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What | assume you already know

@ Some of this jargon
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What | want you to learn

o All of this jargon.
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Statistical Models pp 87-88

@ Definition: A model is a family F of possible distributions for some
random variable X. Often we will write

F = {P9;9 S @}
i F = {f(x.0);0 € O).

@ WARNING: Data set is X, so X will generally be a big vector or
matrix or even more complicated object.
@ The model is called parametric if © is finite dimensional.

@ The model is called non-parametric if © is infinite dimensional.

@ The model is called semi-parametric if a typical element 6 of © can
be thought of as a pair ¢, where ¢ is finite dimensional and ) is
infinite dimensional.
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Basic Examples

o Example: If we specify Xi,..., X, are a sample from the N(u, o?)
distribution then we are studying a (two dimensional) parametric
model and X is the vector (Xi,...,Xy).

o Example: If we specify Xi,..., X, are a sample from a completely
unknown distribution then the parameter space is {F}, the set of all
cdfs. This is a non-parametric model.

]
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Example: Regression p 89

@ Think about data ((X1, Y1),-..,(Xnh, Y»)); begin by assuming the
pairs are independent.

@ Interest often centres on the behaviour of Y for a given value of X.

@ One standard summary of this behaviour is the regression function

E(Yi|Xi) .

@ There are many models — parametric, non-parametric and semi
parametric — for data of this type.

s
=
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Parametric Regression

o If we say that ((X1, Y1),...,(Xn, Ya)) are a sample from a bivariate
normal population then again we have a parametric model.

@ In this model there are constants 3y and (31 for which
E(Yi|Xi) = Bo + A1 X

@ Moreover, if we define ¢; = Y; — 8X; — By then ¢; 1L X; and
ei ~ N(0,02) for some o.

@ There are 5 parameters: mean and variance of X, variance of ¢ and
the two regression parameters.

@ The model can also be parametrized using the mean and variance of
X, the mean and variance of Y and the covariance (or the
correlation) between X and Y.

=
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Regression Models Continued

@ Sometimes we take the X; to be deterministic constants, xi, ..., Xp.

@ This happens in designed experiments where the X values are chosen
by the experimenter.

@ We still suppose
E(Yi[Xi) = Bo + B1X;
@ We define ¢; as before and note that E(¢;) = 0 is automatic.

@ We might assume the ¢; are independent and identically distributed —
that is, they all have the same distribution.

o If we specify nothing more the model is semi-parametric because the
regression function model is parametric but the distributional model
for the errors €; is non-parametric.

@ Or we might consider some parametric model for the ¢; other than
normal. |
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Nonparametric Regression Models

@ Or we might just suppose the pairs are iid and write
E(Yi[Xi) = 6(X)

where the function ¢ is some unknown continuous function. This
model is non-parametric

@ The lines between these terms are not totally clear — nor are the
precise definitions important.

@ To give you an idea we might suppose the ¢; are normally distributed
but let the conditional variance, given X;, be some unknown (or
known even) function of X;.

ﬁ
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Model Misspecification

@ Assumption in this course: true distribution P of X is Py, for some
0y € ©.

@ JARGON: 6y is true value of the parameter.
@ Or in a non-parametric model Fy is the true distribution of the data.

@ Notice: in a parametric model this assumption is wrong; we hope it is
not wrong in an important way.

@ If it's wrong: enlarge model, put in more distributions, make © bigger.

@ Jargon: The field of model misspecification studies the errors induced
by the fact that the model is not right — does not include the true
distribution of the data.
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Inference goals p 89

@ Observe value of X, guess 6y or some property of 6.
@ Classic mathematical versions of guessing:
@ Point estimation: compute estimate § = (X) which lies in © (or
something close to ©).
@ Point estimation of ftn of #: compute estimate ¢ = $(X) of ¢ = g(6).
© Interval (or set) estimation: compute set C = C(X) in © which we
think will contain 6.
@ Hypothesis testing: choose between 6y € ©¢ and 0y & B¢ where
©y C O.
@ Prediction: guess value of an observable random variable Y whose
distribution depends on 6. Typically Y is the value of the variable X
in a repetition of the experiment.
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Schools of statistical thinking

Main schools of thought summarized roughly as follows:

@ Neyman Pearson: A statistical procedure is evaluated by its long run
frequency performance. Imagine repeating the data collection exercise
many times, independently. Quality of procedure measured by its
average performance when true distribution of X values is Py, .

o Bayes: Treat # as random just like X. Compute conditional law of
unknown quantities given knowns. In particular ask how procedure
will work on the data we actually got — no averaging over data we
might have got.

@ Likelihood: Try to combine previous 2 by looking only at actual data
while trying to avoid treating 6 as random.

In this course we start by using Neyman Pearson approach to evaluate
quality of likelihood and other methods.

Richard Lockhart (Simon Fraser University) STAT 830 Statistical Inference STAT 830 — Fall 2013 12 /12



