
STAT 830

Independence, conditional distributions and
modelling

When analyzing data statisticians need to specify a statistical model for
the data. That is, we regard the data as random variables and specify pos-
sible joint distributions for the data. Sometimes the modelling proceeds by
modelling the joint density of the data explicitly. More commonly, however,
modelling amounts to a specification in terms of marginal and conditional
distributions.

We begin by describing independence. Our description is formal, mathe-
matical and precise. It should be said however that the definitions work two
ways. Often we will assume that events or random variables are independent.
We will argue that such an assumption is justified by a lack of causal con-
nection between the events – in such a case knowledge of whether or not one
event happens should not affect the probability the other happens. This is
more subtle than it sounds, though, as we will see when we discuss Bayesian
ideas.

Definition: Events A and B are independent if

P (AB) = P (A)P (B) .

(Notation: we often shorten the notation for intersections by omitting the
intersection sign. ThusAB is the event that both A and B happen, which is
also written A ∩B.)

Definition: A sequence of events Ai, i = 1, . . . , p are independent if

P (Ai1 · · ·Air) =
r∏
j=1

P (Aij)

for any 1 ≤ i1 < · · · < ir ≤ p.

Example: If we have p = 3 independent events then the following equations
hold:

P (A1A2A3) = P (A1)P (A2)P (A3)

P (A1A2) = P (A1)P (A2)

P (A1A3) = P (A1)P (A3)

P (A2A3) = P (A2)P (A3)
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All these equations are needed for independence! If you have 4 events there
are 11 equations; for general p there are 2p − p− 1.

Example: Here is a small example to illustrate the fact that all these equa-
tions are really needed. In the example there are three events any two of
which are independent but where it is not true that all three are indepen-
dent. Toss a fair coin twice and define the following events.

A1 = {first toss is a Head}
A2 = {second toss is a Head}
A3 = {first toss and second toss different}

Then P (Ai) = 1/2 for each i and for i 6= j

P (Ai ∩ Aj) =
1

4

but
P (A1 ∩ A2 ∩ A3) = 0 6= P (A1)P (A2)P (A3) .

Definition: We say that two random variables X and Y are independent
if

P (X ∈ A;Y ∈ B) = P (X ∈ A)P (Y ∈ B)

for all A and B.

Definition: We say that a set of random variables X1, . . . , Xp are indepen-
dent if, for any A1, . . . , Ap, we have

P (X1 ∈ A1, · · · , Xp ∈ Ap) =

p∏
i=1

P (Xi ∈ Ai).

Theorem 1 1. If X ∈ Rp and Y ∈ Rq are independent then for all x, y

FX,Y (x, y) = FX(x)FY (y) .

2. If X ∈ Rp and Y ∈ Rq are independent with joint density fX,Y (x, y)
then X and Y have densities fX and fY , and (for almost all, in the
sense of Lebesgue measure) x and y we have

fX,Y (x, y) = fX(x)fY (y) .

2



3. If X and Y independent with marginal densities fX and fY then (X, Y )
has a joint density given by

fX,Y (x, y) = fX(x)fY (y) .

4. If FX,Y (x, y) = FX(x)FY (y) for all x, y then X and Y are independent.

5. If (X, Y ) has joint density f(x, y) and there exist g(x) and h(y) st
f(x, y) = g(x)h(y) for (almost) all (x, y) then X and Y are independent
with densities given by

fX(x) = g(x)/

∫ ∞
−∞

g(u)du

fY (y) = h(y)/

∫ ∞
−∞

h(u)du .

6. If the pair (X, Y ) is discrete with joint probability mass function f(x, y)
and there exist functions g(x) and h(y) such that f(x, y) = g(x)h(y) for
all (x, y) then X and Y are independent with probability mass functions
given by

fX(x) = g(x)/
∑
u

g(u)

and
fY (y) = h(y)/

∑
u

h(u) .

