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Purposes of These Notes

@ Describe hypothesis testing
@ Discuss Type | and Type Il error.

@ Discuss level and power
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Hypothesis Testing

@ Hypothesis testing: a statistical problem where you must choose, on
the basis of data X, between two alternatives.

@ Formalized as problem of choosing between two hypotheses:
H, : 0 € ©g or Hy : 0 € ©1 where ©g and ©; are a partition of the
model Py; 0 € ©.

@ Thatis ©gU©; = O and ©; N O; = 0.
@ A rule for making the required choice can be described in two ways:

@ In terms of rejection or critical region of the test.
R = {X : we choose O if we observe X}

© In terms of a function ¢(x) which is equal to 1 for those x for which we
choose ©1 and 0 for those x for which we choose 9.

=
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Hypothesis Testing

@ Each ¢ corresponds to a unique rejection region Ry = {x : ¢(x) = 1}.
@ Neyman Pearson approach treats two hypotheses asymmetrically.

@ Hypothesis H, referred to as the null hypothesis (traditionally the
hypothesis that some treatment has no effect).
Definition: The power function of a test ¢ (or the corresponding
critical region Ry) is

m(0) = Po(X € Ry) = Eg(4(X))

@ Interested in optimality theory, that is, the problem of finding the

best ¢.

@ A good ¢ will evidently have 7(6) small for § € ©g and large for
0 € 6.

@ There is generally a trade off which can be made in many ways,
however.

=
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Simple versus Simple testing

@ Finding a best test is easiest when the hypotheses are very precise.

@ Definition: A hypothesis H; is simple if ©; contains only a single
value 6;.

@ The simple versus simple testing problem arises when we test 8 = 6
against # = 07 so that © has only two points in it.

@ This problem is of importance as a technical tool, not because it is a
realistic situation.

@ Suppose that the model specifies that if # = 6y then the density of X
is fo(x) and if & = 67 then the density of X is f1(x).

@ How should we choose ¢7?

@ To answer the question we begin by studying the problem of
minimizing the total error probability.

=
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Error Types

@ Type | error: the error made when 6 = 6y but we choose Hy, that is,
X e R¢.

@ Type Il error: when 6 = 61 but we choose Hyp.

@ The level of a simple versus simple test is

a = Py,(We make a Type | error)

o = Pay(X € Ry) = Eny(6(X))

@ Other error probability denoted S is

B = Po, (X & Ry) = Eo, (1 — ¢(X)).
@ Minimize o + (3, the total error probability given by

o+ B = Fgy (6(X)) + Egr (1 - 6(X))
- / [B()f0x) + (1 — G(x)f(x)]dx
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Proof of NP lemma

@ Problem: choose, for each x, either the value 0 or the value 1, in such
a way as to minimize the integral.

@ But for each x the quantity
P(x)fo(x) + (1 = ¢(x))f(x)

is between fo(x) and fi(x).

@ To make it small we take ¢(x) =1 if fi(x) > fo(x) and ¢(x) =0 if
fu(x) < fo(x).

@ It makes no difference what we do for those x for which f(x) = fy(x).

@ Notice: divide both sides of inequalities to get condition in terms of
likelihood ratio f;(x)/fo(x).
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Bayes procedures, in disguise

Theorem

For each fixed \ the quantity 8 + A« is minimized by any ¢ which has

1 ABES X
é(x) :{ f‘)EX g

NONGY

f1(x
0 5y <A

~—

=
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Neyman-Pearson framework

@ Neyman and Pearson suggested that in practice the two kinds of
errors might well have unequal consequences.

@ Suggestion: pick the more serious kind of error, label it Type I.

@ Require rule to hold probability « of a Type | error to be no more
than some prespecified level ag.

@ «p is typically 0.05, chiefly for historical reasons.

@ Neyman-Pearson approach: minimize 8 subject to the constraint
a < ap.

@ Usually this is really equivalent to the constraint o = ag (because if
you use o < ag you could make R larger and keep a@ < g but make
5 smaller.

