Moment Generating Functions

Defn: The moment generating function of a
real valued X is

Mx(t) = E(e")

defined for those real t for which the expected
value is finite.

Defn: The moment generating function of
X € RP is

My (u) = E[e*X]

defined for those vectors uw for which the ex-
pected value is finite.

Formal connection to moments:

@)

Mx(t) = Y E[tX)"]/k!

k=0
oo
= 3 pfth /K.
k=0

Sometimes can find power series expansion of
My and read off the moments of X from the
coefficients of t*/k!.
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Theorem: If M is finite for all t € [—e, €] for
some € > 0 then

1. Every moment of X is finite.

2. M is C*° (in fact M is analytic).

k
3. u) = %MX(O).

Note: C°° means has continuous derivatives
of all orders. Analytic means has convergent
power series expansion in neighbourhood of

each t € (—e,¢).

The proof, and many other facts about mgfs,
rely on techniques of complex variables.
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MGFs and Sums

If X1,...,Xp are independent and Y = > X;
then the moment generating function of Y is
the product of those of the individual Xj;:

E(e™) = [ E(e)
0
or MY = HMXl
Note: also true for multivariate Xj;.

Problem: power series expansion of My not
nice function of expansions of individual MXi.

Related fact: first 3 moments (meaning p, o2
and p3) of Y are sums of those of the X;:

E(Y) =) E(X;)
Var(Y) =) Var(X;)

El(Y - E(Y)3 =Y E[(X; — E(X))?]
but

E[(Y — E(Y))*] =
SHUENX; — BE(X;))M - 3E%[(X; — E(Xy))?]}

+3{3 BlCx — E(X))A}
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Related quantities: cumulants add up prop-
erly.

Note: log of the mgf of Y is sum of logs of
mgfs of the X;.

Defn: the cumulant generating function of a
variable X by

Kx(t) =log(Mx(t)).
Then

Ky (t) =) Kx,(t).

Note: mgfs are all positive so that the cumula-
tive generating functions are defined wherever
the mgfs are.

SO: Ky has power series expansion:
oo
Ky () = > ret'/r!.
r=1
Defn: the x, are the cumulants of Y.

Observe
/ﬁ:r(Y) — Z /ﬁ:r(XZ') .
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Relation between cumulants and moments:

Cumulant generating function is
K(t) = log(M(t))
= 10g(1 + [p1t + p5t?/2 + p5t3 /31 4 ---])
Call quantity in [...] z; expand
log(14+z)=z—z2/24+23/3—z%/4....

Stick in the power series

x = pt 4 ot /2 + pat> /314

Expand out powers of x; collect together like
terms. For instance,

22 = 1242 4 ot
+ [2p3p/3! + (uh)? /4% + - -
23 = p3t3 + 3pHptt /24 -
o= M
Now gather up the terms. The power t1 oc-

curs only in & with coefficient u. The power ¢2
occurs in z and in 2 and so on.
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Putting these together gives

K(t) =
ut + [uh — plt?/2
+ [u5 — 3ups + 24>t /3!
+ [y — dpsp — 3(un)? + 12uhu? — 6u*t* /41 .

Comparing coefficients to t"/r! we see that

K1 = [

Ko = pb — p° = 0"

k3 = p — 3pps + 2u° = E[(X — p)]

ka = piy — Apap — 3(uh)? + 12u5Hp® — 6p®
= B[(X — )" —30™.

Check the book by Kendall and Stuart (or the
new version called Kendall's Theory of Ad-
vanced Statistics by Stuart and Ord) for for-
mulas for larger orders r.
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Example: If X,,...,X, are independent and
X; has a N(u;,0?) distribution then

My () = [~ et 20 dn ) (vamoy)

— 00

/OO 675(<fz'2—|-/ﬁz')6—272/2612/\/27T
— 00
th; /OO 6—(Z—t0i)2/2+t202~2/2dz/\/§

— OO

242 :
—e0it /24t

—c

So cumulant generating function is:

Kx,(t) =1og(My,(t)) = 07t%/2 + p;t.

Cumulants are k1 = u;, ko = of and every
other cumulant is O.

Cumulant generating function for ¥ = > X, is

Ky (t) =Y o2t?/2+ 1) p;
which is the cumulant generating function of

N(X pi, > 02).
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Example: Homework: derive moment and cu-
mulant generating function and moments of a
Gamma rv.

Now suppose Zi,...,7Z, independent N(0,1)
rvs.

By definition: S, = 334 Z2 has x2 distribution.
It is easy to check S§1 = Z% has density

(u/2)" 122 /(2y/T)
and then the mgf of S is
(1—2t)"1/2.
It follows that
Mg, (t) = (1 —2t)""/2

which is (homework) moment generating func-
tion of a Gamma(v/2,2) rv.

