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What I think you already have seen

Definition of Moment Generating Function

Basics of complex numbers
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What I want you to learn

Definition of cumulants and cumulant generating function.

Definition of Characteristic Function

Elementary features of complex numbers

How they “characterize” a distribution

Relation to sums of independent rvs
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Moment Generating Functions pp 56-58

Definition: The moment generating function of a real valued X is

MX (t) = E (etX )

defined for those real t for which the expected value is finite.

Definition: The moment generating function of X ∈ Rp is

MX (u) = E [eu
tX ]

defined for those vectors u for which the expected value is finite.

Formal connection to moments:

MX (t) =

∞
∑

k=0

E [(tX )k ]/k!

=

∞
∑

k=0

µ′

kt
k/k! .

Sometimes can find power series expansion of MX and read off the
moments of X from the coefficients of tk/k!.
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Moments and MGFs

Theorem

If M is finite for all t ∈ [−ǫ, ǫ] for some ǫ > 0 then

1 Every moment of X is finite.

2 M is C∞ (in fact M is analytic).

3 µ′

k = dk

dtk
MX (0).

Note: C∞ means has continuous derivatives of all orders.

Analytic means has convergent power series expansion in
neighbourhood of each t ∈ (−ǫ, ǫ).

The proof, and many other facts about mgfs, rely on techniques of
complex variables.
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MGFs and Sums

If X1, . . . ,Xp are independent and Y =
∑

Xi then the moment
generating function of Y is the product of those of the individual Xi :

MY (t) = E (etY ) =
∏

i

E (etXi ) =
∏

i

MXi
(t).

Note: also true for multivariate Xi .

Problem: power series expansion of MY not nice function of
expansions of individual MXi

.

Related fact: first 3 moments (meaning µ, σ2 and µ3) of Y are sums
of those of the Xi :

E (Y ) =
∑

E (Xi)

Var(Y ) =
∑

Var(Xi )

E [(Y − E (Y ))3] =
∑

E [(Xi − E (Xi))
3]
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Cumulants not in text

However:

E [(Y − E (Y ))4] =
∑

{E [(Xi − E (Xi))
4]− 3E 2[(Xi − E (Xi))

2]}

+ 3
{

∑

E [(Xi − E (Xi ))
2]
}2

But related quantities: cumulants add up properly.

Note: log of the mgf of Y is sum of logs of mgfs of the Xi .

Definition: the cumulant generating function of a variable X by

KX (t) = log(MX (t)) .

Then
KY (t) =

∑

KXi
(t) .

Note: mgfs are all positive so that the cumulant generating functions
are defined wherever the mgfs are.
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Relation between cumulants and moments

So: KY has power series expansion:

KY (t) =
∞
∑

r=1

κr t
r/r ! .

Definition: the κr are the cumulants of Y .

Observe
κr (Y ) =

∑

κr (Xi ) .

Cumulant generating function is

K (t) = log(M(t))

= log(1 + [µ1t + µ′

2t
2/2 + µ′

3t
3/3! + · · · ])

Call quantity in [. . .] x ; expand

log(1 + x) = x − x2/2 + x3/3− x4/4 · · · .

Richard Lockhart (Simon Fraser University) STAT 830 Generating Functions STAT 830 — Fall 2013 8 / 1



Cumulants and moments

Stick in the power series

x = µt + µ′

2t
2/2 + µ′

3t
3/3! + · · · ;

Expand out powers of x ; collect together like terms.

For instance,

x2 = µ2t2 + µµ′

2t
3 + [2µ′

3µ/3! + (µ′

2)
2/4]t4 + · · ·

x3 = µ3t3 + 3µ′

2µ
2t4/2 + · · ·

x4 = µ4t4 + · · · .

Now gather up the terms.

The power t1 occurs only in x with coefficient µ.

The power t2 occurs in x and in x2 and so on.
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Cumulants and moments

Putting these together gives

K (t) =µt + [µ′

2 − µ2]t2/2 + [µ′

3 − 3µµ′

2 + 2µ3]t3/3!

+ [µ′

4 − 4µ′

3µ− 3(µ′

2)
2 + 12µ′

2µ
2 − 6µ4]t4/4! · · ·

Comparing coefficients to tr/r ! we see that

κ1 = µ

κ2 = µ′

2 − µ2 = σ2

κ3 = µ′

3 − 3µµ′

2 + 2µ3 = E [(X − µ)3]

κ4 = µ′

4 − 4µ′

3µ− 3(µ′

2)
2 + 12µ′

2µ
2 − 6µ4

= E [(X − µ)4]− 3σ4 .

Reference: Kendall and Stuart (or new version called Kendall’s
Theory of Advanced Statistics by Stuart and Ord) for formulas for
larger orders r .
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Example, N(0,1)
Example: X1, . . . ,Xp independent, Xi ∼ N(µi , σ

2
i ):

MXi
(t) =

∫

∞

−∞

etxe−
1
2
(x−µi )

2/σ2
i dx/(

√
2πσi)

=

∫

∞

−∞

et(σi z+µi )e−z2/2dz/
√
2π

=etµi

∫

∞

−∞

e−(z−tσi )
2/2+t2σ2

i
/2dz/

√
2π

=eσ
2
i
t2/2+tµi .

So cumulant generating function is:

KXi
(t) = log(MXi

(t)) = σ2
i t

2/2 + µi t .

Cumulants are κ1 = µi , κ2 = σ2
i and every other cumulant is 0.

Cumulant generating function for Y =
∑

Xi is

KY (t) =
∑

σ2
i t

2/2 + t
∑

µi

which is the cumulant generating function of N(
∑

µi ,
∑

σ2
i ).
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Chi-squared distributions

Example: Homework: derive moment and cumulant generating
function and moments of a Gamma rv.

