STAT 830
 Hypothesis Testing

Richard Lockhart

Simon Fraser University
STAT 830 - Fall 2013

Purposes of These Notes

- Describe hypothesis testing
- Discuss Type I and Type II error.
- Discuss level and power

Hypothesis Testing

- Hypothesis testing: a statistical problem where you must choose, on the basis of data X, between two alternatives.
- Formalized as problem of choosing between two hypotheses: $H_{0}: \theta \in \Theta_{0}$ or $H_{1}: \theta \in \Theta_{1}$ where Θ_{0} and Θ_{1} are a partition of the model $P_{\theta} ; \theta \in \Theta$.
- That is $\Theta_{0} \cup \Theta_{1}=\Theta$ and $\Theta_{0} \cap \Theta_{1}=\emptyset$.
- A rule for making the required choice can be described in two ways:
(1) In terms of rejection or critical region of the test.

$$
R=\left\{X: \text { we choose } \Theta_{1} \text { if we observe } X\right\}
$$

(2) In terms of a function $\phi(x)$ which is equal to 1 for those x for which we choose Θ_{1} and 0 for those x for which we choose Θ_{0}.

Hypothesis Testing

- Each ϕ corresponds to a unique rejection region $R_{\phi}=\{x: \phi(x)=1\}$.
- Neyman Pearson approach treats two hypotheses asymmetrically.
- Hypothesis H_{o} referred to as the null hypothesis (traditionally the hypothesis that some treatment has no effect).
Definition: The power function of a test ϕ (or the corresponding critical region R_{ϕ}) is

$$
\pi(\theta)=P_{\theta}\left(X \in R_{\phi}\right)=E_{\theta}(\phi(X))
$$

- Interested in optimality theory, that is, the problem of finding the best ϕ.
- A good ϕ will evidently have $\pi(\theta)$ small for $\theta \in \Theta_{0}$ and large for $\theta \in \Theta_{1}$.
- There is generally a trade off which can be made in many ways, however.

Simple versus Simple testing

- Finding a best test is easiest when the hypotheses are very precise.
- Definition: A hypothesis H_{i} is simple if Θ_{i} contains only a single value θ_{i}.
- The simple versus simple testing problem arises when we test $\theta=\theta_{0}$ against $\theta=\theta_{1}$ so that Θ has only two points in it.
- This problem is of importance as a technical tool, not because it is a realistic situation.
- Suppose that the model specifies that if $\theta=\theta_{0}$ then the density of X is $f_{0}(x)$ and if $\theta=\theta_{1}$ then the density of X is $f_{1}(x)$.
- How should we choose ϕ ?
- To answer the question we begin by studying the problem of minimizing the total error probability.

Error Types

- Type I error: the error made when $\theta=\theta_{0}$ but we choose H_{1}, that is, $X \in R_{\phi}$.
- Type II error: when $\theta=\theta_{1}$ but we choose H_{0}.
- The level of a simple versus simple test is

$$
\alpha=P_{\theta_{0}}(\text { We make a Type I error })
$$

or

$$
\alpha=P_{\theta_{0}}\left(X \in R_{\phi}\right)=E_{\theta_{0}}(\phi(X))
$$

- Other error probability denoted β is

$$
\beta=P_{\theta_{1}}\left(X \notin R_{\phi}\right)=E_{\theta_{1}}(1-\phi(X)) .
$$

- Minimize $\alpha+\beta$, the total error probability given by

$$
\begin{aligned}
\alpha+\beta & =\mathrm{E}_{\theta_{0}}(\phi(X))+\mathrm{E}_{\theta_{1}}(1-\phi(X)) \\
& =\int\left[\phi(x) f_{0}(x)+(1-\phi(x)) f_{1}(x)\right] d x
\end{aligned}
$$

Proof of NP lemma

- Problem: choose, for each x, either the value 0 or the value 1 , in such a way as to minimize the integral.
- But for each x the quantity

$$
\phi(x) f_{0}(x)+(1-\phi(x)) f_{1}(x)
$$

is between $f_{0}(x)$ and $f_{1}(x)$.

