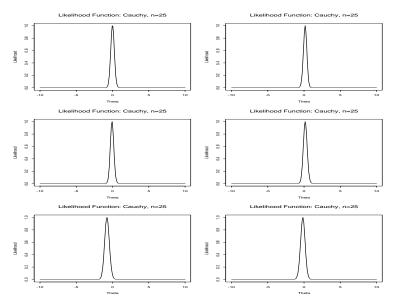
Cauchy data n = 5



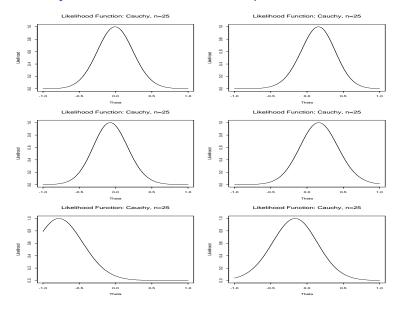
Cauchy data n = 5 — close-up



Cauchy data n = 25 up



Cauchy data n = 25 — close-up



Things to see in the plots

- The likelihood functions have peaks near the true value of θ (which is 0 for the data sets I generated).
- The peaks are narrower for the larger sample size.
- ullet The peaks have a more regular shape for the larger value of n.
- I actually plotted $L(\theta)/L(\hat{\theta})$ which has exactly the same shape as L but runs from 0 to 1 on the vertical scale.

The log-likelihood

- To maximize this likelihood: differentiate L, set result equal to 0.
- Notice L is product of n terms; derivative is

$$\sum_{i=1}^{n} \prod_{j \neq i} \frac{1}{\pi (1 + (X_{j} - \theta)^{2})} \frac{2(X_{i} - \theta)}{\pi (1 + (X_{i} - \theta)^{2})^{2}}$$

which is quite unpleasant.

- Much easier to work with logarithm of L: log of product is sum and logarithm is monotone increasing.
- Definition: The Log Likelihood function is

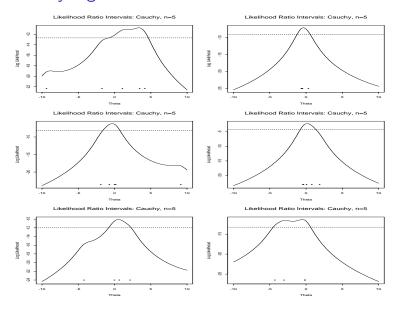
$$\ell(\theta) = \log\{L(\theta)\}.$$

• For the Cauchy problem we have

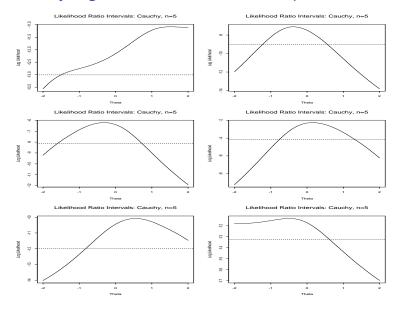
$$\ell(\theta) = -\sum \log(1 + (X_i - \theta)^2) - n\log(\pi)$$

Now we examine log likelihood plots.

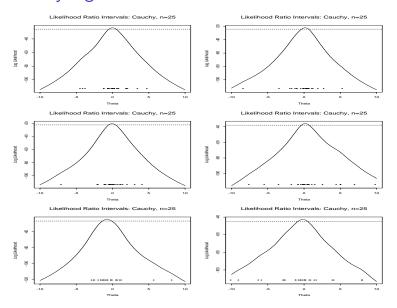
Cauchy log-likelihood n = 5



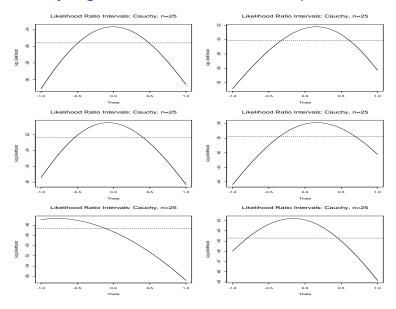
Cauchy log-likelihood n = 5, close-up



Cauchy log-likelihood n = 25



Cauchy log-likelihood n = 25, close-up



Things to notice

- Plots of ℓ for n=25 quite smooth, rather parabolic.
- For n = 5 many local maxima and minima of ℓ .
- Likelihood tends to 0 as $|\theta| \to \infty$ so max of ℓ occurs at a root of ℓ' , derivative of ℓ wrt θ .
- **Definition**: **Score Function** is gradient of ℓ

$$U(\theta) = \frac{\partial \ell}{\partial \theta}$$

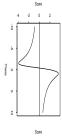
• MLE $\hat{\theta}$ usually root of **Likelihood Equations**

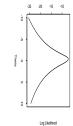
$$U(\theta) = 0$$

In our Cauchy example we find

$$U(\theta) = \sum \frac{2(X_i - \theta)}{1 + (X_i - \theta)^2}$$

- Now we examine plots of score functions.
- Notice: often multiple roots of likelihood equations.