Proof: Some of these assertions are quite technical – primarily those involv-
ing densities. My class notes provide only the direct proofs. Here I give more
detailed proofs but note that they are based on ideas which are not really
part of the course most years.

1. Since X and Y are independent so are the events X ≤ x and Y ≤ y;
hence

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) .

2. It is notationally simpler to suppose X and Y real valued. General
dimensions are not really much harder, however. In assignment 2 I
ask you to show that existence of the joint density fX,Y implies the
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existence of marginal densities fX and fY . Since X, Y have a joint
density, we have, for any sets A and B

P (X ∈ A, Y ∈ B) =

∫
A

∫
B

fX,Y (x, y)dydx

P (X ∈ A)P (Y ∈ B) =

∫
A

fX(x)dx

∫
B

fY (y)dy

=

∫
A

∫
B

fX(x)fY (y)dydx .

Since P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)∫
A

∫
B

[fX,Y (x, y)− fX(x)fY (y)]dydx = 0 .

It follows (using ideas from measure theory) that the quantity in [] is
0 for almost every pair (x, y).

3. For any A and B we have

P (X ∈ A, Y ∈B)

= P (X ∈ A)P (Y ∈ B)

=

∫
A

fX(x)dx

∫
B

fY (y)dy

=

∫
A

∫
B

fX(x)fY (y)dydx .

If we define g(x, y) = fX(x)fY (y) then we have proved that for C =
A×B (the Cartesian product of A and B)

P ((X, Y ) ∈ C) =

∫
C

g(x, y)dydx .

To prove that g is fX,Y we need only prove that this integral formula
is valid for an arbitrary Borel set C, not just a rectangle A×B.

This is proved via a monotone class argument. The collection of sets
C for which identity holds has closure properties which guarantee that
this collection includes the Borel sets. Here are some details.
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Definition: A collectionM of subsets of some set E is called a mono-
tone class if, whenever A1, A2, . . . all belong to M and either

A1 ⊆ A2 ⊆ · · ·

or
A1 ⊇ A2 ⊇ · · ·

then, in the first case,
∪∞i=1Ai ∈M

and, in the second case,
∩∞i=1Ai ∈M.

Definition: A collection F of subsets of some set E is called a field if:

∅ ∈ F
A ∈ F =⇒ Ac ∈ F

A1, . . . , Ap ∈ F =⇒ ∪pi=1Ai ∈ F .

This definition is simply the definition of a σ field but with the weaker
requirement of closure under finite rather than countable unions.

Lemma 1 The smallest monotone class containing a field F is the
smallest σ-field containing F .

Proof: The power set of E (the collection of all subsets of E) is both
a σ-field and a monotone class containing F . By “smallest” σ-field
containing F we mean the intersection of all σ-fields containing F ; the
previous sentence says this is not an empty intersection. The meaning
of “smallest” monotone class is analogous. Let H denote the smallest
σ-field and M the smallest monotone class containing F .

Any σ field containing F is a monotone class so the smallest monotone
class containing F is a subset of the smallest σ-field containing F .
That is, H ⊇ M. It remains to prove the other direction. Let G be
the collection of all sets A ∈ M such that Ac ∈ M. If A ∈ calF then
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Ac ∈ F so G includes F . If A1 ⊆ A2 ⊆ · · · are all sets in G ⊆ M then
A ≡ ∪nAn ∈M. On the other hand

Ac1 ⊇ Ac2 ⊇ · · ·

are all sets in M. Since M is a monotone class we must have

∩nAcn ∈M

but ∩nAcn = Ac so Ac ∈ M. That is, G is closed under monotone
increasing unions (one of the two properties of a monotone class.

Similarly if
A1 ⊇ A2 ⊇ · · ·

are all sets in G then A ≡ ∩nAn ∈M and

Ac1 ⊆ Ac2 ⊆ · · ·

are all sets in M. Since M is a monotone class we must have

∪nAcn ∈M.