- To make it small we take $\phi(x)=1$ if $f_{1}(x)>f_{0}(x)$ and $\phi(x)=0$ if $f_{1}(x)<f_{0}(x)$.
- It makes no difference what we do for those x for which $f_{1}(x)=f_{0}(x)$.
- Notice: divide both sides of inequalities to get condition in terms of likelihood ratio $f_{1}(x) / f_{0}(x)$.

Bayes procedures, in disguise

Theorem
For each fixed λ the quantity $\beta+\lambda \alpha$ is minimized by any ϕ which has

$$
\phi(x)= \begin{cases}1 & \frac{f_{1}(x)}{f_{0}(x)}>\lambda \\ 0 & \frac{f_{1}(x)}{f_{0}(x)}<\lambda\end{cases}
$$

Neyman-Pearson framework

- Neyman and Pearson suggested that in practice the two kinds of errors might well have unequal consequences.
- Suggestion: pick the more serious kind of error, label it Type I.
- Require rule to hold probability α of a Type I error to be no more than some prespecified level α_{0}.
- α_{0} is typically 0.05 , chiefly for historical reasons.
- Neyman-Pearson approach: minimize β subject to the constraint $\alpha \leq \alpha_{0}$.
- Usually this is really equivalent to the constraint $\alpha=\alpha_{0}$ (because if you use $\alpha<\alpha_{0}$ you could make R larger and keep $\alpha \leq \alpha_{0}$ but make β smaller.
- For discrete models, however, this may not be possible.

Binomial example: effects of discreteness

- Example: Suppose X is $\operatorname{Binomial}(n, p)$ and either $p=p_{0}=1 / 2$ or $p=p_{1}=3 / 4$.
- If R is any critical region (so R is a subset of $\{0,1, \ldots, n\}$) then

$$
P_{1 / 2}(X \in R)=\frac{k}{2^{n}}
$$

for some integer k.

- Example: to get $\alpha_{0}=0.05$ with $n=5$: possible values of α are $0,1 / 32=0.03125,2 / 32=0.0625$, etc.
- Possible rejection regions for $\alpha_{0}=0.05$:

$$
\begin{array}{ccc}
\text { Region } & \alpha & \beta \\
R_{1}=\emptyset & 0 & 1 \\
R_{2}=\{x=0\} & 0.03125 & 1-(1 / 4)^{5} \\
R_{3}=\{x=5\} & 0.03125 & 1-(3 / 4)^{5}
\end{array}
$$

- So R_{3} minimizes β subject to $\alpha<0.05$.
- Raise α_{0} slightly to 0.0625 : possible rejection regions are R_{1}, R_{2}, and $R_{4}=R_{2} \cup R_{3}$.

Discreteness, test functions

- First three have same α and β as before while R_{4} has

$$
\alpha=\alpha_{0}=0.0625 \text { an } \beta=1-(3 / 4)^{5}-(1 / 4)^{5}
$$

- Thus R_{4} is optimal!
- Problem: if all trials are failures "optimal" R chooses $p=3 / 4$ rather than $p=1 / 2$.
- But: $p=1 / 2$ makes 5 failures much more likely than $p=3 / 4$.
- Problem is discreteness. Solution:
- Expand set of possible values of ϕ to $[0,1]$.
- Values of $\phi(x)$ between 0 and 1 represent the chance that we choose H_{1} given that we observe x; the idea is that we actually toss a (biased) coin to decide!
- This tactic will show us the kinds of rejection regions which are sensible.
- In practice: restrict our attention to levels α_{0} for which best ϕ is always either 0 or 1 .
- In the binomial example we will insist that the value of α_{0} be either or $P_{\theta_{0}}(X \geq 5)$ or $P_{\theta_{0}}(X \geq 4)$ or \ldots

Binomial example: $n=3$

- 4 possible values of X and 2^{4} possible rejection regions.
- Table of levels for each possible rejection region R :

R	α	R	α
\emptyset	0	$\{3\},\{0\}$	$1 / 8$
$\{0,3\}$	$2 / 8$	$\{1\},\{2\}$	$3 / 8$
$\{0,1\},\{0,2\},\{1,3\},\{2,3\}$	$4 / 8$	$\{0,1,3\},\{0,2,3\}$	$5 / 8$
$\{1,2\}$	$6 / 8$	$\{0,1,2\},\{1,2,3\}$	$7 / 8$
$\{0,1,2,3\}$	1		

