STAT 830
 Independence and Conditioning

Richard Lockhart

Simon Fraser University
STAT 830 — Fall 2013

Purposes of These Notes

- Define independent events and random variables.
- Give conditions for independence.
- Define conditional probability, conditional distribution.
- State Bayes Theorem in various forms.

Independent Events

Def'n: Events A and B are independent if

$$
P(A B)=P(A) P(B)
$$

(Notation: $A B$ is the event that both A and B happen, also written $A \cap B$.)
Def'n: $A_{i}, i=1, \ldots, p$ are independent if

$$
P\left(A_{i_{1}} \cdots A_{i_{r}}\right)=\prod_{j=1}^{r} P\left(A_{i_{j}}\right)
$$

for any $1 \leq i_{1}<\cdots<i_{r} \leq p$.
Example: $p=3$

$$
\begin{aligned}
P\left(A_{1} A_{2} A_{3}\right) & =P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right) \\
P\left(A_{1} A_{2}\right) & =P\left(A_{1}\right) P\left(A_{2}\right) \\
P\left(A_{1} A_{3}\right) & =P\left(A_{1}\right) P\left(A_{3}\right) \\
P\left(A_{2} A_{3}\right) & =P\left(A_{2}\right) P\left(A_{3}\right)
\end{aligned}
$$

All these equations needed for independence!

Counterexample

- Pairwise independence is not independence.
- Toss a coin twice.

$$
\begin{aligned}
& A_{1}=\{\text { first toss is a Head }\} \\
& A_{2}=\{\text { second toss is a Head }\} \\
& A_{3}=\{\text { first toss and second toss different }\}
\end{aligned}
$$

- Then $P\left(A_{i}\right)=1 / 2$ for each i and for $i \neq j$

$$
P\left(A_{i} \cap A_{j}\right)=\frac{1}{4}
$$

but

$$
P\left(A_{1} \cap A_{2} \cap A_{3}\right)=0 \neq P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right) .
$$

Independence for Random Variables

Def'n: X and Y are independent if

$$
P(X \in A ; Y \in B)=P(X \in A) P(Y \in B)
$$

for all A and B.
Notation: Write $X \Perp Y$.
Def'n: Rvs X_{1}, \ldots, X_{p} independent:

$$
P\left(X_{1} \in A_{1}, \cdots, X_{p} \in A_{p}\right)=\prod P\left(X_{i} \in A_{i}\right)
$$

for any A_{1}, \ldots, A_{p}.

Factorization criteria:

Theorems 2.30, 2.33

Theorem

(1) If X and Y are independent then for all x, y

$$
F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)
$$

(2) If X and Y are independent with joint density $f_{X, Y}(x, y)$ then X and Y have densities f_{X} and f_{Y}, and

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

(3) If X and Y independent with marginal densities f_{X} and f_{Y} then (X, Y) has joint density

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Theorem Continued

Theorem (Theorem Continued)

(9) If $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$ for all x, y then X and Y are independent.
(3) If (X, Y) has density $f(x, y)$ and there exist $g(x)$ and $h(y)$ st $f(x, y)=g(x) h(y)$ for (almost) all (x, y) then X and Y are independent with densities given by

$$
\begin{aligned}
& f_{X}(x)=g(x) / \int_{-\infty}^{\infty} g(u) d u \\
& f_{Y}(y)=h(y) / \int_{-\infty}^{\infty} h(u) d u .
\end{aligned}
$$

(0) An analogous assertion to the previous holds in the discrete case.

Proof of First Assertion

- Since X and Y are independent the events $X \leq x$ and $Y \leq y$ are independent
- So

$$
P(X \leq x, Y \leq y)=P(X \leq x) P(Y \leq y)
$$

Proof of second assertion

- Suppose X and Y real valued.
- Asst 2: existence of $f_{X, Y}$ implies that of f_{X} and f_{Y} (marginal density formula).
- Then for any sets A and B

$$
\begin{aligned}
P(X \in A, Y \in B) & =\int_{A} \int_{B} f_{X, Y}(x, y) d y d x \\
P(X \in A) P(Y \in B) & =\int_{A} f_{X}(x) d x \int_{B} f_{Y}(y) d y \\
& =\int_{A} \int_{B} f_{X}(x) f_{Y}(y) d y d x
\end{aligned}
$$

- Since $P(X \in A, Y \in B)=P(X \in A) P(Y \in B)$

$$
\int_{A} \int_{B}\left[f_{X, Y}(x, y)-f_{X}(x) f_{Y}(y)\right] d y d x=0
$$

Measure theory shows quantity in [] is 0 for almost every pair (x, y)

Proof of third assertion

- For any A and B we have

$$
\begin{aligned}
P(X \in A, Y \in B) & =P(X \in A) P(Y \in B) \\
& =\int_{A} f_{X}(x) d x \int_{B} f_{Y}(y) d y \\
& =\int_{A} \int_{B} f_{X}(x) f_{Y}(y) d y d x
\end{aligned}
$$

If we define $g(x, y)=f_{X}(x) f_{Y}(y)$ then we have proved that for $C=A \times B$

$$
P((X, Y) \in C)=\int_{C} g(x, y) d y d x
$$

- To prove that g is $f_{X, Y}$ prove this integral formula is valid for arbitrary Borel set C, not just rectangle $A \times B$.
- Use monotone class argument. Study closure properties collection sets C for which identity holds.

