
STAT 830

Hypothesis Testing

Hypothesis testing is a statistical problem where you must choose, on the
basis of data X, between two alternatives. We formalize this as the problem
of choosing between two hypotheses: Ho : θ ∈ Θ0 or H1 : θ ∈ Θ1 where Θ0

and Θ1 are a partition of the model Pθ; θ ∈ Θ. That is Θ0 ∪ Θ1 = Θ and
Θ0 ∩Θ1 = ∅.

A rule for making the required choice can be described in two ways:

1. In terms of the set

R = {X : we choose Θ1 if we observe X}

called the rejection or critical region of the test.

2. In terms of a function φ(x) which is equal to 1 for those x for which
we choose Θ1 and 0 for those x for which we choose Θ0.

For technical reasons which will come up soon I prefer to use the second
description. However, each φ corresponds to a unique rejection region Rφ =
{x : φ(x) = 1}.

Neyman Pearson approach treats two hypotheses asymmetrically. Hy-
pothesis Ho referred to as the null hypothesis (traditionally the hypothesis
that some treatment has no effect).

Definition: The power function of a test φ (or the corresponding critical
region Rφ) is

π(θ) = Pθ(X ∈ Rφ) = Eθ(φ(X))

We might be interested in optimality theory, that is, the problem of
finding the best φ. A good φ will evidently have π(θ) small for θ ∈ Θ0 and
large for θ ∈ Θ1. There is generally a trade off which can be made in many
ways, however.

Simple versus Simple testing

Finding a best test is easiest when the hypotheses are very precise.

Definition: A hypothesis Hi is simple if Θi contains only a single value θi.
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The simple versus simple testing problem arises when we test θ = θ0

against θ = θ1 so that Θ has only two points in it. This problem is of
importance as a technical tool, not because it is a realistic situation.

Suppose that the model specifies that if θ = θ0 then the density of X is
f0(x) and if θ = θ1 then the density of X is f1(x). How should we choose φ?
To answer the question we begin by studying the problem of minimizing the
total error probability.

Jerzy Neyman and Egon Pearson (Egon’s father Karl Pearson was also a
famous statistician) invented the jargon which surrounds their philosophy of
hypothesis testing. Unfortunately much of the jargon is lame:

Definition: Type I error is the error made when θ = θ0 but we choose H1,
that is, X ∈ Rφ.

Definition: Type II error is the error made when θ = θ1 but we choose
H0.

Definition: The level of a simple versus simple test is

α = Pθ0(We make a Type I error)

or
α = Pθ0(X ∈ Rφ) = Eθ0(φ(X))

The other error probability, denoted β, is

β = Pθ1(X 6∈ Rφ) = Eθ1(1− φ(X)).

To illustrate a general strategy I now minimize α + β, the total error
probability, which is given by

α + β = Eθ0(φ(X)) + Eθ1(1− φ(X))

=

∫
[φ(x)f0(x) + (1− φ(x))f1(x)]dx

The problem is to choose, for each x, either the value 0 or the value 1, in
such a way as to minimize the integral. But for each x the quantity

φ(x)f0(x) + (1− φ(x))f1(x)

is between f0(x) and f1(x). To make it small we take φ(x) = 1 if f1(x) > f0(x)
and φ(x) = 0 if f1(x) < f0(x). It makes no difference what we do for
those x for which f1(x) = f0(x). Notice that we can divide both sides of
the inequalities to express our condition in terms of the likelihood ratio
f1(x)/f0(x).
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Theorem 1 For each fixed λ the quantity β + λα is minimized by any φ
which has

φ(x) =

{
1 f1(x)

f0(x)
> λ

0 f1(x)
f0(x)

< λ

Neyman and Pearson suggested that in practice the two kinds of errors
might well have unequal consequences. They suggested that rather than
minimize any quantity of the form above you pick the more serious kind of
error, label it Type I and require your rule to hold the probability α of a
Type I error to be no more than some prespecified level α0. (This value α0

is typically 0.05 these days, chiefly for historical reasons.)
The Neyman and Pearson approach is then to minimize β subject to the

constraint α ≤ α0. Usually this is really equivalent to the constraint α = α0

(because if you use α < α0 you could make the rejection region R larger and
keep α ≤ α0 but make β smaller. For discrete models, however, this may not
be possible.

Example: Suppose X is Binomial(n, p) and either p = p0 = 1/2 or p = p1 =
3/4. (It might be possible to conjure up some genetics problem in which this
was vaguely realistic but I think it would be a stretch.)

