
Moment Generating Functions

Defn: The moment generating function of a

real valued X is

MX(t) = E(etX)

defined for those real t for which the expected

value is finite.

Defn: The moment generating function of

X ∈ Rp is

MX(u) = E[eutX]

defined for those vectors u for which the ex-

pected value is finite.

Formal connection to moments:

MX(t) =
∞
∑

k=0

E[(tX)k]/k!

=
∞
∑

k=0

µ′
ktk/k! .

Sometimes can find power series expansion of

MX and read off the moments of X from the

coefficients of tk/k!.
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Theorem: If M is finite for all t ∈ [−ǫ, ǫ] for

some ǫ > 0 then

1. Every moment of X is finite.

2. M is C∞ (in fact M is analytic).

3. µ′
k = dk

dtk
MX(0).

Note: C∞ means has continuous derivatives

of all orders. Analytic means has convergent

power series expansion in neighbourhood of

each t ∈ (−ǫ, ǫ).

The proof, and many other facts about mgfs,

rely on techniques of complex variables.
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MGFs and Sums

If X1, . . . , Xp are independent and Y =
∑

Xi
then the moment generating function of Y is

the product of those of the individual Xi:

E(etY ) =
∏

i

E(etXi)

or MY =
∏

MXi
.

Note: also true for multivariate Xi.

Problem: power series expansion of MY not

nice function of expansions of individual MXi
.

Related fact: first 3 moments (meaning µ, σ2

and µ3) of Y are sums of those of the Xi:

E(Y ) =
∑

E(Xi)

Var(Y ) =
∑

Var(Xi)

E[(Y − E(Y ))3] =
∑

E[(Xi − E(Xi))
3]

but

E[(Y − E(Y ))4] =
∑

{E[(Xi − E(Xi))
4] − 3E2[(Xi − E(Xi))

2]}

+ 3
{

∑

E[(Xi − E(Xi))
2]

}2
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Related quantities: cumulants add up prop-

erly.

Note: log of the mgf of Y is sum of logs of

mgfs of the Xi.

Defn: the cumulant generating function of a

variable X by

KX(t) = log(MX(t)) .

Then

KY (t) =
∑

KXi
(t) .

Note: mgfs are all positive so that the cumula-

tive generating functions are defined wherever

the mgfs are.

SO: KY has power series expansion:

KY (t) =
∞
∑

r=1

κrt
r/r! .

Defn: the κr are the cumulants of Y .

Observe

κr(Y ) =
∑

κr(Xi) .
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Relation between cumulants and moments:

Cumulant generating function is

K(t) = log(M(t))

= log(1 + [µ1t + µ′
2t2/2 + µ′

3t3/3! + · · · ])

Call quantity in [. . .] x; expand

log(1 + x) = x − x2/2 + x3/3 − x4/4 · · · .

Stick in the power series

x = µt + µ′
2t2/2 + µ′

3t3/3! + · · · ;

Expand out powers of x; collect together like

terms. For instance,

x2 = µ2t2 + µµ′
2t3

+ [2µ′
3µ/3! + (µ′

2)
2/4]t4 + · · ·

x3 = µ3t3 + 3µ′
2µ2t4/2 + · · ·

x4 = µ4t4 + · · · .

Now gather up the terms. The power t1 oc-

curs only in x with coefficient µ. The power t2

occurs in x and in x2 and so on.
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Putting these together gives

K(t) =

µt + [µ′
2 − µ2]t2/2

+ [µ′
3 − 3µµ′

2 + 2µ3]t3/3!

+ [µ′
4−4µ′

3µ−3(µ′
2)

2 +12µ′
2µ2−6µ4]t4/4! · · ·

Comparing coefficients to tr/r! we see that

κ1 = µ

κ2 = µ′
2 − µ2 = σ2

κ3 = µ′
3 − 3µµ′

2 + 2µ3 = E[(X − µ)3]

κ4 = µ′
4 − 4µ′

3µ − 3(µ′
2)

2 + 12µ′
2µ2 − 6µ4

= E[(X − µ)4] − 3σ4 .

Check the book by Kendall and Stuart (or the

new version called Kendall’s Theory of Ad-

vanced Statistics by Stuart and Ord) for for-

mulas for larger orders r.
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Example: If X1, . . . , Xp are independent and

Xi has a N(µi, σ
2
i ) distribution then

MXi
(t) =

∫ ∞

−∞
etxe−

1
2(x−µi)

2/σ2
i dx/(

√
2πσi)

=
∫ ∞

−∞
et(σiz+µi)e−z2/2dz/

√
2π

=etµi

∫ ∞

−∞
e−(z−tσi)

2/2+t2σ2
i /2dz/

√
2π

=eσ2
i t2/2+tµi .

So cumulant generating function is:

KXi
(t) = log(MXi

(t)) = σ2
i t2/2 + µit .

Cumulants are κ1 = µi, κ2 = σ2
i and every

other cumulant is 0.

Cumulant generating function for Y =
∑

Xi is

KY (t) =
∑

σ2
i t2/2 + t

∑

µi

which is the cumulant generating function of

N(
∑

µi,
∑

σ2
i ).
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Example: Homework: derive moment and cu-

mulant generating function and moments of a

Gamma rv.

Now suppose Z1, . . . , Zν independent N(0,1)

rvs.