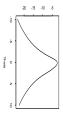


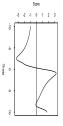
Log Likelihood



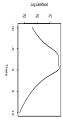
Log Likelihood

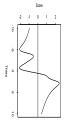
Cauchy score n = 5

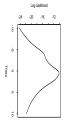


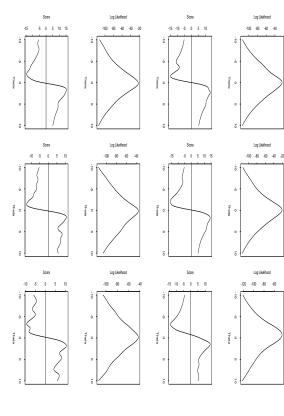












Cauchy score n = 25

Binomial example

• Example: $X \sim \text{Binomial}(n, \theta)$

$$L(\theta) = \binom{n}{X} \theta^{X} (1 - \theta)^{n - X}$$

$$\ell(\theta) = \log \binom{n}{X} + X \log(\theta) + (n - X) \log(1 - \theta)$$

$$U(\theta) = \frac{X}{\theta} - \frac{n - X}{1 - \theta}$$

• The function L is 0 at $\theta=0$ and at $\theta=1$ unless X=0 or X=n so for $1 \leq X < n$ the MLE must be found by setting U=0 and getting

$$\hat{\theta} = \frac{X}{n}$$

Binomial Continued

• For X = n the log-likelihood has derivative

$$U(\theta) = \frac{n}{\theta} > 0$$

for all θ

- So the likelihood is an increasing function of θ which is maximized at $\hat{\theta}=1=X/n$.
- Similarly when X=0 the maximum is at $\hat{\theta}=0=X/n$.
- In all cases

$$\hat{\theta} = \frac{X}{n}$$
.

The Normal Distribution

- Now we have X_1, \ldots, X_n iid $N(\mu, \sigma^2)$.
- There are two parameters $\theta = (\mu, \sigma)$.
- We find

$$L(\mu,\sigma) = \frac{e^{-\sum (X_i - \mu)^2/(2\sigma^2)}}{(2\pi)^{n/2}\sigma^n}$$

$$\ell(\mu,\sigma) = -\frac{n}{2}\log(2\pi) - \frac{\sum (X_i - \mu)^2}{2\sigma^2} - n\log(\sigma)$$

and that U is

$$\left[\begin{array}{c} \frac{\sum (X_i - \mu)}{\sigma^2} \\ \frac{\sum (X_i - \mu)^2}{\sigma^3} - \frac{n}{\sigma} \end{array}\right]$$

- Notice that U is a function with two components because θ has two components.
- Setting the likelihood equal to 0 and solving gives

$$\hat{\mu} = \bar{X}$$
 and $\hat{\sigma} = \sqrt{\frac{\sum (X_i - \bar{X})^2}{n}}$.

Normal example continued

- Check this is maximum by computing one more derivative.
- Matrix H of second derivatives of ℓ is

$$\begin{bmatrix} \frac{-n}{\sigma^2} & \frac{-2\sum(X_i-\mu)}{\sigma^3} \\ \frac{-2\sum(X_i-\mu)}{\sigma^3} & \frac{-3\sum(X_i-\mu)^2}{\sigma^4} + \frac{n}{\sigma^2} \end{bmatrix}$$

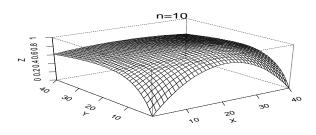
Plugging in the mle gives

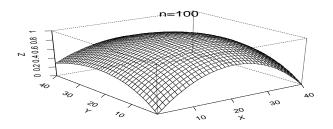
$$H(\hat{\theta}) = \begin{bmatrix} \frac{-n}{\hat{\sigma}^2} & 0\\ 0 & \frac{-2n}{\hat{\sigma}^2} \end{bmatrix}$$

which is negative definite.