- Best level $2 / 8$ test has rejection region $\{0,3\}$,

$$
\beta=1-\left[(3 / 4)^{3}+(1 / 4)^{3}\right]=36 / 64 .
$$

- Best level $2 / 8$ test using randomization rejects when $X=3$ and, when $X=2$ tosses a coin with $P(H)=1 / 3$, then rejects if you get H .
- Level is $1 / 8+(1 / 3)(3 / 8)=2 / 8$; probability of Type II error is $\beta=1-\left[(3 / 4)^{3}+(1 / 3)(3)(3 / 4)^{2}(1 / 4)\right]=28 / 64$.

Test functions

- Definition: A hypothesis test is a function $\phi(x)$ whose values are always in $[0,1]$.
- If we observe $X=x$ then we choose H_{1} with conditional probability $\phi(X)$.
- In this case we have

$$
\begin{gathered}
\pi(\theta)=E_{\theta}(\phi(X)) \\
\alpha=E_{0}(\phi(X))
\end{gathered}
$$

and

$$
\beta=1-E_{1}(\phi(X))
$$

- Note that a test using a rejection region C is equivalent to

$$
\phi(x)=1(x \in C)
$$

The Neyman Pearson Lemma

Theorem (Jerzy Neyman, Egon Pearson)
When testing f_{0} vs f_{1}, β is minimized, subject to $\alpha \leq \alpha_{0}$ by:

$$
\phi(x)= \begin{cases}1 & f_{1}(x) / f_{0}(x)>\lambda \\ \gamma & f_{1}(x) / f_{0}(x)=\lambda \\ 0 & f_{1}(x) / f_{0}(x)<\lambda\end{cases}
$$

where λ is the largest constant such that

$$
P_{0}\left(f_{1}(X) / f_{0}(X) \geq \lambda\right) \geq \alpha_{0} \text { and } P_{0}\left(f_{1}(X) / f_{0}(X) \leq \lambda\right) \geq 1-\alpha_{0}
$$

and where γ is any number chosen so that

$$
E_{0}(\phi(X))=P_{0}\left(f_{1}(X) / f_{0}(X)>\lambda\right)+\gamma P_{0}\left(f_{1}(X) / f_{0}(X)=\lambda\right)=\alpha_{0}
$$

Value γ is unique if $P_{0}\left(f_{1}(X) / f_{0}(X)=\lambda\right)>0$.

Binomial example again

- Example: $\operatorname{Binomial}(n, p)$ with $p_{0}=1 / 2$ and $p_{1}=3 / 4$: ratio f_{1} / f_{0} is

$$
3^{x} 2^{-n}
$$

- If $n=5$ this ratio is one of $1,3,9,27,81,243$ divided by 32 .
- Suppose we have $\alpha=0.05$. λ must be one of the possible values of f_{1} / f_{0}.
- If we try $\lambda=243 / 32$ then

$$
\begin{aligned}
P_{0}\left(3^{X} 2^{-5} \geq 243 / 32\right) & =P_{0}(X=5) \\
& =1 / 32<0.05
\end{aligned}
$$

and

$$
\begin{aligned}
P_{0}\left(3^{x} 2^{-5} \geq 81 / 32\right) & =P_{0}(X \geq 4) \\
& =6 / 32>0.05
\end{aligned}
$$

- So $\lambda=81 / 32$.

Binomial example continued

- Since

$$
P_{0}\left(3^{X} 2^{-5}>81 / 32\right)=P_{0}(X=5)=1 / 32
$$

we must solve

$$
P_{0}(X=5)+\gamma P_{0}(X=4)=0.05
$$

for γ and find

$$
\gamma=\frac{0.05-1 / 32}{5 / 32}=0.12
$$

- NOTE: No-one ever uses this procedure.
- Instead the value of α_{0} used in discrete problems is chosen to be a possible value of the rejection probability when $\gamma=0$ (or $\gamma=1$).
- When the sample size is large you can come very close to any desired α_{0} with a non-randomized test.

Binomial again!

