Moment Generating Functions

Defn: The moment generating function of a real valued X is

$$
M_{X}(t)=E\left(e^{t X}\right)
$$

defined for those real t for which the expected value is finite.

Defn: The moment generating function of $X \in R^{p}$ is

$$
M_{X}(u)=E\left[e^{u^{t} X}\right]
$$

defined for those vectors u for which the expected value is finite.

Formal connection to moments:

$$
\begin{aligned}
M_{X}(t) & =\sum_{k=0}^{\infty} E\left[(t X)^{k}\right] / k! \\
& =\sum_{k=0}^{\infty} \mu_{k}^{\prime} t^{k} / k!
\end{aligned}
$$

Sometimes can find power series expansion of M_{X} and read off the moments of X from the coefficients of $t^{k} / k!$.

Theorem: If M is finite for all $t \in[-\epsilon, \epsilon]$ for some $\epsilon>0$ then

1. Every moment of X is finite.
2. M is C^{∞} (in fact M is analytic).
3. $\mu_{k}^{\prime}=\frac{d^{k}}{d t^{k}} M_{X}(0)$.

Note: C^{∞} means has continuous derivatives of all orders. Analytic means has convergent power series expansion in neighbourhood of each $t \in(-\epsilon, \epsilon)$.

The proof, and many other facts about mgfs, rely on techniques of complex variables.

MGFs and Sums

If X_{1}, \ldots, X_{p} are independent and $Y=\sum X_{i}$ then the moment generating function of Y is the product of those of the individual X_{i} :

$$
E\left(e^{t Y}\right)=\prod_{i} E\left(e^{t X_{i}}\right)
$$

or $M_{Y}=\Pi M_{X_{i}}$.
Note: also true for multivariate X_{i}.
Problem: power series expansion of M_{Y} not nice function of expansions of individual $M_{X_{i}}$.

Related fact: first 3 moments (meaning μ, σ^{2} and μ_{3}) of Y are sums of those of the X_{i} :

$$
\begin{aligned}
E(Y) & =\sum E\left(X_{i}\right) \\
\operatorname{Var}(Y) & =\sum \operatorname{Var}\left(X_{i}\right) \\
E\left[(Y-E(Y))^{3}\right] & =\sum E\left[\left(X_{i}-E\left(X_{i}\right)\right)^{3}\right]
\end{aligned}
$$

but

$$
\begin{aligned}
& E\left[(Y-E(Y))^{4}\right]= \\
& \begin{aligned}
& \sum\left\{E\left[\left(X_{i}-E\left(X_{i}\right)\right)^{4}\right]-3 E^{2}\left[\left(X_{i}-E\left(X_{i}\right)\right)^{2}\right]\right\} \\
&+3\left\{\sum E\left[\left(X_{i}-E\left(X_{i}\right)\right)^{2}\right]\right\}^{2}
\end{aligned}
\end{aligned}
$$

Related quantities: cumulants add up properly.

Note: log of the mgf of Y is sum of logs of mgfs of the X_{i}.

Defn: the cumulant generating function of a variable X by

$$
K_{X}(t)=\log \left(M_{X}(t)\right) .
$$

Then

$$
K_{Y}(t)=\sum K_{X_{i}}(t) .
$$

Note: mgfs are all positive so that the cumulative generating functions are defined wherever the mgfs are.

SO: K_{Y} has power series expansion:

$$
K_{Y}(t)=\sum_{r=1}^{\infty} \kappa_{r} t^{r} / r!.
$$

Defn: the κ_{r} are the cumulants of Y.
Observe

$$
\kappa_{r}(Y)=\sum \kappa_{r}\left(X_{i}\right) .
$$

Relation between cumulants and moments:

Cumulant generating function is

$$
\begin{aligned}
K(t) & =\log (M(t)) \\
& =\log \left(1+\left[\mu_{1} t+\mu_{2}^{\prime} t^{2} / 2+\mu_{3}^{\prime} t^{3} / 3!+\cdots\right]\right)
\end{aligned}
$$