But ∪nAcn = Ac so Ac ∈ M. Again we see that G is closed under
monotone decreasing unions. Thus G is a monotone class containing
F . Since it was defined by taking only sets from M we must have
G =M. That is:

A ∈M =⇒ Ac ∈M.

Next I am going to show thatM is closed under countable unions, that
is, if A1, A2, . . . are all in M then so is their union. (Notice that this
union might not be a monotone union.) If I can establish this assertion
then I will have proved that M is a σ-field containing F so M ⊇ H.
This would finish the proof that M = H.

First fix a B ∈ F and let now G be the collection of all A ∈ M such
that A ∪ B ∈ M. Just as in the previous part of the argument prove
that this new G is a monotone class containing F . This shows G =M
and that for every A ∈ M and every B ∈ F we have A ∪ B ∈ M.
Now let G be the collection of all B ∈ M such that for all A ∈ M we
have A ∪ B ∈ M. Again G contains F . Check that this third G is a
monotone class and deduce that for every A ∈ M and every B ∈ M
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we have A ∪ B ∈ M. In other words: M is closed under finite unions
(by induction on the number of sets in the union).

We have now proved that M is a field and a monotone class. If
A1, A2, . . . are all in M define Bn = ∪ni=1Ai. Then

(a) B1 ⊆ B2 ⊆ · · · .
(b) Each Bi ∈M.

(c) A ≡ ∪nAn = ∪nBn

Since M is a monotone class this last union must be in M. That is
∪nAn ∈M. This proves M is a σ-field. •

4. Another monotone class argument.

5.

P (X ∈ A, Y ∈ B) =

∫
A

∫
B

g(x)h(y)dydx

=

∫
A

g(x)dx

∫
B

h(y)dy .

Take B = R1 to see that

P (X ∈ A) = c1

∫
A

g(x)dx

where c1 =
∫
h(y)dy. So c1g is the density ofX. Since

∫ ∫
fX,Y (xy)dxdy =

1 we see that
∫
g(x)dx

∫
h(y)dy = 1 so that c1 = 1/

∫
g(x)dx. A similar

argument works for Y .

6. The discrete case is easier.

Our next theorem asserts something students think is nearly obvious. It
is proved by another monotone class argument but the proof is less important
than the meaning. The idea is that if U , V , W , X, Y and Z are independent
then, for instance U/V , W +X and Y eZ are independent.

Theorem 2 If X1, . . . , Xp are independent and Yi = gi(Xi) then Y1, . . . , Yp
are independent. Moreover, (X1, . . . , Xq) and (Xq+1, . . . , Xp) are indepen-
dent. Similarly X1, . . . , Xq1, Xq1+1, . . . , Xq2 and so on are independent (pro-
vided q1 < q2 < · · · ).
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Example: Suppose X and Y are independent standard exponential random
variables. That is, X and Y have joint density

fX,Y (x, y) = e−x1(x > 0)e−y1y > 0.

Let
U = min{X, Y } and W = max{X, Y }

I will find the joint cdf and joint density of U and W . Begin by considering
the event {U ≤ u,W ≤ w}. If u ≤ 0 or w ≤ 0 then the probability is 0 so
now assume u > 0 and w > 0. We then have

{U ≤ u,W ≤ w} = {min{X, Y } ≤ u,max{X, Y } −min{X, Y } ≤ w}
= {min{X, Y } ≤ u,max{X, Y } −min{X, Y } ≤ w,X < Y }
∪ {min{X, Y } ≤ u,max{X, Y } −min{X, Y } ≤ w,X > Y }
∪ {min{X, Y } ≤ u,max{X, Y } −min{X, Y } ≤ w,X = Y }

The first of these three events is

{X ≤ u,X < Y ≤ X + w}

while the second is
{Y ≤ u, Y < X ≤ Y + w}.

The third event is a subset of {X = Y } which has probability 0. Thus

FU,W (u,w) = P (X ≤ u,X < Y ≤ X + w) + P (Y ≤ u, Y < X ≤ Y + w).