Proof of fourth and fifth assertions

- For fourth assertion another monotone class argument.
- For fifth assertion:

$$
\begin{aligned}
P(X \in A, Y \in B) & =\int_{A} \int_{B} g(x) h(y) d y d x \\
& =\int_{A} g(x) d x \int_{B} h(y) d y
\end{aligned}
$$

Take $B=R^{1}$ to see that

$$
P(X \in A)=c_{1} \int_{A} g(x) d x
$$

where $c_{1}=\int h(y) d y$.

- So $c_{1} g$ is the density of X. Since $\iint f_{X, Y}(x y) d x d y=1$ we see that $\int g(x) d x \int h(y) d y=1$ so that $c_{1}=1 / \int g(x) d x$.
- Similar argument for Y.

Inheritance of transformations

```
Theorem
If \(X_{1}, \ldots, X_{p}\) are independent and \(Y_{i}=g_{i}\left(X_{i}\right)\) then \(Y_{1}, \ldots, Y_{p}\) are independent. Moreover, \(\left(X_{1}, \ldots, X_{q}\right)\) and \(\left(X_{q+1}, \ldots, X_{p}\right)\) are independent. (In fact everything you would expect to hold does.)
```


Conditional probability

Def'n: $P(A \mid B)=P(A B) / P(B)$ if $P(B) \neq 0$.
Def' \boldsymbol{n} : For discrete X and Y the conditional probability mass function of Y given X is

$$
\begin{aligned}
f_{Y \mid X}(y \mid x) & =P(Y=y \mid X=x) \\
& =f_{X, Y}(x, y) / f_{X}(x) \\
& =f_{X, Y}(x, y) / \sum_{t} f_{X, Y}(x, t)
\end{aligned}
$$

Conditional probability, continuous case

- For absolutely continuous $X P(X=x)=0$ for all x.
- What is $P(A \mid X=x)$ or $f_{Y \mid X}(y \mid x)$?
- Solution: use limit

$$
P(A \mid X=x)=\lim _{\delta x \rightarrow 0} P(A \mid x \leq X \leq x+\delta x)
$$

- If, e.g., X, Y have joint density $f_{X, Y}$ then with $A=\{Y \leq y\}$ we have

$$
\begin{aligned}
P(A \mid x \leq X \leq x+\delta x) & =\frac{P(A \cap\{x \leq X \leq x+\delta x\})}{P(x \leq X \leq x+\delta x)} \\
& =\frac{\int_{-\infty}^{y} \int_{x}^{x+\delta x} f_{X, Y}(u, v) d u d v}{\int_{x}^{x+\delta x} f_{X}(u) d u}
\end{aligned}
$$

- Divide top, bottom by δx; let $\delta x \rightarrow 0$.
- Denom converges to $f_{X}(x)$; numerator converges to

$$
\int_{-\infty}^{y} f_{X, Y}(x, v) d v
$$

Continuous case continued

- Define conditional cdf of Y given $X=x$:

$$
P(Y \leq y \mid X=x)=\frac{\int_{-\infty}^{y} f_{X, Y}(x, v) d v}{f_{X}(x)}
$$

- Differentiate wrt y to get def'n of conditional density of Y given $X=x$:

$$
f_{Y \mid X}(y \mid x)=f_{X, Y}(x, y) / f_{X}(x)
$$

in words "conditional $=$ joint/marginal".

Bayes Theorem

- From $P(A B)=P(A \mid B) P(B)=P(B \mid A) P(A)$ get

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

- Statistical description of difference between $B \Longrightarrow A$ and $A \Longrightarrow B$.
- Density formulation

$$
f_{X \mid Y}=\frac{f_{Y \mid X} f_{X}}{f_{Y}}
$$

- Bayesians like to write

$$
(x \mid y)=(y \mid x)(x) /(y)
$$

with the parentheses indicating densities and the letters indicating variables.

Generalizations

- More general formulas arise like

$$
P(A B C D)=P(A \mid B C D) P(B \mid C D) P(C \mid D) P(D)
$$

- Also: if A_{1}, \ldots, A_{k} mutually exclusive and exhaustive then

$$
P\left(A_{1} \mid B\right)=\frac{P\left(B \mid A_{1}\right) P\left(A_{1}\right)}{\sum_{i} P\left(B \mid A_{j}\right) P\left(A_{j}\right)}
$$

- Mutually exclusive means pairwise disjoint and exhaustive means

$$
\cup_{1}^{k} A_{i}=\Omega
$$

- The density formula is really analogous since integrals are limits of sums

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X Y}(x, y)}{f_{Y}(y)}=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{\int_{u} f_{X Y}(u, y) d u}
$$

