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Purposes of These Notes

@ Define independent events and random variables.
o Give conditions for independence.

@ Define conditional probability, conditional distribution.

@ State Bayes Theorem in various forms.
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Independent Events pp 8-10
Def’'n: Events A and B are independent if

P(AB) = P(A)P(B).

(Notation: AB is the event that both A and B happen, also written
ANB.)

Def'n: A;, i=1,...,p are independent if

P(Ai, -+ Aj,) = ILIP(A:',-)

forany1<ip<---<i <p.

Example: p =3
P(A1A2A3) P(A1)P(A2)P(A3)
P(AiAz) = P(A1)P(A2)
P(A1As) = P(A1)P(As)
P(A2A3) = P(A2)P(As)
All these equations needed for independence! =
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Counterexample

@ Pairwise independence is not independence.

@ Toss a coin twice.

A; = {first toss is a Head}
A, = {second toss is a Head}
As = {first toss and second toss different}

@ Then P(A;) = 1/2 for each i and for i # j

1
P(A,’ﬁAj) = Z

but

P(Al NAN A3) =0# P(Al)P(Ag)P(A3) .
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Independence for Random Variables pp 34-36

Def’n: X and Y are independent if

P(X €AY eB)=P(XecAP(Y eB)
for all A and B.

Notation: Write X L Y.

Def’n: Rvs Xi,..., X, independent:

P(X1€ Ay, X, € A)) = [ P(Xi € A)

5 /17
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Factorization criteria: Theorems 2.30, 2.33

Theorem
Q@ /f X and Y are independent then for all x,y

Fx,y(x,y) = Fx(x)Fy(y).

@ If X and Y are independent with joint density fx y(x,y) then X and
Y have densities fx and fy, and

fx.y(xy) = fx(x)fy (y).

© If X and Y independent with marginal densities fx and fy then
(X, Y) has joint density

fx,y (%, y) = fx(x)fy (y)-

L

=
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Theorem Continued

Theorem (Theorem Continued)
Q If Fx y(x,y) = Fx(x)Fy(y) for all x,y then X and Y are
independent.

Q If(X,Y) has density f(x,y) and there exist g(x) and h(y) st
f(x,y) = g(x)h(y) for (almost) all (x,y) then X and Y are
independent with densities given by

fﬂw:g@v[fwau

fwn:huv/fh@mw

O An analogous assertion to the previous holds in the discrete case.
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Proof of First Assertion

@ Since X and Y are independent the events X < x and Y < y are
independent

o So

PX<x,Y<y)=PX<x)P(Y<y).

=
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Proof of second assertion

@ Suppose X and Y real valued.

@ Asst 2: existence of fx y implies that of fx and fy (marginal density
formula).

@ Then for any sets A and B

P(Xe€eAYeB)= /A/foyy(x,y)dydx
P(X € AYP(Y < B) :/Afx(x)dx/B o (y)dy
= / / fx(x)fy(y)dydx .
AJB
o Since P(X € A, Y € B) = P(X € A)P(Y € B)

//[fx,v(x’y) — fx(x)fy (y)]ldydx = 0.
AJB

Measure theory shows quantity in [] is O for almost every pair (x, y &%
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Proof of third assertion

@ For any A and B we have

P(X €A, Y € B) = P(X € A)P(Y € B)

= [ #xoax [ Ay
/ / f (x)fy () dydx

If we define g(x,y) = fx(x)fy(y) then we have proved that for
C=AxB

HMAQEQ=Agwme.

@ To prove that g is fx y prove this integral formula is valid for
arbitrary Borel set C, not just rectangle A x B.

@ Use monotone class argument. Study closure properties collection
sets C for which identity holds.
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Proof of fourth and fifth assertions

@ For fourth assertion another monotone class argument.

@ For fifth assertion:

P(XCAY € B)= / / x)h(y)dydx

= /A g(x)dx /B h(y)dy -

P(Xe€A)=a /Ag(x)dx

Take B = R! to see that

where ¢; = [ h(y)dy.
@ So c1g is the density of X. Since [ [ fxy xy)dxdy =1 we see that
J g(x)dx [ h(y)dy =1 so that cl—l/fg
@ Similar argument for Y.
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Inheritance of transformations

Theorem

If X1,...,Xp are independent and Y; = gi(X;) then Yi,...,Y), are
independent. Moreover, (X1,...,Xq) and (Xg+1,...,Xp) are independent.
(In fact everything you would expect to hold does.)

=
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Conditional probability p 36

Def'n: P(A|B) = P(AB)/P(B) if P(B) # 0.

Def’n: For discrete X and Y the conditional probability mass function of
Y given X is

frix(ylx) = P(Y = y|X = x)
= oy (x,0)/ ()
= fX7y(X,y)/Z fX,Y(X? t)
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Conditional probability, continuous case p 37,38

@ For absolutely continuous X P(X = x) = 0 for all x.
o What is P(A|X = x) or fy|x(y|x)?
@ Solution: use limit

P(AIX =x) = lim P(Alx < X < x+ 6x)
ox—0

o If, e.g., X, Y have joint density fx y then with A= {Y <y} we have
P(AN{x < X < x+dx})

P(x < X < x+ dx)

fi’oo f;”x fx,y(u, v)dudv
B f;+5x fx(u)du

P(Alx < X < x+ dx) =

@ Divide top, bottom by déx; let éx — 0.
@ Denom converges to fx(x); numerator converges to

/y fx,v(x, v)dv :
—0o0 =7
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Continuous case continued

@ Define conditional cdf of Y given X = x:
ffoo fx v (x, v)dv
fx (x)

o Differentiate wrt y to get def'n of conditional density of Y given
X = x:

P(Y < ylX =x) =

frix(vIx) = fx v (x, ¥)/fx (x);

in words “conditional = joint/marginal”.
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Bayes Theorem pp 12,176-177

e From P(AB) = P(A|B)P(B) = P(B|A)P(A) get

P(AIB)P(B)

PBIA) = =5

@ Statistical description of difference between B =— Aand A = B.

@ Density formulation
fy1xfx
x|y = fy

@ Bayesians like to write

(xly) = (y[x)(x)/(y)

with the parentheses indicating densities and the letters indicating
variables. ‘
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Generalizations
@ More general formulas arise like
P(ABCD) = P(A|BCD)P(B|CD)P(C|D)P(D)
o Also: if A1, ..., Ax mutually exclusive and exhaustive then

_ P(BJA1)P(A1)
PAIB) = = p(BIA) P(A)

@ Mutually exclusive means pairwise disjoint and exhaustive means

Ull(A,' =Q.

@ The density formula is really analogous since integrals are limits of

sums
ey (x,y)  frx(vIx)fx(x)

fr(y) [, fxv(u,y)du’

fxy (xly) =
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