If R is any critical region (so R is a subset of {0, 1, . . . , n}) then

P1/2(X ∈ R) =
k

2n

for some integer k. For example, try to get α0 = 0.05 with n = 5. The
possible values of α are 0, 1/32 = 0.03125, 2/32 = 0.0625, etc. Here are all
the rejection regions which are possible for α0 = 0.05:

Region α β
R1 = ∅ 0 1

R2 = {x = 0} 0.03125 1− (1/4)5

R3 = {x = 5} 0.03125 1− (3/4)5

So R3 minimizes β subject to α < 0.05.
Now raise α0 slightly to 0.0625; the possible rejection regions are R1, R2,

R3 and R4 = R2 ∪R3. The first three have the same α and β as before while
R4 has α = α0 = 0.0625 and β = 1 − (3/4)5 − (1/4)5. Thus R4 is the best
rejection region!
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The problem is that if all trials are failures this “optimal” R chooses
p = 3/4 rather than p = 1/2. But p = 1/2 makes 5 failures much more likely
than p = 3/4 so it seems clear there must be a flaw in the theory; R4 cannot
really be the optimal way of doing hypothesis testing.

The real problem is discreteness. Here is a solution to the problem: Ex-
pand the set of possible values of φ to [0, 1]. Values of φ(x) between 0 and 1
represent the chance that we choose H1 given that we observe x; the idea is
that we actually toss a (biased) coin to decide! This tactic will show us the
kinds of rejection regions which are sensible.

In practice we actually restrict our attention to levels α0 for which the
best φ is always either 0 or 1. In the binomial example we will insist that
the value of α0 be either 0 or Pθ0(X ≥ 5) or Pθ0(X ≥ 4) or . . ..

Example: For a smaller example I consider the case of n = 3 so that the
random variable X has 4 possible values; there are then 24 possible rejection
regions (subsets of {0, 1, 2, 3}). Here is a table of the levels for each possible
rejection region R:

R α
∅ 0

{3}, {0} 1/8
{0,3} 2/8
{1}, {2} 3/8

{0,1}, {0,2}, {1,3}, {2,3} 4/8
{0,1,3}, {0,2,3} 5/8

{1,2} 6/8
{0,1,2}, {1,2,3} 7/8
{0,1,2,3} 1

The best level 2/8 test has rejection region {0, 3}, β = 1 − [(3/4)3 +
(1/4)3] = 36/64. The best level 2/8 test using randomization rejects when
X = 3 and, when X = 2 tosses a coin with P (H) = 1/3, then rejects if
you get H. The level of this randomized test is 1/8 + (1/3)(3/8) = 2/8; the
probability of a Type II error is

β = 1− [(3/4)3 + (1/3)(3)(3/4)2(1/4)] = 28/64.

Definition: A hypothesis test is a function φ(x) whose values are always in
[0, 1]. If we observe X = x then we choose H1 with conditional probability
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φ(x). In this case we have

π(θ) = Eθ(φ(X))

α = E0(φ(X)) and

β = 1− E1(φ(X))

Note that a test using a rejection region C is equivalent to

φ(x) = 1(x ∈ C)

Theorem 2 (The Neyman Pearson Lemma) In testing f0 against f1 the
probability β of a type II error is minimized, subject to α ≤ α0 by the test
function:

φ(x) =


1 f1(x)

f0(x)
> λ

γ f1(x)
f0(x)

= λ

0 f1(x)
f0(x)

< λ

where λ is the largest constant such that

P0(
f1(X)

f0(X)
≥ λ) ≥ α0

and

P0(
f1(X)

f0(X)
≤ λ) ≥ 1− α0

and where γ is any number chosen so that

E0(φ(X)) = P0(
f1(X)

f0(X)
> λ)

+ γP0(
f1(X)

f0(X)
= λ)

= α0

The value of γ is unique if P0(f1(X)
f0(X)

= λ) > 0.

Example: Consider again the Binomial(n, p) problem with p0 = 1/2 and
p1 = 3/4. The ratio f1/f0 is

3x2−n.
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If n = 5 this ratio is one of the numbers 1, 3, 9, 27, 81, 243 divided by 32.
Suppose we have α = 0.05. Then λ must be one of the possible values of

f1/f0. If we try λ = 243/32 then

P0(3X2−5 ≥ 243/32) = P0(X = 5)

= 1/32 < 0.05

and

P0(3X2−5 ≥ 81/32) = P0(X ≥ 4)

= 6/32 > 0.05

So λ = 81/32. Since

P0(3X2−5 > 81/32) = P0(X = 5) = 1/32

we must solve
P0(X = 5) + γP0(X = 4) = 0.05

for γ and find

γ =
0.05− 1/32

5/32
= 0.12

Note: No-one ever uses this procedure. Instead the value of α0 used in
discrete problems is chosen to be a possible value of the rejection probability
corresponding to γ = 0 (or γ = 1). When the sample size is large you can
come very close to any desired α0 with a non-randomized test, that is, a test
for which the function φ takes no values other than 0 or 1.