- If $\alpha_{0}=6 / 32$ then we can either take λ to be $243 / 32$ and $\gamma=1$ or $\lambda=81 / 32$ and $\gamma=0$.
- However, our definition of λ in the theorem makes $\lambda=81 / 32$ and $\gamma=0$.
- When the theorem is used for continuous distributions it can be the case that the cdf of $f_{1}(X) / f_{0}(X)$ has a flat spot where it is equal to $1-\alpha_{0}$.
- This is the point of the word "largest" in the theorem.
- Example: If X_{1}, \ldots, X_{n} are iid $N(\mu, 1)$ and we have $\mu_{0}=0$ and $\mu_{1}>0$ then

$$
\frac{f_{1}\left(X_{1}, \ldots, X_{n}\right)}{f_{0}\left(X_{1}, \ldots, X_{n}\right)}=\exp \left\{\mu_{1} \sum X_{i}-n \mu_{1}^{2} / 2-\mu_{0} \sum X_{i}+n \mu_{0}^{2} / 2\right\}
$$

which simplifies to

$$
\exp \left\{\mu_{1} \sum X_{i}-n \mu_{1}^{2} / 2\right\}
$$

Normal, one tailed test for mean

- Now choose λ so that

$$
P_{0}\left(\exp \left\{\mu_{1} \sum X_{i}-n \mu_{1}^{2} / 2\right\}>\lambda\right)=\alpha_{0}
$$

- Can make it equal because $f_{1}(X) / f_{0}(X)$ has a continuous distribution.
- Rewrite probability as

$$
P_{0}\left(\sum X_{i}>\left[\log (\lambda)+n \mu_{1}^{2} / 2\right] / \mu_{1}\right)=1-\Phi\left(\frac{\log (\lambda)+n \mu_{1}^{2} / 2}{n^{1 / 2} \mu_{1}}\right)
$$

- Let z_{α} be upper α critical point of $N(0,1)$; then

$$
z_{\alpha_{0}}=\left[\log (\lambda)+n \mu_{1}^{2} / 2\right] /\left[n^{1 / 2} \mu_{1}\right] .
$$

- Solve to get a formula for λ in terms of $z_{\alpha_{0}}, n$ and μ_{1}.

Simplifying rejection regions

- Rejection region looks complicated: reject if a complicated statistic is larger than λ which has a complicated formula.
- But in calculating λ we re-expressed the rejection region in terms of

$$
\frac{\sum X_{i}}{\sqrt{n}}>z_{\alpha_{0}}
$$

- The key feature is that this rejection region is the same for any $\mu_{1}>0$.
- WARNING: in the algebra above I used $\mu_{1}>0$.
- This is why the Neyman Pearson lemma is a lemma!

Back to basics

- Definition: In the general problem of testing Θ_{0} against Θ_{1} the level of a test function ϕ is

$$
\alpha=\sup _{\theta \in \Theta_{0}} E_{\theta}(\phi(X))
$$

- The power function is

$$
\pi(\theta)=E_{\theta}(\phi(X))
$$

- A test ϕ^{*} is a Uniformly Most Powerful level α_{0} test if
(1) ϕ^{*} has level $\alpha \leq \alpha_{0}$
(2) If ϕ has level $\alpha \leq \alpha_{0}$ then for every $\theta \in \Theta_{1}$ we have

$$
E_{\theta}(\phi(X)) \leq E_{\theta}\left(\phi^{*}(X)\right)
$$

Proof of Neyman Pearson lemma

- Given a test ϕ with level strictly less than α_{0} define test

$$
\phi^{*}(x)=\frac{1-\alpha_{0}}{1-\alpha} \phi(x)+\frac{\alpha_{0}-\alpha}{1-\alpha}
$$

which has level α_{0} and β smaller than that of ϕ.

- Hence we may assume without loss that $\alpha=\alpha_{0}$ and minimize β subject to $\alpha=\alpha_{0}$.
- However, the argument which follows doesn't actually need this.