SO: x2 dstbn has Gamma(r/2,2) density:
(u/2) =222/ (21 (v/2))
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Example: The Cauchy density is
1 .
(1l 4+ z2)’
corresponding moment generating function is
0O eta:
M{(t) = /—oo (1l 4 a:Q)dx
which is 4+o0o except for t = 0 where we get 1.

Every t distribution has exactly same mgf. So:
can’'t use mgf to distinguish such distributions.

Problem: these distributions do not have in-
finitely many finite moments.

So: develop substitute for mgf which is defined
for every distribution, namely, the characteris-
tic function.

Characteristic Functions

Definition: The characteristic function of a
real rv X is

dx (t) = E(e"™)
where 1 = v/—1 is the imaginary unit.
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Aside on complex arithmetic.

Complex numbers: add ¢ = v/—1 to the real
numbers.

Require all the usual rules of algebra to work.

So: if ¢+ and any real numbers a and b are to
be complex numbers then so must be a + bs.

Multiplication: If we multiply a complex num-
ber a + bz with a and b real by another such
number, say c+dz then the usual rules of arith-
metic (associative, commutative and distribu-
tive laws) require

(a + bi)(c + di) =ac + adi + bci + bdi?
—ac+ bd(—1) + (ad 4+ be)i
=(ac — bd) + (ad 4+ be)1i

SO this is precisely how we define multiplication.
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Addition: follow usual rules to get

(a4 bi) + (c+di) = (a+c) + (b+d)i.

Additive inverses: —(a 4+ bi) = —a + (—b)1.

Multiplicative inverses:

1 1 a—bi
a+bi a- bia— bi
. a— bt
a2 — abi + abi — b242
. a — bt
a2+ b2

Division:
a+bi  (a+bi)(c—di)

c+di (c+di)(c— di)
__ac—bd + (bc + ad)i

c2 + d?
Notice: usual rules of arithmetic don't require
any more numbers than

x4+ yi

where z and y are real.
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Transcendental functions: For real x have
e = Y zF /k! so

LW — Tty
How to compute e¥?

Remember i2 = —1 so i3 = —4, i* =1 ° =
i} =4 and so on. Then

P (iy)"
ey_zo: k!
=1+ iy + (iv)?/2 + (iy)>/6 + - -
=1-—y?/24y*/41 —y0/61 4 -
+ iy —iy> /3 +iy® /5 + - - -
=cos(y) +isin(y)

We can thus write

"t = ¢ (cos(y) + isin(y))
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Identify x 4+ y: with the corresponding point
(z,y) in the plane. Picture the complex num-
bers as forming a plane.

Now every point in the plane can be written in
polar co-ordinates as (rcos#f,rsinf) and com-
paring this with our formula for the exponential
we see we can write

x4+ 1y = \/:Uz—l—yzew — ret?
for an angle 6 € [0, 27).

Multiplication revisited: z 411y = ret?, ' +iy =

- n/
rletd"

(QC + zy)(:c’ + zy’) — reiQT/eiel — ,rr/ei(9+9/) '
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We will need from time to time a couple of
other definitions:

Definition: The modulus of x 4 iy is

2 + iy = Va2 + ¢

Definition: The complex conjugate of x4y
IS ¢+ 1y =x — 1y.

Some identities: z = z + iy = re'? and 2/ =
' + iy’ = r'et® . Then

2z =2+ y° =1’ =|z|°
/ -
2 _ A7 _ o)
2 e?
reid = re =40,
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Notes on calculus with complex variables.

Essentially usual rules apply so, for example,

d . .
_ezt — ieZt.

dt
We will (mostly) be doing only integrals over
the real line; the theory of integrals along paths

in the complex plane is a very important part
of mathematics, however.

FACT: (not used explicitly in course). If f :
C — C is differentiable then f is analytic (has
power series expansion).

End of Aside
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Characteristic Functions

Definition: The characteristic function of a
real rv X is

dx(t) = E(e"™)
where 1 = v/—1 is the imaginary unit.

Since
e = cos(tX) 4 isin(tX)
we find that
ox(t) = E(cos(tX)) +iE(sin(tX)).

Since the trigonometric functions are bounded
by 1 the expected values must be finite for all
t.

This is precisely the reason for using character-
istic rather than moment generating functions
in probability theory courses.
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Theorem 1 For any two real rvs X and Y the
following are equivalent:

1. X and Y have the same distribution, that
is, for any (Borel) set A we have
P(XeA)=PYeA).

2. Fx(t) = Fy(t) for all t.

3. ¢x(t) = E(e™) = E(eY) = ¢y (t) for all
real t.

Moreover, all of these are implied if there is a

positive e such that for all |t| < e

My (t) = My (t) < c©.
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