In our example, if α0 = 6/32 then we can either take λ to be 243/32 and
γ = 1 or λ = 81/32 and γ = 0. However, our definition of λ in the theorem
makes λ = 81/32 and γ = 0.

When the theorem is used for continuous distributions it can be the case
that the cdf of f1(X)/f0(X) has a flat spot where it is equal to 1− α0. This
is the point of the word “largest” in the theorem.

Example: : If X1, . . . , Xn are iid N(µ, 1) and we have µ0 = 0 and µ1 > 0
then

f1(X1, . . . , Xn)

f0(X1, . . . , Xn)
= exp{µ1

∑
Xi − nµ2

1/2− µ0

∑
Xi + nµ2

0/2}
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which simplifies to

exp{µ1

∑
Xi − nµ2

1/2}

Now choose λ so that

P0(exp{µ1

∑
Xi − nµ2

1/2} > λ) = α0

Can make it equal because f1(X)/f0(X) has a continuous distribution. Rewrite
probability as

P0(
∑

Xi > [log(λ) + nµ2
1/2]/µ1) = 1− Φ

(
log(λ) + nµ2

1/2

n1/2µ1

)
Let zα be the upper α critical point of N(0, 1); then

zα0 = [log(λ) + nµ2
1/2]/[n1/2µ1] .

Solve this equation to get a formula for λ in terms of zα0 , n and µ1.
The rejection region looks complicated: reject if a complicated statistic

is larger than λ which has a complicated formula. But in calculating λ we
re-expressed the rejection region in terms of∑

Xi√
n

> zα0

The key feature is that this rejection region is the same for any µ1 > 0.
[WARNING: in the algebra above I used µ1 > 0.] This is why the Neyman
Pearson lemma is a lemma!

Definition: In the general problem of testing Θ0 against Θ1 the level of a
test function φ is

α = sup
θ∈Θ0

Eθ(φ(X))

The power function is
π(θ) = Eθ(φ(X))

A test φ∗ is a Uniformly Most Powerful level α0 test if

1. φ∗ has level α ≤ αo

2. If φ has level α ≤ α0 then for every θ ∈ Θ1 we have

Eθ(φ(X)) ≤ Eθ(φ
∗(X))
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Proof of Neyman Pearson lemma: Given a test φ with level strictly less
than α0 we can define the test

φ∗(x) =
1− α0

1− α
φ(x) +

α0 − α
1− α

has level α0 and β smaller than that of φ. Hence we may assume without
loss that α = α0 and minimize β subject to α = α0. However, the argument
which follows doesn’t actually need this.

Lagrange Multipliers

Suppose you want to minimize f(x) subject to g(x) = 0. Consider first the
function

hλ(x) = f(x) + λg(x)

If xλ minimizes hλ then for any other x

f(xλ) ≤ f(x) + λ[g(x)− g(xλ)]

Now suppose you can find a value of λ such that the solution xλ has g(xλ) = 0.
Then for any x we have

f(xλ) ≤ f(x) + λg(x)

and for any x satisfying the constraint g(x) = 0 we have

f(xλ) ≤ f(x)

This proves that for this special value of λ the quantity xλ minimizes f(x)
subject to g(x) = 0.

Notice that to find xλ you set the usual partial derivatives equal to 0;
then to find the special xλ you add in the condition g(xλ) = 0.

Return to proof of NP lemma

For each λ > 0 we have seen that φλ minimizes λα+β where φλ = 1(f1(x)/f0(x) ≥
λ).

As λ increases the level of φλ decreases from 1 when λ = 0 to 0 when λ =
∞. There is thus a value λ0 where for λ > λ0 the level is less than α0 while for
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λ < λ0 the level is at least α0. Temporarily let δ = P0(f1(X)/f0(X) = λ0).
If δ = 0 define φ = φλ. If δ > 0 define

φ(x) =


1 f1(x)

f0(x)
> λ0

γ f1(x)
f0(x)

= λ0

0 f1(x)
f0(x)

< λ0

where P0(f1(X)/f0(X) > λ0) + γδ = α0. You can check that γ ∈ [0, 1].
Now φ has level α0 and according to the theorem above minimizes λ0α+β.