Lagrange Multipliers

- Suppose you want to minimize $f(x)$ subject to $g(x)=0$.
- Consider first the function

$$
h_{\lambda}(x)=f(x)+\lambda g(x)
$$

- If x_{λ} minimizes h_{λ} then for any other x

$$
f\left(x_{\lambda}\right) \leq f(x)+\lambda\left[g(x)-g\left(x_{\lambda}\right)\right]
$$

- Suppose you find λ such that solution x_{λ} has $g\left(x_{\lambda}\right)=0$.
- Then for any x we have

$$
f\left(x_{\lambda}\right) \leq f(x)+\lambda g(x)
$$

and for any x satisfying the constraint $g(x)=0$ we have

$$
f\left(x_{\lambda}\right) \leq f(x)
$$

- So for this value of λ quantity x_{λ} minimizes $f(x)$ subject to $g(x)=0$.
- To find x_{λ} set usual partial derivatives to 0 ; then to find the specia x_{λ} you add in the condition $g\left(x_{\lambda}\right)=0$.

Return to proof of NP lemma

- For each $\lambda>0$ we have seen that ϕ_{λ} minimizes $\lambda \alpha+\beta$ where $\phi_{\lambda}=1\left(f_{1}(x) / f_{0}(x) \geq \lambda\right)$.
- As λ increases the level of ϕ_{λ} decreases from 1 when $\lambda=0$ to 0 when $\lambda=\infty$.
- There is thus a value λ_{0} where for $\lambda>\lambda_{0}$ the level is less than α_{0} while for $\lambda<\lambda_{0}$ the level is at least α_{0}.
- Temporarily let $\delta=P_{0}\left(f_{1}(X) / f_{0}(X)=\lambda_{0}\right)$.
- If $\delta=0$ define $\phi=\phi_{\lambda}$.
- If $\delta>0$ define

$$
\phi(x)= \begin{cases}1 & \frac{f_{1}(x)}{f_{0}(x)}>\lambda_{0} \\ \gamma & \frac{f_{1}(x)}{f_{0}(x)}=\lambda_{0} \\ 0 & \frac{f_{1}(x)}{f_{0}(x)}<\lambda_{0}\end{cases}
$$

where $P_{0}\left(f_{1}(X) / f_{0}(X)>\lambda_{0}\right)+\gamma \delta=\alpha_{0}$.

- You can check that $\gamma \in[0,1]$.

End of NP proof

- Now ϕ has level α_{0} and according to the theorem above minimizes $\lambda_{0} \alpha+\beta$.
- Suppose ϕ^{*} is some other test with level $\alpha^{*} \leq \alpha_{0}$.
- Then

$$
\lambda_{0} \alpha_{\phi}+\beta_{\phi} \leq \lambda_{0} \alpha_{\phi^{*}}+\beta_{\phi^{*}}
$$

- We can rearrange this as

$$
\beta_{\phi^{*}} \geq \beta_{\phi}+\left(\alpha_{\phi}-\alpha_{\phi^{*}}\right) \lambda_{0}
$$

- Since

$$
\alpha_{\phi^{*}} \leq \alpha_{0}=\alpha_{\phi}
$$

the second term is non-negative and

$$
\beta_{\phi^{*}} \geq \beta_{\phi}
$$

which proves the Neyman Pearson Lemma.

NP applied to Binomial (n, p)

- Binomial (n, p) model: test $p=p_{0}$ versus p_{1} for a $p_{1}>p_{0}$
- NP test is of the form

$$
\phi(x)=1(X>k)+\gamma 1(X=k)
$$

where we choose k so that

$$
P_{p_{0}}(X>k) \leq \alpha_{0}<P_{p_{0}}(X \geq k)
$$

and $\gamma \in[0,1)$ so that

$$
\alpha_{0}=P_{p_{0}}(X>k)+\gamma P_{p_{0}}(X=k)
$$

- This rejection region depends only on p_{0} and not on p_{1} so that this test is UMP for $p=p_{0}$ against $p>p_{0}$.
- Since this test has level α_{0} even for the larger null hypothesis it is a UMP for $p \leq p_{0}$ against $p>p_{0}$.