Now suppose Z1, . . . ,Zν independent N(0, 1) rvs.

By definition: Sν =
∑ν

1 Z
2
i has χ2

ν distribution.

It is easy to check S1 = Z 2
1 has density

(u/2)−1/2e−u/2/(2
√
π)

and then the mgf of S1 is

(1− 2t)−1/2 .

It follows that
MSν (t) = (1− 2t)−ν/2

which is (homework) moment generating function of a
Gamma(ν/2, 2) rv.

SO: χ2
ν dstbn has Gamma(ν/2, 2) density:

(u/2)(ν−2)/2e−u/2/(2Γ(ν/2)) .

Richard Lockhart (Simon Fraser University) STAT 830 Generating Functions STAT 830 — Fall 2013 12 / 1



Cauchy Distribution

Example: The Cauchy density is

1

π(1 + x2)
;

corresponding moment generating function is

M(t) =

∫

∞

−∞

etx

π(1 + x2)
dx

which is +∞ except for t = 0 where we get 1.

Every t distribution has exactly same mgf.

So: can’t use mgf to distinguish such distributions.

Problem: these distributions do not have infinitely many finite
moments.

So: develop substitute for mgf which is defined for every distribution,
namely, the characteristic function.
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Aside on complex arithmetic

Complex numbers: add i =
√
−1 to the real numbers.

Require all the usual rules of algebra to work.

So: if i and any real numbers a and b are to be complex numbers
then so must be a + bi .

Multiplication: If we multiply a complex number a + bi with a and b
real by another such number, say c + di then the usual rules of
arithmetic (associative, commutative and distributive laws) require

(a + bi)(c + di) =ac + adi + bci + bdi2

=ac + bd(−1) + (ad + bc)i

=(ac − bd) + (ad + bc)i

so this is precisely how we define multiplication.
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Complex aside, slide 2

Addition: follow usual rules to get

(a + bi) + (c + di) = (a + c) + (b + d)i .

Additive inverses: −(a + bi) = −a+ (−b)i .

Multiplicative inverses:

1

a + bi
=

1

a+ bi

a− bi

a− bi

=
a − bi

a2 − abi + abi − b2i2
=

a − bi

a2 + b2
.

Division:

a + bi

c + di
=

(a + bi)

(c + di)

(c − di)

(c − di)
=

ac − bd + (bc + ad)i

c2 + d2
.

Notice: usual rules of arithmetic don’t require any more numbers than

x + yi

where x and y are real.
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Complex Aside Slide 3

Transcendental functions: For real x have ex =
∑

xk/k! so

ex+iy = exe iy .

How to compute e iy?

Remember i2 = −1 so i3 = −i , i4 = 1 i5 = i1 = i and so on. Then

e iy =

∞
∑

0

(iy)k

k!

=1 + iy + (iy)2/2 + (iy)3/6 + · · ·
=1− y2/2 + y4/4!− y6/6! + · · ·

+ iy − iy3/3! + iy5/5! + · · ·
=cos(y) + i sin(y)

We can thus write

ex+iy = ex(cos(y) + i sin(y))
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Complex Aside Slide 4, Argand diagrams

Identify x + yi with the corresponding point (x , y) in the plane.

Picture the complex numbers as forming a plane.

Now every point in the plane can be written in polar co-ordinates as
(r cos θ, r sin θ) and comparing this with our formula for the
exponential we see we can write

x + iy =
√

x2 + y2 e iθ = re iθ

for an angle θ ∈ [0, 2π).

Multiplication revisited: x + iy = re iθ, x ′ + iy ′ = r ′e iθ
′

.

(x + iy)(x ′ + iy ′) = re iθr ′e iθ
′

= rr ′e i(θ+θ′) .
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Complex Aside Slide 4, Argand diagrams

We will need from time to time a couple of other definitions:

Definition: The modulus of x + iy is

|x + iy | =
√

x2 + y2 .

Definition: The complex conjugate of x + iy is x + iy = x − iy .

Some identities: z = x + iy = re iθ and z ′ = x ′ + iy ′ = r ′e iθ
′

.

Then
zz = x2 + y2 = r2 = |z |2

z ′

z
=

z ′z

|z |2 = rr ′e i(θ
′
−θ)

re iθ = re−iθ.
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Notes on calculus with complex variables

Essentially usual rules apply so, for example,

d

dt
e it = ie it .

We will (mostly) be doing only integrals over the real line; the theory
of integrals along paths in the complex plane is a very important part
of mathematics, however.

FACT: (not used explicitly in course). If f : C 7→ C is differentiable
then f is analytic (has power series expansion).

End of Aside
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Characteristic Functions

Definition: The characteristic function of a real rv X is

φX (t) = E (e itX )

where i =
√
−1 is the imaginary unit.

Since
e itX = cos(tX ) + i sin(tX )

we find that
φX (t) = E (cos(tX )) + iE (sin(tX )) .

Since the trigonometric functions are bounded by 1 the expected
values must be finite for all t.

This is precisely the reason for using characteristic rather than
moment generating functions in probability theory courses.
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Role of transforms in characterization cf Th 3.33, p 57

Theorem

For any two real rvs X and Y the following are equivalent:

1 X and Y have the same distribution, that is, for any (Borel) set A we
have

P(X ∈ A) = P(Y ∈ A) .

2 FX (t) = FY (t) for all t.

3 φX (t) = E (e itX ) = E (e itY ) = φY (t) for all real t.

Moreover, all these are implied if there is ǫ > 0 such that for all |t| ≤ ǫ

MX (t) = MY (t) < ∞ .
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