Call quantity in [...] x; expand

$$
\log (1+x)=x-x^{2} / 2+x^{3} / 3-x^{4} / 4 \cdots .
$$

Stick in the power series

$$
x=\mu t+\mu_{2}^{\prime} t^{2} / 2+\mu_{3}^{\prime} t^{3} / 3!+\cdots ;
$$

Expand out powers of x; collect together like terms. For instance,

$$
\begin{aligned}
x^{2}= & \mu^{2} t^{2}+\mu \mu_{2}^{\prime} t^{3} \\
& \quad+\left[2 \mu_{3}^{\prime} \mu / 3!+\left(\mu_{2}^{\prime}\right)^{2} / 4\right] t^{4}+\cdots \\
x^{3}= & \mu^{3} t^{3}+3 \mu_{2}^{\prime} \mu^{2} t^{4} / 2+\cdots \\
x^{4}= & \mu^{4} t^{4}+\cdots .
\end{aligned}
$$

Now gather up the terms. The power t^{1} occurs only in x with coefficient μ. The power t^{2} occurs in x and in x^{2} and so on.

Putting these together gives

$K(t)=$

$$
\begin{gathered}
\mu t+\left[\mu_{2}^{\prime}-\mu^{2}\right] t^{2} / 2 \\
+\left[\mu_{3}^{\prime}-3 \mu \mu_{2}^{\prime}+2 \mu^{3}\right] t^{3} / 3! \\
+\left[\mu_{4}^{\prime}-4 \mu_{3}^{\prime} \mu-3\left(\mu_{2}^{\prime}\right)^{2}+12 \mu_{2}^{\prime} \mu^{2}-6 \mu^{4}\right] t^{4} / 4!\cdots
\end{gathered}
$$

Comparing coefficients to t^{r} / r ! we see that

$$
\begin{aligned}
\kappa_{1} & =\mu \\
\kappa_{2} & =\mu_{2}^{\prime}-\mu^{2}=\sigma^{2} \\
\kappa_{3} & =\mu_{3}^{\prime}-3 \mu \mu_{2}^{\prime}+2 \mu^{3}=E\left[(X-\mu)^{3}\right] \\
\kappa_{4} & =\mu_{4}^{\prime}-4 \mu_{3}^{\prime} \mu-3\left(\mu_{2}^{\prime}\right)^{2}+12 \mu_{2}^{\prime} \mu^{2}-6 \mu^{4} \\
& =E\left[(X-\mu)^{4}\right]-3 \sigma^{4} .
\end{aligned}
$$

Check the book by Kendall and Stuart (or the new version called Kendall's Theory of Advanced Statistics by Stuart and Ord) for formulas for larger orders r.

Example: If X_{1}, \ldots, X_{p} are independent and X_{i} has a $N\left(\mu_{i}, \sigma_{i}^{2}\right)$ distribution then

$$
\begin{aligned}
M_{X_{i}}(t) & =\int_{-\infty}^{\infty} e^{t x} e^{-\frac{1}{2}\left(x-\mu_{i}\right)^{2} / \sigma_{i}^{2}} d x /\left(\sqrt{2 \pi} \sigma_{i}\right) \\
& =\int_{-\infty}^{\infty} e^{t\left(\sigma_{i} z+\mu_{i}\right)} e^{-z^{2} / 2} d z / \sqrt{2 \pi} \\
& =e^{t \mu_{i}} \int_{-\infty}^{\infty} e^{-\left(z-t \sigma_{i}\right)^{2} / 2+t^{2} \sigma_{i}^{2} / 2} d z / \sqrt{2 \pi} \\
& =e^{\sigma_{i}^{2} t^{2} / 2+t \mu_{i}} .
\end{aligned}
$$

So cumulant generating function is:

$$
K_{X_{i}}(t)=\log \left(M_{X_{i}}(t)\right)=\sigma_{i}^{2} t^{2} / 2+\mu_{i} t
$$

Cumulants are $\kappa_{1}=\mu_{i}, \kappa_{2}=\sigma_{i}^{2}$ and every other cumulant is 0 .