NP Iemma applied to $N(\mu, 1)$ model

- In the $N(\mu, 1)$ model consider $\Theta_{1}=\{\mu>0\}$ and $\Theta_{0}=\{0\}$ or $\Theta_{0}=\{\mu \leq 0\}$.
- UMP level α_{0} test of $H_{0}: \mu \in \Theta_{0}$ against $H_{1}: \mu \in \Theta_{1}$ is

$$
\phi\left(X_{1}, \ldots, X_{n}\right)=1\left(n^{1 / 2} \bar{X}>z_{\alpha_{0}}\right)
$$

- Proof: For either choice of Θ_{0} this test has level α_{0} because for $\mu \leq 0$ we have

$$
\begin{aligned}
P_{\mu}\left(n^{1 / 2} \bar{X}\right. & \left.>z_{\alpha_{0}}\right) \\
& =P_{\mu}\left(n^{1 / 2}(\bar{X}-\mu)>z_{\alpha_{0}}-n^{1 / 2} \mu\right) \\
& =P\left(N(0,1)>z_{\alpha_{0}}-n^{1 / 2} \mu\right) \\
& \leq P\left(N(0,1)>z_{\alpha_{0}}\right) \\
& =\alpha_{0}
\end{aligned}
$$

- Notice the use of $\mu \leq 0$.
- Central point: critical point is determined by behaviour on edge of null hypothesis.

Normal example continued

- Now if ϕ is any other level α_{0} test then we have

$$
E_{0}\left(\phi\left(X_{1}, \ldots, X_{n}\right)\right) \leq \alpha_{0}
$$

- Fix a $\mu>0$.
- According to the NP lemma

$$
E_{\mu}\left(\phi\left(X_{1}, \ldots, X_{n}\right)\right) \leq E_{\mu}\left(\phi_{\mu}\left(X_{1}, \ldots, X_{n}\right)\right)
$$

where ϕ_{μ} rejects if

$$
f_{\mu}\left(X_{1}, \ldots, X_{n}\right) / f_{0}\left(X_{1}, \ldots, X_{n}\right)>\lambda
$$

for a suitable λ.

- But we just checked that this test had a rejection region of the form

$$
n^{1 / 2} \bar{X}>z_{\alpha_{0}}
$$

which is the rejection region of ϕ^{*}.

- The NP lemma produces the same test for every $\mu>0$ chosen as an alternative.
- So we have shown that $\phi_{\mu}=\phi^{*}$ for any $\mu>0$.

Monotone likelihood ratio

- Fairly general phenomenon: for any $\mu>\mu_{0}$ the likelihood ratio f_{μ} / f_{0} is an increasing function of $\sum X_{i}$.
- So rejection region of NP test always region of form $\sum X_{i}>k$.
- Value of k determined by requirement that test have level α_{0}; this depends on μ_{0} not on μ_{1}.
- Definition: The family $f_{\theta} ; \theta \in \Theta \subset R$ has monotone likelihood ratio with respect to a statistic $T(X)$ if for each $\theta_{1}>\theta_{0}$ the likelihood ratio $f_{\theta_{1}}(X) / f_{\theta_{0}}(X)$ is a monotone increasing function of $T(X)$.

Monotone likelihood ratio

Theorem

For a monotone likelihood ratio family the Uniformly Most Powerful level α test of $\theta \leq \theta_{0}$ (or of $\theta=\theta_{0}$) against the alternative $\theta>\theta_{0}$ is

$$
\phi(x)= \begin{cases}1 & T(x)>t_{\alpha} \\ \gamma & T(X)=t_{\alpha} \\ 0 & T(x)<t_{\alpha}\end{cases}
$$

where

$$
P_{\theta_{0}}\left(T(X)>t_{\alpha}\right)+\gamma P_{\theta_{0}}\left(T(X)=t_{\alpha}\right)=\alpha_{0} .
$$

Two tailed tests - no UMP possible

- Typical family where this works: one parameter exponential family.
- Usually there is no UMP test.
- Example: test $\mu=\mu_{0}$ against two sided alternative $\mu \neq \mu_{0}$.
- There is no UMP level α test.
- If there were its power at $\mu>\mu_{0}$ would have to be as high as that of the one sided level α test and so its rejection region would have to be the same as that test, rejecting for large positive values of $\bar{X}-\mu_{0}$.
- But it also has to have power as good as the one sided test for the alternative $\mu<\mu_{0}$ and so would have to reject for large negative values of $\bar{X}-\mu_{0}$.
- This would make its level too large.
- Favourite test: usual 2 sided test rejects for large values of $\left|\bar{X}-\mu_{0}\right|$.
- Test maximizes power subject to two constraints: first, level α; second power is minimized at $\mu=\mu_{0}$.
- Second condition means power on alternative is larger than on the null.