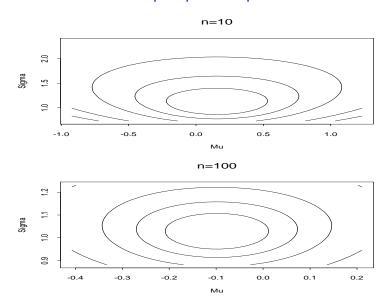
- Both its eigenvalues are negative.
- So $\hat{\theta}$ must be a local maximum.
- ullet Examine contour and perspective plots of $\ell.$

Normal likelihood perspective plot





Normal likelihood perspective plot



Observations

- Notice that the contours are quite ellipsoidal for the larger sample size.
- For X_1, \ldots, X_n iid log likelihood is

$$\ell(\theta) = \sum \log(f(X_i, \theta)).$$

The score function is

$$U(\theta) = \sum \frac{\partial \log f}{\partial \theta}(X_i, \theta).$$

MLE $\hat{\theta}$ maximizes ℓ .

• If maximum occurs in interior of parameter space and the log likelihood continuously differentiable then $\hat{\theta}$ solves the likelihood equations

$$U(\theta) = 0$$
.

Solving $U(\theta) = 0$: Examples

- $N(\mu, \sigma^2)$
- Unique root of likelihood equations is a global maximum.
- **Remark**: Suppose we called $\tau = \sigma^2$ the parameter.
 - ► Score function still has two components: first component same as before but second component is

$$\frac{\partial}{\partial \tau} \ell = \frac{\sum (X_i - \mu)^2}{2\tau^2} - \frac{n}{2\tau}$$

Setting the new likelihood equations equal to 0 still gives

$$\hat{\tau} = \hat{\sigma}^2$$

- ► General **invariance** (or **equivariance**) principal:
- ▶ If $\phi = g(\theta)$ is some reparametrization of a model (a one to one relabelling of the parameter values) then $\hat{\phi} = g(\hat{\theta})$.
- ▶ Does not apply to other estimators.

Examples

- Cauchy, location θ
- At least 1 root of likelihood equations but often several more.
- One root is a global maximum; others, if they exist may be local minima or maxima.
- Binomial (n, θ)
- If X = 0 or X = n: no root of likelihood equations; likelihood is monotone.
- Other values of X: unique root, a global maximum.
- Global maximum at $\hat{\theta} = X/n$ even if X = 0 or n.

Examples: 2 parameter exponential

The density is

$$f(x; \alpha, \beta) = \frac{1}{\beta} e^{-(x-\alpha)/\beta} 1(x > \alpha)$$

• Log-likelihood is $-\infty$ for $\alpha > \min\{X_1, \dots, X_n\}$ and otherwise is

$$\ell(\alpha,\beta) = -n\log(\beta) - \sum (X_i - \alpha)/\beta$$

• Increasing function of α till α reaches

$$\hat{\alpha} = X_{(1)} = \min\{X_1, \dots, X_n\}$$

which gives mle of α .

• Now plug in $\hat{\alpha}$ for α ; get *profile likelihood* for β :

$$\ell_{\mathsf{profile}}(\beta) = -n\log(\beta) - \sum (X_i - X_{(1)})/\beta$$

2 parameter exponential continued

• Set β derivative equal to 0 to get

$$\hat{\beta} = \sum (X_i - X_{(1)})/n$$

- Notice mle $\hat{\theta} = (\hat{\alpha}, \hat{\beta})$ does *not* solve likelihood equations; we had to look at the edge of the possible parameter space.
- ullet α is called a *support* or *truncation* parameter.
- ML methods behave oddly in problems with such parameters.

Three parameter Weibull

• The density in question is

$$f(x; \alpha, \beta, \gamma) = \frac{1}{\beta} \left(\frac{x - \alpha}{\beta} \right)^{\gamma - 1} \times \exp[-\{(x - \alpha)/\beta\}^{\gamma}] 1(x > \alpha)$$

- Three likelihood equations:
- Set β derivative equal to 0; get

$$\hat{\beta}(\alpha, \gamma) = \left[\sum (X_i - \alpha)^{\gamma} / n\right]^{1/\gamma}$$

where $\hat{\beta}(\alpha, \gamma)$ indicates mle of β could be found by finding the mles of the other two parameters and then plugging in to the formula above.

- No explicit solution for remaining par ests; numerical methods needed.
- But putting $\gamma < 1$ and letting $\alpha \to X_{(1)}$ will make the log likelihood go to ∞ .
- MLE is not uniquely defined: any $\gamma < 1$ and any β will do.

Three parameter Weibull continued

- Subscript 0 indicates true parameter values.
- If $\gamma_0 > 1$ then probability that there is a root of the likelihood equations is high.
- In this case there must be two more roots: a local maximum and a saddle point!
- \bullet For $\gamma_0>1$ theory to come applies to the local maximum and not to the global maximum of the likelihood equations.