Suppose φ∗ is some other test with level α∗ ≤ α0. Then

λ0αφ + βφ ≤ λ0αφ∗ + βφ∗

We can rearrange this as

βφ∗ ≥ βφ + (αφ − αφ∗)λ0

Since
αφ∗ ≤ α0 = αφ

the second term is non-negative and

βφ∗ ≥ βφ

which proves the Neyman Pearson Lemma.

Example application of NP: Again consider the Binomial(n, p) problem.
In order to test p = p0 versus p1 for a p1 > p0 the NP test is of the form

φ(x) = 1(X > k) + γ1(X = k)

where we choose k so that

Pp0(X > k) ≤ α0 < Pp0(X ≥ k)

and γ ∈ [0, 1) so that

α0 = Pp0(X > k) + γPp0(X = k)

This rejection region depends only on p0 and not on p1 so that this test is
UMP for p = p0 against p > p0. Since this test has level α0 even for the
larger null hypothesis p ≤ p0, it is also UMP for p ≤ p0 against p > p0.

9



Application of the NP lemma: In the N(µ, 1) model consider Θ1 = {µ >
0} and Θ0 = {0} or Θ0 = {µ ≤ 0}. The UMP level α0 test of H0 : µ ∈ Θ0

against H1 : µ ∈ Θ1 is

φ(X1, . . . , Xn) = 1(n1/2X̄ > zα0)

Proof: For either choice of Θ0 this test has level α0 because for µ ≤ 0 we
have

Pµ(n1/2X̄ > zα0)

= Pµ(n1/2(X̄ − µ) > zα0 − n1/2µ)

= P (N(0, 1) > zα0 − n1/2µ)

≤ P (N(0, 1) > zα0)

= α0

(Notice the use of µ ≤ 0. The central point is that the critical point is
determined by the behaviour on the edge of the null hypothesis.) Now if φ
is any other level α0 test then we have

E0(φ(X1, . . . , Xn)) ≤ α0

Fix a µ > 0. According to the NP lemma

Eµ(φ(X1, . . . , Xn)) ≤ Eµ(φµ(X1, . . . , Xn))

where φµ rejects if

fµ(X1, . . . , Xn)/f0(X1, . . . , Xn) > λ

for a suitable λ. But we just checked that this test had a rejection region of
the form

n1/2X̄ > zα0

which is the rejection region of φ∗. The NP lemma produces the same test
for every µ > 0 chosen as an alternative. So we have shown that φµ = φ∗ for
any µ > 0.

This is a fairly general phenomenon: for any µ > µ0 the likelihood ratio
fµ/f0 is an increasing function of

∑
Xi. The rejection region of the NP test

is thus always a region of the form
∑
Xi > k. The value of the constant k is
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determined by the requirement that the test have level α0 and this depends
on µ0 not on µ1.
Definition: The family fθ; θ ∈ Θ ⊂ R has monotone likelihood ratio with re-
spect to a statistic T (X) if for each θ1 > θ0 the likelihood ratio fθ1(X)/fθ0(X)
is a monotone increasing function of T (X).

Theorem 3 For a monotone likelihood ratio family the Uniformly Most Pow-
erful level α test of θ ≤ θ0 (or of θ = θ0) against the alternative θ > θ0 is

φ(x) =


1 T (x) > tα
γ T (X) = tα
0 T (x) < tα

where
Pθ0(T (X) > tα) + γPθ0(T (X) = tα) = α0 .

A typical family where this works is a one parameter exponential family.
Usually there is no UMP test.

Example: test µ = µ0 against the two sided alternative µ 6= µ0 in the
N(µ, 1) model. There is no UMP level α test.

If there were such a test its power at µ > µ0 would have to be as high as
that of the one sided level α test and so its rejection region would have to
be the same as that test, rejecting for large positive values of X̄ − µ0. But
it also has to have power as good as the one sided test for the alternative
µ < µ0 and so would have to reject for large negative values of X̄ − µ0. This
would make its level too large.

Everybody’s favourite test is the usual 2 sided z-test which rejects for
large values of |X̄−µ0|. This test maximizes power subject to two constraints:
first, that the test have level α; second, that the power function is minimized
at µ = µ0. The second condition means that the power on alternative is
larger than the power on the null.
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