Cumulant generating function for $Y=\sum X_{i}$ is

$$
K_{Y}(t)=\sum \sigma_{i}^{2} t^{2} / 2+t \sum \mu_{i}
$$

which is the cumulant generating function of $N\left(\sum \mu_{i}, \sum \sigma_{i}^{2}\right)$.

Example: Homework: derive moment and cumulant generating function and moments of a Gamma rv.

Now suppose Z_{1}, \ldots, Z_{ν} independent $N(0,1)$ rvs.

By definition: $S_{\nu}=\sum_{1}^{\nu} Z_{i}^{2}$ has χ_{ν}^{2} distribution. It is easy to check $S_{1}=Z_{1}^{2}$ has density

$$
(u / 2)^{-1 / 2} e^{-u / 2} /(2 \sqrt{\pi})
$$

and then the mgf of S_{1} is

$$
(1-2 t)^{-1 / 2} .
$$

It follows that

$$
M_{S_{\nu}}(t)=(1-2 t)^{-\nu / 2}
$$

which is (homework) moment generating function of a $\operatorname{Gamma}(\nu / 2,2) \mathrm{rv}$.

SO: χ_{ν}^{2} dstbn has $\operatorname{Gamma}(\nu / 2,2)$ density:

$$
(u / 2)^{(\nu-2) / 2} e^{-u / 2} /(2 \Gamma(\nu / 2)) .
$$

Example: The Cauchy density is

$$
\frac{1}{\pi\left(1+x^{2}\right)}
$$

corresponding moment generating function is

$$
M(t)=\int_{-\infty}^{\infty} \frac{e^{t x}}{\pi\left(1+x^{2}\right)} d x
$$

which is $+\infty$ except for $t=0$ where we get 1 .
Every t distribution has exactly same mgf. So: can't use mgf to distinguish such distributions.

Problem: these distributions do not have infinitely many finite moments.

So: develop substitute for mgf which is defined for every distribution, namely, the characteristic function.

Characteristic Functions

Definition: The characteristic function of a real rv X is

$$
\phi_{X}(t)=E\left(e^{i t X}\right)
$$

where $i=\sqrt{-1}$ is the imaginary unit.

Aside on complex arithmetic.

Complex numbers: add $i=\sqrt{-1}$ to the real numbers.

Require all the usual rules of algebra to work.

So: if i and any real numbers a and b are to be complex numbers then so must be $a+b i$.

Multiplication: If we multiply a complex number $a+b i$ with a and b real by another such number, say $c+d i$ then the usual rules of arithmetic (associative, commutative and distributive laws) require

$$
\begin{aligned}
(a+b i)(c+d i) & =a c+a d i+b c i+b d i^{2} \\
& =a c+b d(-1)+(a d+b c) i \\
& =(a c-b d)+(a d+b c) i
\end{aligned}
$$

so this is precisely how we define multiplication.

Addition: follow usual rules to get

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i .
$$

Additive inverses: $-(a+b i)=-a+(-b) i$.

Multiplicative inverses:

$$
\begin{aligned}
\frac{1}{a+b i} & =\frac{1}{a+b i} \frac{a-b i}{a-b i} \\
& =\frac{a-b i}{a^{2}-a b i+a b i-b^{2} i^{2}} \\
& =\frac{a-b i}{a^{2}+b^{2}} .
\end{aligned}
$$

Division:

$$
\begin{aligned}
\frac{a+b i}{c+d i} & =\frac{(a+b i)}{(c+d i)} \frac{(c-d i)}{(c-d i)} \\
& =\frac{a c-b d+(b c+a d) i}{c^{2}+d^{2}} .
\end{aligned}
$$

Notice: usual rules of arithmetic don't require any more numbers than

$$
x+y i
$$

where x and y are real.