@ For discrete models, however, this may not be possible.
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Binomial example: effects of discreteness

e Example: Suppose X is Binomial(n, p) and either p = po = 1/2 or
p=p1 =3/4
@ If R is any critical region (so R is a subset of {0,1,...,n}) then

k
P1/2(X € R) == 2—n

for some integer k.
@ Example: to get ag = 0.05 with n = 5: possible values of « are
0,1/32 = 0.03125,2/32 = 0.0625, etc.
@ Possible rejection regions for aig = 0.05:
Region Q@ 153
Ri=10 0 1
Ry ={x=0} 0.03125 1-—(1/4)
Ry = {x =5} 0.03125 1-—(3/4)°
@ So R3 minimizes 3 subject to o < 0.05.
@ Raise ag slightly to 0.0625: possible rejection regions are Ry, R», :
and Ry = Ry U R3. =7
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Discreteness, test functions

First three have same o and 3 as before while R4 has
a=ag=0.0625an 3 =1—(3/4)° — (1/4)°.

Thus Ry is optimal!

Problem: if all trials are failures “optimal” R chooses p = 3/4 rather
than p=1/2.

But: p =1/2 makes 5 failures much more likely than p = 3/4.
Problem is discreteness. Solution:

Expand set of possible values of ¢ to [0, 1].

Values of ¢(x) between 0 and 1 represent the chance that we choose
Hi given that we observe x; the idea is that we actually toss a
(biased) coin to decide!

This tactic will show us the kinds of rejection regions which are
sensible.

In practice: restrict our attention to levels ag for which best ¢ is
always either 0 or 1.

In the binomial example we will insist that the value of ag be eithe
or Ppy(X >5) or Py, (X >4)or.... =
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Binomial example: n =3

@ 4 possible values of X and 2% possible rejection regions.

@ Table of levels for each possible rejection region R:

R « R o
0 0 {3}, {0} 1/8
{0,3} 2/8 {1} {2} 3/8
{0,1}, {0,2}, {1,3}, {2,3} 4/8 || {0,1,3}, {0,2,3} 5/8
{1,2} 6/8 | {0,1,2}, {1,23} 7/8
{0,1,2,3} 1

@ Best level 2/8 test has rejection region {0, 3},
B=1-[(3/4)®+ (1/4)%] = 36/64.

@ Best level 2/8 test using randomization rejects when X = 3 and,
when X = 2 tosses a coin with P(H) = 1/3, then rejects if you get H.

o Level is 1/8 + (1/3)(3/8) = 2/8; probability of Type Il error is
B=1-1(3/4)°+(1/3)(3)(3/4)*(1/4)] = 28/64.
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Test functions

o Definition: A hypothesis test is a function ¢(x) whose values are
always in [0, 1].
o If we observe X = x then we choose H; with conditional probability
O(X).
@ In this case we have
m(0) = Eg(¢(X))
o = Eo(6(X))
and

f=1-E(a(X))

@ Note that a test using a rejection region C is equivalent to

¢(x) =1(x € €)

=
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The Neyman Pearson Lemma

Theorem (Jerzy Neyman, Egon Pearson)

When testing fy vs f1, 8 is minimized, subject to o < cg by:

{1 f(x)/fo(x) > A

P(x) =9 7 flx)/fo(x) =A

0 A(x)/fo(x) <A
where X is the largest constant such that
Po(A(X)/f(X) > \) > ag and Po(A(X)/H(X) < A) > 1 — ao
and where 7y is any number chosen so that
Eo(6(X)) = Po(A(X)/H(X) > A) +7Po(A(X)/H(X) = X) = ao

Value ~ is unique if Po(f1(X)/fo(X) =) > 0.

v

=i’
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Binomial example again
o Example: Binomial(n, p) with pg = 1/2 and p; = 3/4: ratio fi/fy is
3x27"

@ If n =5 this ratio is one of 1, 3, 9, 27, 81, 243 divided by 32.
@ Suppose we have a = 0.05. A must be one of the possible values of

f/fo.
o If we try A = 243/32 then

Po(3%275 >243/32) = Py(X =5)

= 1/32<0.05
and
Po(3%275 >81/32) = Po(X > 4)
= 6/32>0.05
e So \ =81/32.
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Binomial example continued

@ Since
Po(3%27% > 81/32) = Py(X =5) = 1/32

we must solve

for v and find
~0.05-1/32
-~ 5/32

@ NOTE: No-one ever uses this procedure.