By definition: Sν =
∑ν

1 Z2
i has χ2

ν distribution.

It is easy to check S1 = Z2
1 has density

(u/2)−1/2e−u/2/(2
√

π)

and then the mgf of S1 is

(1 − 2t)−1/2 .

It follows that

MSν(t) = (1 − 2t)−ν/2

which is (homework) moment generating func-

tion of a Gamma(ν/2,2) rv.

SO: χ2
ν dstbn has Gamma(ν/2,2) density:

(u/2)(ν−2)/2e−u/2/(2Γ(ν/2)) .
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Example: The Cauchy density is

1

π(1 + x2)
;

corresponding moment generating function is

M(t) =
∫ ∞

−∞
etx

π(1 + x2)
dx

which is +∞ except for t = 0 where we get 1.

Every t distribution has exactly same mgf. So:

can’t use mgf to distinguish such distributions.

Problem: these distributions do not have in-

finitely many finite moments.

So: develop substitute for mgf which is defined

for every distribution, namely, the characteris-

tic function.

Characteristic Functions

Definition: The characteristic function of a

real rv X is

φX(t) = E(eitX)

where i =
√
−1 is the imaginary unit.
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Aside on complex arithmetic.

Complex numbers: add i =
√
−1 to the real

numbers.

Require all the usual rules of algebra to work.

So: if i and any real numbers a and b are to

be complex numbers then so must be a + bi.

Multiplication: If we multiply a complex num-

ber a + bi with a and b real by another such

number, say c+di then the usual rules of arith-

metic (associative, commutative and distribu-

tive laws) require

(a + bi)(c + di) =ac + adi + bci + bdi2

=ac + bd(−1) + (ad + bc)i

=(ac − bd) + (ad + bc)i

so this is precisely how we define multiplication.
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Addition: follow usual rules to get

(a + bi) + (c + di) = (a + c) + (b + d)i .

Additive inverses: −(a + bi) = −a + (−b)i.

Multiplicative inverses:

1

a + bi
=

1

a + bi

a − bi

a − bi

=
a − bi

a2 − abi + abi − b2i2

=
a − bi

a2 + b2
.

Division:

a + bi

c + di
=

(a + bi)

(c + di)

(c − di)

(c − di)

=
ac − bd + (bc + ad)i

c2 + d2
.

Notice: usual rules of arithmetic don’t require

any more numbers than

x + yi

where x and y are real.
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Transcendental functions: For real x have

ex =
∑

xk/k! so

ex+iy = exeiy .

How to compute eiy?

Remember i2 = −1 so i3 = −i, i4 = 1 i5 =

i1 = i and so on. Then

eiy =
∞
∑

0

(iy)k

k!

=1 + iy + (iy)2/2 + (iy)3/6 + · · ·
=1 − y2/2 + y4/4! − y6/6! + · · ·

+ iy − iy3/3! + iy5/5! + · · ·
=cos(y) + i sin(y)

We can thus write

ex+iy = ex(cos(y) + i sin(y))
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Identify x + yi with the corresponding point

(x, y) in the plane. Picture the complex num-

bers as forming a plane.

Now every point in the plane can be written in

polar co-ordinates as (r cos θ, r sin θ) and com-

paring this with our formula for the exponential

we see we can write

x + iy =

√

x2 + y2 eiθ = reiθ

for an angle θ ∈ [0,2π).

Multiplication revisited: x+ iy = reiθ, x′+ iy′ =
r′eiθ′.

(x + iy)(x′ + iy′) = reiθr′eiθ′ = rr′ei(θ+θ′) .
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We will need from time to time a couple of

other definitions:

Definition: The modulus of x + iy is

|x + iy| =
√

x2 + y2 .

Definition: The complex conjugate of x+ iy

is x + iy = x − iy.

Some identities: z = x + iy = reiθ and z′ =

x′ + iy′ = r′eiθ′. Then

zz = x2 + y2 = r2 = |z|2

z′

z
=

z′z
|z|2 = rr′ei(θ′−θ)

reiθ = re−iθ.
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Notes on calculus with complex variables.

Essentially usual rules apply so, for example,

d

dt
eit = ieit .

We will (mostly) be doing only integrals over

the real line; the theory of integrals along paths

in the complex plane is a very important part

of mathematics, however.

FACT: (not used explicitly in course). If f :

C 7→ C is differentiable then f is analytic (has

power series expansion).

End of Aside
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Characteristic Functions

Definition: The characteristic function of a

real rv X is

φX(t) = E(eitX)

where i =
√
−1 is the imaginary unit.

Since

eitX = cos(tX) + i sin(tX)

we find that

φX(t) = E(cos(tX)) + iE(sin(tX)) .

Since the trigonometric functions are bounded

by 1 the expected values must be finite for all

t.

This is precisely the reason for using character-

istic rather than moment generating functions

in probability theory courses.
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Theorem 1 For any two real rvs X and Y the

following are equivalent:

1. X and Y have the same distribution, that

is, for any (Borel) set A we have

P(X ∈ A) = P(Y ∈ A) .

2. FX(t) = FY (t) for all t.

3. φX(t) = E(eitX) = E(eitY ) = φY (t) for all

real t.

Moreover, all of these are implied if there is a

positive ǫ such that for all |t| ≤ ǫ

MX(t) = MY (t) < ∞ .
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