Transcendental functions: For real x have $e^{x}=\sum x^{k} / k$! so

$$
e^{x+i y}=e^{x} e^{i y}
$$

How to compute $e^{i y}$?
Remember $i^{2}=-1$ so $i^{3}=-i, i^{4}=1 i^{5}=$ $i^{1}=i$ and so on. Then

$$
\begin{aligned}
e^{i y}= & \sum_{0}^{\infty} \frac{(i y)^{k}}{k!} \\
= & 1+i y+(i y)^{2} / 2+(i y)^{3} / 6+\cdots \\
= & 1-y^{2} / 2+y^{4} / 4!-y^{6} / 6!+\cdots \\
& +i y-i y^{3} / 3!+i y^{5} / 5!+\cdots \\
= & \cos (y)+i \sin (y)
\end{aligned}
$$

We can thus write

$$
e^{x+i y}=e^{x}(\cos (y)+i \sin (y))
$$

Identify $x+y i$ with the corresponding point (x, y) in the plane. Picture the complex numbers as forming a plane.

Now every point in the plane can be written in polar co-ordinates as $(r \cos \theta, r \sin \theta)$ and $\operatorname{com-}$ paring this with our formula for the exponential we see we can write

$$
x+i y=\sqrt{x^{2}+y^{2}} e^{i \theta}=r e^{i \theta}
$$

for an angle $\theta \in[0,2 \pi)$.

Multiplication revisited: $x+i y=r e^{i \theta}, x^{\prime}+i y^{\prime}=$ $r^{\prime} e^{i \theta^{\prime}}$.

$$
(x+i y)\left(x^{\prime}+i y^{\prime}\right)=r e^{i \theta} r^{\prime} e^{i \theta^{\prime}}=r r^{\prime} e^{i\left(\theta+\theta^{\prime}\right)}
$$

We will need from time to time a couple of other definitions:

Definition: The modulus of $x+i y$ is

$$
|x+i y|=\sqrt{x^{2}+y^{2}} .
$$

Definition: The complex conjugate of $x+i y$ is $\overline{x+i y}=x-i y$.

Some identities: $z=x+i y=r e^{i \theta}$ and $z^{\prime}=$ $x^{\prime}+i y^{\prime}=r^{\prime} e^{i \theta^{\prime}}$. Then

$$
\begin{gathered}
z \bar{z}=x^{2}+y^{2}=r^{2}=|z|^{2} \\
\frac{z^{\prime}}{z}=\frac{z^{\prime} \bar{z}}{|z|^{2}}=r r^{\prime} e^{i\left(\theta^{\prime}-\theta\right)} \\
\overline{r e^{i \theta}}=r e^{-i \theta} .
\end{gathered}
$$

Notes on calculus with complex variables.

Essentially usual rules apply so, for example,

$$
\frac{d}{d t} e^{i t}=i e^{i t}
$$

We will (mostly) be doing only integrals over the real line; the theory of integrals along paths in the complex plane is a very important part of mathematics, however.

FACT: (not used explicitly in course). If f : $\mathbb{C} \mapsto \mathbb{C}$ is differentiable then f is analytic (has power series expansion).

End of Aside

Characteristic Functions

Definition: The characteristic function of a real rv X is

$$
\phi_{X}(t)=E\left(e^{i t X}\right)
$$

where $i=\sqrt{-1}$ is the imaginary unit.

Since

$$
e^{i t X}=\cos (t X)+i \sin (t X)
$$

we find that

$$
\phi_{X}(t)=E(\cos (t X))+i E(\sin (t X)) .
$$

Since the trigonometric functions are bounded by 1 the expected values must be finite for all t.

This is precisely the reason for using characteristic rather than moment generating functions in probability theory courses.

Theorem 1 For any two real rvs X and Y the following are equivalent:

1. X and Y have the same distribution, that is, for any (Borel) set A we have

$$
P(X \in A)=P(Y \in A)
$$

2. $F_{X}(t)=F_{Y}(t)$ for all t.
3. $\phi_{X}(t)=E\left(e^{i t X}\right)=E\left(e^{i t Y}\right)=\phi_{Y}(t)$ for all real t.

Moreover, all of these are implied if there is a positive ϵ such that for all $|t| \leq \epsilon$

$$
M_{X}(t)=M_{Y}(t)<\infty .
$$