=0.12

@ Instead the value of ag used in discrete problems is chosen to be a
possible value of the rejection probability when v =0 (or v = 1).

@ When the sample size is large you can come very close to any desired
ag with a non-randomized test.

=
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Binomial again!

o If &g = 6/32 then we can either take A to be 243/32 and v =1 or
A=281/32 and v =0.

@ However, our definition of X in the theorem makes A\ = 81/32 and
v=0.

@ When the theorem is used for continuous distributions it can be the
case that the cdf of f1(X)/f(X) has a flat spot where it is equal to
1-— Q.

@ This is the point of the word “largest” in the theorem.

o Example: If Xi,...,X, are iid N(u,1) and we have pg =0 and

p1 > 0 then
AXL -2 Xa) 2 2
f(Xt - Xn) Xi = npy/2 — Xi 2
fo(X1, ..., Xn) expim Z npi/ Moz + nug/2}

which simplifies to

exp{p1 Z Xi — nu3/2}
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Normal, one tailed test for mean

@ Now choose ) so that
Po(exp{u1 ZX,- —nu2/2} > A\ =g

@ Can make it equal because f1(X)/f(X) has a continuous distribution.

@ Rewrite probability as

log(\) + npi/2
/2y

Po(Y2 X > llog3) + i 21/ ) =1
o Let z, be upper « critical point of N(0,1); then

Zag = [log(\) + 3 /2]/[n"/? 1] .

@ Solve to get a formula for X in terms of z,,, n and p;.

Richard Lockhart (Simon Fraser University) STAT 830 Hypothesis Testing STAT 830 — Fall 2013 18 / 30




Simplifying rejection regions

Rejection region looks complicated: reject if a complicated statistic is
larger than A which has a complicated formula.

(]

But in calculating \ we re-expressed the rejection region in terms of

> Xi
Vvn
The key feature is that this rejection region is the same for any
w1 > 0.
WARNING: in the algebra above | used pg > 0.

This is why the Neyman Pearson lemma is a lemmal!

> Za,

(]

=
=
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Back to basics

@ Definition: In the general problem of testing ©g against ©; the level
of a test function ¢ is

a = sup Ep(¢(X))
6€©g

@ The power function is
m(0) = Eg(¢(X))

@ A test ¢* is a Uniformly Most Powerful level aq test if

Q ¢* has level a < a,
Q If ¢ has level a < g then for every § € ©1 we have

Eg((X)) < Eo(¢"(X))

Richard Lockhart (Simon Fraser University) STAT 830 Hypothesis Testing STAT 830 — Fall 2013 20 / 30



Proof of Neyman Pearson lemma

o Given a test ¢ with level strictly less than ag define test

_].—Ozo

¢ (x) = ¢(x) +

11—«

ag —

l1—a
which has level g and 8 smaller than that of ¢.

@ Hence we may assume without loss that a = «g and minimize 3
subject to a = «yp.

@ However, the argument which follows doesn’t actually need this.

s
=
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Lagrange Multipliers

@ Suppose you want to minimize f(x) subject to g(x) = 0.
@ Consider first the function

ha(x) = f(x) + Ag(x)
@ If x, minimizes hy then for any other x
f(xn) < f(x) + Alg(x) — g(x\)]

@ Suppose you find X such that solution x) has g(x)) = 0.
@ Then for any x we have

f(xa) < f(x) + Ag(x)
and for any x satisfying the constraint g(x) = 0 we have
f(xr) < f(x)

@ So for this value of A quantity x) minimizes f(x) subject to g(x) =0._
@ To find x, set usual partial derivatives to 0; then to find the specia
x) you add in the condition g(x)) = 0. =7
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Return to proof of NP lemma

@ For each A > 0 we have seen that ¢, minimizes Aa 4+ 3 where
ox = L(fi(x)/fo(x) = A).

@ As X increases the level of ¢ decreases from 1 when A =0 to 0 when
A= .

@ There is thus a value Ag where for A > A\g the level is less than ag
while for A < Ag the level is at least ag.