Since X and Y are independent and have the same distribution the two
probabilities on the right hand side are equal and we compute only the first.
To do so we integrate the joint density of the random variables over the set

{(x, y) : 0 < x ≤ u, x < y < x+ w}.

The second restriction makes it natural to integrate in the y direction first
then in the x direction second. We get

P (X ≤ u,X < Y ≤ X + w) =

∫ u

0

∫ x+w

x

e−xe−y dy dx.

The inside integral is just

e−x
(
e−x − e−(x+w)

)
= e−2x

(
1− e−w

)
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so

P (X ≤ u,X < Y ≤ X+w) =
(
1− e−w

) ∫ u

0

e−2x dx =
(
1− e−w

) (
1− e−2u

)
/2.

Assembling the results we get

FU,W (u,w) =

{
(1− e−w) (1− e−2u) u,w > 0

0 otherwise.

This function can be rewritten using indicators

FU,W (u,w) =
(
1− e−w

)
1(w > 0)

(
1− e−2u

)
1(u > 0).

This evidently factors as the product FU(u)FW (w) where

FU(u) =
(
1− e−2u

)
1(u > 0)

FW (w) =
(
1− e−w

)
1(w > 0).

Thus we find U ⊥⊥ W and that U has an exponential distribution with mean
1/2 while W has an exponential distribution with mean 1.

Conditional probability

The interpretation of probability as long run relative frequency motivates the
following definitions of conditional probability. Suppose we have an experi-
ment in which two events A and B are defined and suppose that P (B) > 0.
Imagine an infinite sequence of independent repetitions of the experiment.
Amongst the first n repetitions there must be close to nP (B) occasions where
event B occurs in the sense that the ratio number of occurrences divided by
n gets close to (B). That is

# Bs in first n trials

n
→ P (B).

Also
# times both A and B occur in first n trials

n
→ P (AB).

So if we just pick out of the first n trials those trials where B occur and then
see what fraction of these also have A occurring we get

# times both A and B occur in first n trials

# Bs in first n trials
→ P (AB

P (B)
.
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This leads to our basic definition.

Definition: We define the conditional probability of an event A given an
event B with P (B) > 0 by

P (A|B) = P (AB)/P (B).

Definition: For discrete random variables X and Y the conditional proba-
bility mass function of Y given X is

fY |X(y|x) = P (Y = y|X = x)

= fX,Y (x, y)/fX(x)

= fX,Y (x, y)/
∑
t

fX,Y (x, t)

For an absolutely continuous random variable X we have P (X = x) = 0
for all x. So what is P (A|X = x) or fY |X(y|x) since we may not divide by
0? As is usual in mathematics we define the ratio 0/0 by taking a suitable
limit:

P (A|X = x) = lim
δx→0

P (A|x ≤ X ≤ x+ δx)

If, e.g., X, Y have joint density fX,Y then with A = {Y ≤ y} we have

P (A|x ≤ X ≤ x+ δx)

=
P (A ∩ {x ≤ X ≤ x+ δx})

P (x ≤ X ≤ x+ δx)

=

∫ y
−∞

∫ x+δx
x

fX,Y (u, v)dudv∫ x+δx
x

fX(u)du

Divide the top and bottom by δx and let δx→ 0. The denominator converges
to fX(x); the numerator converges to∫ y

−∞
fX,Y (x, v)dv

We now define the conditional cumulative distribution function of Y given
X = x by

P (Y ≤ y|X = x) =

∫ y
−∞ fX,Y (x, v)dv

fX(x)

10



If we differentiate this formula by y we get the undergraduate definition of
the conditional density of Y given X = x, namely,

fY |X(y|x) = fX,Y (x, y)/fX(x) ;

in words we find “conditional = joint/marginal”.

Example: The 3 cards problem revisited. This is the problem where we
have 3 cards – red on both sides, green on both sides and red on one / green
on the other. We draw a card and see the colour on the side which is face
up. Suppose we see Red. What is the chance the side face down is Red?

