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Purposes of These Notes

Define independent events and random variables.

Give conditions for independence.

Define conditional probability, conditional distribution.

State Bayes Theorem in various forms.
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Independent Events pp 8-10
Def’n: Events A and B are independent if

P(AB) = P(A)P(B) .

(Notation: AB is the event that both A and B happen, also written
A ∩ B .)
Def’n: Ai , i = 1, . . . , p are independent if

P(Ai1 · · ·Air ) =

r∏
j=1

P(Aij )

for any 1 ≤ i1 < · · · < ir ≤ p.
Example: p = 3

P(A1A2A3) = P(A1)P(A2)P(A3)

P(A1A2) = P(A1)P(A2)

P(A1A3) = P(A1)P(A3)

P(A2A3) = P(A2)P(A3)

All these equations needed for independence!
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Counterexample

Pairwise independence is not independence.

Toss a coin twice.

A1 = {first toss is a Head}

A2 = {second toss is a Head}

A3 = {first toss and second toss different}

Then P(Ai) = 1/2 for each i and for i 6= j

P(Ai ∩ Aj) =
1

4

but
P(A1 ∩ A2 ∩ A3) = 0 6= P(A1)P(A2)P(A3) .
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Independence for Random Variables pp 34-36

Def’n: X and Y are independent if

P(X ∈ A;Y ∈ B) = P(X ∈ A)P(Y ∈ B)

for all A and B .

Notation: Write X ⊥⊥ Y .

Def’n: Rvs X1, . . . ,Xp independent:

P(X1 ∈ A1, · · · ,Xp ∈ Ap) =
∏

P(Xi ∈ Ai)

for any A1, . . . ,Ap.
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Factorization criteria: Theorems 2.30, 2.33

Theorem
1 If X and Y are independent then for all x , y

FX ,Y (x , y) = FX (x)FY (y) .

2 If X and Y are independent with joint density fX ,Y (x , y) then X and
Y have densities fX and fY , and

fX ,Y (x , y) = fX (x)fY (y) .

3 If X and Y independent with marginal densities fX and fY then
(X ,Y ) has joint density

fX ,Y (x , y) = fX (x)fY (y) .
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Theorem Continued

Theorem (Theorem Continued)

4 If FX ,Y (x , y) = FX (x)FY (y) for all x , y then X and Y are
independent.

5 If (X ,Y ) has density f (x , y) and there exist g(x) and h(y) st
f (x , y) = g(x)h(y) for (almost) all (x , y) then X and Y are
independent with densities given by

fX (x) = g(x)/

∫ ∞

−∞
g(u)du

fY (y) = h(y)/

∫ ∞

−∞
h(u)du .

6 An analogous assertion to the previous holds in the discrete case.
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Proof of First Assertion

Since X and Y are independent the events X ≤ x and Y ≤ y are
independent

So
P(X ≤ x ,Y ≤ y) = P(X ≤ x)P(Y ≤ y) .
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Proof of second assertion

Suppose X and Y real valued.

Asst 2: existence of fX ,Y implies that of fX and fY (marginal density
formula).

Then for any sets A and B

P(X ∈ A,Y ∈ B) =

∫
A

∫
B

fX ,Y (x , y)dydx

P(X ∈ A)P(Y ∈ B) =

∫
A

fX (x)dx

∫
B

fY (y)dy

=

∫
A

∫
B

fX (x)fY (y)dydx .

Since P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B)
∫
A

∫
B

[fX ,Y (x , y)− fX (x)fY (y)]dydx = 0 .

Measure theory shows quantity in [] is 0 for almost every pair (x , y).
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Proof of third assertion

For any A and B we have

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B)

=

∫
A

fX (x)dx

∫
B

fY (y)dy

=

∫
A

∫
B

fX (x)fY (y)dydx .

If we define g(x , y) = fX (x)fY (y) then we have proved that for
C = A× B

P((X ,Y ) ∈ C ) =

∫
C

g(x , y)dydx .

To prove that g is fX ,Y prove this integral formula is valid for
arbitrary Borel set C , not just rectangle A× B .

Use monotone class argument. Study closure properties collection of
sets C for which identity holds.
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Proof of fourth and fifth assertions

For fourth assertion another monotone class argument.

For fifth assertion:

P(X ∈ A,Y ∈ B) =

∫
A

∫
B

g(x)h(y)dydx

=

∫
A

g(x)dx

∫
B

h(y)dy .

Take B = R1 to see that

P(X ∈ A) = c1

∫
A

g(x)dx

where c1 =
∫
h(y)dy .

So c1g is the density of X . Since
∫ ∫

fX ,Y (xy)dxdy = 1 we see that∫
g(x)dx

∫
h(y)dy = 1 so that c1 = 1/

∫
g(x)dx .

Similar argument for Y .
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Inheritance of transformations

Theorem

If X1, . . . ,Xp are independent and Yi = gi (Xi ) then Y1, . . . ,Yp are
independent. Moreover, (X1, . . . ,Xq) and (Xq+1, . . . ,Xp) are independent.
(In fact everything you would expect to hold does.)
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Conditional probability p 36

Def’n: P(A|B) = P(AB)/P(B) if P(B) 6= 0.

Def’n: For discrete X and Y the conditional probability mass function of
Y given X is

fY |X (y |x) = P(Y = y |X = x)

= fX ,Y (x , y)/fX (x)

= fX ,Y (x , y)/
∑
t

fX ,Y (x , t)
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Conditional probability, continuous case p 37,38

For absolutely continuous X P(X = x) = 0 for all x .

What is P(A|X = x) or fY |X (y |x)?

Solution: use limit

P(A|X = x) = lim
δx→0

P(A|x ≤ X ≤ x + δx)

If, e.g., X ,Y have joint density fX ,Y then with A = {Y ≤ y} we have

P(A|x ≤ X ≤ x + δx) =
P(A ∩ {x ≤ X ≤ x + δx})

P(x ≤ X ≤ x + δx)

=

∫ y

−∞

∫ x+δx

x
fX ,Y (u, v)dudv∫ x+δx

x
fX (u)du

Divide top, bottom by δx ; let δx → 0.

Denom converges to fX (x); numerator converges to∫ y

−∞
fX ,Y (x , v)dv
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Continuous case continued

Define conditional cdf of Y given X = x :

P(Y ≤ y |X = x) =

∫ y

−∞ fX ,Y (x , v)dv

fX (x)

Differentiate wrt y to get def’n of conditional density of Y given
X = x :

fY |X (y |x) = fX ,Y (x , y)/fX (x) ;

in words “conditional = joint/marginal”.
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Bayes Theorem pp 12,176-177

From P(AB) = P(A|B)P(B) = P(B |A)P(A) get

P(B |A) =
P(A|B)P(B)

P(A)

Statistical description of difference between B =⇒ A and A =⇒ B .

Density formulation

fX |Y =
fY |X fX

fY

Bayesians like to write

(x |y) = (y |x)(x)/(y)

with the parentheses indicating densities and the letters indicating
variables.
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Generalizations

More general formulas arise like

P(ABCD) = P(A|BCD)P(B |CD)P(C |D)P(D)

Also: if A1, . . . ,Ak mutually exclusive and exhaustive then

P(A1|B) =
P(B |A1)P(A1)∑
i P(B |Aj)P(Aj)

Mutually exclusive means pairwise disjoint and exhaustive means

∪k
1Ai = Ω.

The density formula is really analogous since integrals are limits of
sums

fX |Y (x |y) =
fXY (x , y)

fY (y)
=

fY |X (y |x)fX (x)∫
u
fXY (u, y)du

.
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