STAT 830

Notes on an introduction to inference

Def’n: : A model is a family {Fp; 0 € ©} of possible distributions for some
random variable X. (Our data set is X, so X will generally be a big vector
or matrix or even more complicated object.)

We will assume throughout this course that the true distribution P of X is
in fact some P, for some 6, € ©. We call 0, the true value of the parameter.
Notice that this assumption will be wrong; we hope it is not wrong in an
important way. If we are very worried that it is wrong we enlarge our model
putting in more distributions and making © bigger.

Our goal is to observe the value of X and then guess 6y or some property
of 6y. We will consider the following classic mathematical versions of this:

1.

Point estimation: we must compute an estimate 6 = é(X ) which lies
in © (or something close to ©).

Point estimation of a function of #: we must compute an estimate

¢ = o(X) of ¢ = g(0).

Interval (or set) estimation. We must compute a set C' = C(X) in ©
which we think will contain 6.

Hypothesis testing: We must choose between 6, € Oy and 0, ¢ O
where ©y C ©.

Prediction: we must guess the value of an observable random variable
Y whose distribution depends on 6y. Typically Y is the value of the
variable X in a repetition of the experiment.

There are several schools of statistical thinking. Some of the main schools
of thought can be summarized roughly as follows:

e Neyman Pearson: A statistical procedure is evaluated by its long

run frequency performance. Imagine repeating the data collection ex-
ercise many times, independently. Quality of procedure measured by
its average performance when true distribution of X values is P, .

For instance, estimates are studied by computing their sampling prop-
erties such as mean, variance, bias and mean squared error.



Def’n: If QAS is an estimator of some parameter ¢ then the bias, variance
and mean squared error are the following functions of the unknown
distribution F' of the data.

Bias: R
bias; (F) = Br(d) - 6(F).

Variance:

bias;(F) = Varp ().

Mean Squared Error:
. 2
MSE4(F) = E [{gb - ng(F)} } .

Several features of these definitions deserve discussion. First, each dis-
tribution F' in the model F must have some value for the parameter
¢. We denote this value ¢(F') in the definitions above. In paramet-
ric models the distribution F' is indexed by the parameter # and we
write ¢(0) instead of ¢(F). Second, the subscripts F' on E and Var
remind us that while the model has many possible distributions when
we come to compute probabilities and moments we have to use some
particular distribution. Third, notice that the subscript F', indicating
which distribution goes into computing the means and variances is the
same as the one going into ¢. Fourth, you need to know the following
decomposition of MSE:

MSE = bias? + Variance.

Finally, the idea is that good estimators have small biases, small vari-
ances and small mean squared errors. They are being judged on the
basis of their long-run or average or expected performance NOT on
the basis of how well they will work with today’s data. This is the
Neyman-Pearson approach to inference — ask the question “how well
does my statistical procedure work on average?”

Confidence sets or intervals are also to be judged on the basis of their
average performance. A confidence set is a random subset C'(X) of ©
or ® (where ® is the set of possible values of some parameter ¢). The
set has level 3 if

Pe(6(F) € C(X)) = B
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for all F € F. It is absolutely crucial to note that the only thing
random in this formula is the set C'(X), NOT, ¢(F'). That means that
the probability describes the average behaviour of the procedure used
to compute the set C'(X) NOT the behaviour on today’s data set.

Several details should be mentioned. First if we replace > S by =
then the set is ezact. Second the random set C'(X) is usually just
a random interval [L(X),U(X)] — all the values of ¢ between these
two random limits. Third in practice the desired property is more
stringent that we can achieve. Generally we can only replace >  with
the assertion that the probability is approximately 8 or approximately
some number > (.

Example: You all know that for samples of size n from the N(u,o?)
distribution the interval

)_(itn,m/gs/\/ﬁ or L = X—tn,l,a/gs/\/ﬁ toU = barX+tn,17a/25/\/ﬁ

is an exact level 1 — « confidence interval for p. (As usual ¢,, is the
upper « critical point for a Student’s ¢ distribution on v degrees of
freedom.

There are more features to discuss in a confidence interval beyond its
coverage probability Pr(¢ € C(X)). For instance the probability it
does not include a given wrong value of ¢ should be high. The set should
be as small as possible since that corresponds to a precise estimate of
0.

Hypothesis tests are judged on the basis of error rates. For problems
when a hypothesis is true we ask how often we conclude the hypothesis
is true. The probability we incorrectly conclude the hypothesis is wrong
is an error rate. Note particularly that we just ask what fraction of data
sets the procedure works for, NOT, whether or not it appears likely to
work with today’s data.

Bayes: Treat 6 as random just like X. Compute conditional law of
unknown quantities given known quantities. In particular ask how a
procedure will work on the data we actually got — no averaging over
data we might have got.

For point estimation the Bayesian would study the distribution of the
estimation error ¢(X ) —¢(F') given the data X. Now only F' is random
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— X is known and treated as a fixed deterministic object. The Bayesian
then chooses ¢(X) to make the estimation error as small as possible — as
measured by some feature of its distribution give X; this distribution
is called a posterior distribution since it applies after the data are
observed.

For confidence sets the Bayesian, too, would work out a set C'(X) of
values of ¢ which s/he considers likely to contain the true value but
now the Bayesian wants

P(¢ e C(X)]X)

to be large while making C(X) as small as possible. Typically the
Bayesian insists that

P(p e C(X)[X) =8

for some given S. The Bayesian asks only about today’s data X as s/he
observed it and not about other data which might have been observed
but was not.

For hypothesis testing the Bayesian naturally computes the probability,
given X that each hypothesis is correct.

e Likelihood: Try to combine previous 2 by looking only at actual data
while trying to avoid treating # as random.

I will try, later in the course, to describe this school of inference.

We use the Neyman Pearson approach to evaluate the quality of likeli-
hood and other methods in this course — and even to study the behaviour of
Bayesian methods.