@ Temporarily let 6 = Po(f(X)/f(X) = Ao).

o If 6 = 0 define ¢ = ¢».

@ If 6 > 0 define

1 ?(i) > )\0

— ngXg =\
#(x) Y fOEXg 0
0 469 <o

where Py(f(X)/f(X) > Ao) + 76 = ap.
@ You can check that v € [0, 1].
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End of NP proof
@ Now ¢ has level ap and according to the theorem above minimizes
Moo + .
@ Suppose ¢* is some other test with level o < «g.

@ Then
)\004¢ + ,3¢ < A0a¢* —+ /8¢*

@ We can rearrange this as
Bor 2 By + (g — ag=)do

@ Since
A S ap = gy

the second term is non-negative and

Bgx > By

which proves the Neyman Pearson Lemma.
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NP applied to Binomial(n, p)

@ Binomial(n, p) model: test p = py versus p; for a p1 > po
@ NP test is of the form

d(x) = 1(X > k) +~v1(X = k)
where we choose k so that
Ppo(X > k) < ag < Ppy(X > k)
and v € [0,1) so that
ag = Ppy (X > k) +yPp (X = k)

@ This rejection region depends only on py and not on p; so that this
test is UMP for p = pg against p > po.

@ Since this test has level ag even for the larger null hypothesis it is alg
UMP for p < pp against p > pg.

=
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NP lemma applied to N(u, 1) model

@ In the N(u,1) model consider ©1 = {u > 0} and ©¢ = {0} or
©o = {u < 0}.
o UMP level ag test of Hy : 1 € ©q against H; : u € ©1 is
O(X1,. . Xp) = 102X > z4,)

@ Proof: For either choice of ©g this test has level ag because for
© < 0 we have

= Pu(n"?(X = 1) > zay — n'/p1)
= P(N(0,1) > zo, — n*/?1)

< P(N(0,1) > z4,)

= ag

@ Notice the use of p < 0.
@ Central point: critical point is determined by behaviour on edge of \&;
null hypothesis. =
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Normal example continued
@ Now if ¢ is any other level oy test then we have
Eo(o(X1,...,Xn)) < ao

o Fixapu>0.
@ According to the NP lemma

Eu(o(X1,. ., X)) < Eu(ou(Xi, ..., Xn))
where ¢,, rejects if
fu(Xe, s Xa)/fo(Xe, oo, Xa) > A
for a suitable A.
@ But we just checked that this test had a rejection region of the form
nt2X > z,,
which is the rejection region of ¢*.
@ The NP lemma produces the same test for every i > 0 chosen as ag-

alternative.
@ So we have shown that ¢, = ¢* for any ;. > 0. =
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Monotone likelihood ratio

o Fairly general phenomenon: for any 11 > 119 the likelihood ratio f,/f;
is an increasing function of > X;.

@ So rejection region of NP test always region of form > X; > k.

@ Value of k determined by requirement that test have level «g; this
depends on g not on .

o Definition: The family fy; 8 € © C R has monotone likelihood ratio
with respect to a statistic T(X) if for each 61 > 6 the likelihood
ratio fy,(X)/fp,(X) is a monotone increasing function of T(X).

=
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Monotone likelihood ratio

Theorem

For a monotone likelihood ratio family the Uniformly Most Powerful level
a test of O < Oy (or of O = 6y) against the alternative 6 > g is

1 T(x) >ty
dx)=q 7 T(X)=ta
0 T(x) <ty

where
P@O(T(X) > ta) -+ ’YPQO(T(X) = ta) =qQp.
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Two tailed tests — no UMP possible

Typical family where this works: one parameter exponential family.
Usually there is no UMP test.

Example: test p = g against two sided alternative p # .

There is no UMP level « test.

If there were its power at p > po would have to be as high as that of
the one sided level a test and so its rejection region would have to be
the same as that test, rejecting for large positive values of X — pg.

@ But it also has to have power as good as the one sided test for the
alternative p < g and so would have to reject for large negative
values of X — po.

@ This would make its level too large.

o Favourite test: usual 2 sided test rejects for large values of |X — .

@ Test maximizes power subject to two constraints: first, level «;
second power is minimized at p = pp.

@ Second condition means power on alternative is larger than on the
null.
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