Students sometimes think the answer is 1/2. They say: either I am
looking at the all red card or the red/green card. These are equally likely
so this conditional probability is 1/2. This is wrong – the two cards are not
equally likely given that the side facing up is Red.

To see this clearly we should go back to the basics. Let A be the event
that we see a red side. In terms of the elementary outcomes in the example
at the start of Chapter 2 we have

A = {ω1, ω2, ω3}.

Let B be the event that the side face down is red. Then

B = {ω1, ω2, ω4}.

We then have

P (B|A) =
P (AB)

P (A)
=

2/6

3/6
=

2

3
.

It is also possible to do this more intuitively but to do so you have to be
careful. You are conditioning on the event that you are looking at 1 of the 3
red sides – all equally likely. Of these three sides two have the property that
the other side is red. That makes the conditional probability 2/3.

Bayes Theorem

The definition of conditional probability shows that if P (A) > 0 and P (B) >
0 then we have

P (AB) = P (A|B)P (B) = P (B|A)P (A).

The crucial point about this observation is that one formula conditions on B
and the other on A. Bayes theorem just rewrites this formula to emphasize
the change in order of conditioning:
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Theorem 3 If A and B are two events with P (A) > 0 and P (B) > 0 then

P (B|A) =
P (A|B)P (B)

P (A)

It seems to me to be useful to relate this to some reasoning ideas. If a
certain statement P implies a statement Q then Q is always true whenever
P is true. Of course if Q is not true then neither is P . That is, the statement
“not Q” implies the statement “not P”. In terms of probabilities the analogy
is that if P (B|A) = 1 then P (Ac|Bc) = 1 (assuming that P (Bc) 6= 0). This
follows from

P (Ac|Bc) =
P (AcBc)

P (Bc)

=
1− P (A ∪B)

P (Bc)

=
1− P (A)− P (B) + P (B|A)P (A)

1− P (B)

=
1− P (A)− P (B) + P (A)

1− P (B)

=
1− P (B)

1− P (B)
= 1.

It is NOT a theorem of logic that if P implies Q then Q implies P . But
there is a sense in which if P usually happens and usually when P happens
so does Q then Q usually happens and when Q happens usually P does too.
Let’s look at the formula with statements P and Q replaced by events A and
B. Imagine that P is “A happens” and Q is “B happens”.

Then
P (B|A)P (A) = P (A|B)P (B)

so if both terms on the left are nearly 1 (”usually happens”) then both terms
on the right must be nearly 1 (because if either were small the product would
be too small to equal the thing on the left which is nearly 1).

The idea underlying Bayes’ Theorem can be translated into the language
of conditional densities:

fX|Y =
fY |XfX
fY
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Nowadays Bayesians like to write

(x|y) = (y|x)(x)/(y)

with the parentheses indicating densities and the letters indicating variables.
This notation uses the letter in the argument of a function to indicate which
function is being discussed and is at least a bit dangerous since

(1|2) = (2|1)(1)/(2)

doesn’t really tell you which variables are under discussion even though it a
special case of the formula above with x = 1 and y = 2.

More general formulas arise like

P (ABCD) = P (A|BCD)P (B|CD)P (C|D)P (D)

This formula can be rewritten in many orders to get a variety of equivalent
expressions which, divided by some of the terms involved give theorems like
that of Bayes. Also, if A1, . . . , Ak are mutually exclusive and exhaustive then

P (A1|B) =
P (B|A1)P (A1)∑
i P (B|Aj)P (Aj)

Bayes theorem is often written in this form. Of course the denominator is
just P (B). I remark that mutually exclusive means pairwise disjoint and
exhaustive means

∪k1Ai = Ω.

The density formula is really analogous to this more general looking version
of Bayes’ theorem since integrals are limits of sums and

fX|Y (x|y) =
fXY (x, y)

fY (y)
=
fY |X(y|x)fX(x)∫
u
fXY (u, y)du

.
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