
0.0.1 Moment Generating Functions

There are many uses of generating functions in mathematics. We often study
the properties of a sequence an of numbers by creating the function

∞∑
n=0

ans
n

In statistics the most commonly used generating functions are the probability
generating function (for discrete variables), the moment generating function,
the characteristic function and the cumulant generating function. I begin
with moment generating functions:

Definition: The moment generating function of a real valued random vari-
able X is

MX(t) = E(etX)

defined for those real t for which the expected value is finite.

Definition: The moment generating function of a random vector X ∈ Rp is

MX(u) = E[eu
tX ]

defined for those vectors u for which the expected value is finite.
This function has a formal connection to moments obtained by taking

expected values term by term; in fact if MX(t) is finite for all |t| < ε then it
is legitimate to take expected values term by term for |t| < ε. We get

MX(t) =
∞∑
k=0

E[(tX)k]/k!

=
∞∑
k=0

µ′kt
k/k! .

Sometimes we can find the power series expansion of MX and read off the
moments of X from the coefficients of tk/k!.

Theorem 1 If M is finite for all t ∈ [−ε, ε] for some ε > 0 then

1. Every moment of X is finite.

2. M is C∞ (in fact M is analytic).
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3. µ′k = dk

dtk
MX(0).

Note: A function is C∞ if it has continuous derivatives of all orders.

Note: Analytic means the function has a convergent power series expansion
in neighbourhood of each t ∈ (−ε, ε).

The proof, and many other facts about moment generating functions, rely
on advanced techniques in the field of complex variables. I won’t be proving
any of these assertions.

0.0.2 Moment Generating Functions and Sums

One of the most useful facts about moment generating functions is that the
moment generating function of a sum of independent variables is the product
of the individual moment generating functions.

Theorem 2 If X1, . . . , Xp are independent random vectors in Rp and Y =∑
Xi then the moment generating function of Y is the product of those of

the individual Xi:

MY (u) = E(eu
tY ) =

∏
i

E(eu
tXi) =

∏
i

MXi(u).

If we could find the power series expansion of MY then we could find the
moments of MY . The problem, however, is that the power series expansion
of MY not nice function of the expansions of individual MXi . There is a
related fact, namely, that the first 3 moments (meaning µ, σ2 and µ3) of Y
are sums of those of the Xi:

E(Y ) =
∑

E(Xi)

Var(Y ) =
∑

Var(Xi)

E[(Y − E(Y ))3] =
∑

E[(Xi − E(Xi))
3]

(I have given the univariate versions of these formulas but the multivariate
versions are correct as well. The first line is a vector, the second a matrix
and the third an object with 3 subscripts.) However:

E[(Y − E(Y ))4] =
∑
{E[(Xi − E(Xi))

4]− 3E2[(Xi − E(Xi))
2]}

+ 3
{∑

E[(Xi − E(Xi))
2]
}2
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These observations lead us to consider cumulants and the cumulant gen-
erating function. Since the logarithm of a product is a sum of logarithms
we are led to consider taking logs of the moment generating function. The
result will give us cumulants which add up properly.

Definition: the cumulant generating function of a a random vector X by

KX(u) = log(MX(u)) .

Then if X1, . . . , Xn are independent and Y =
∑n

1 Xi we have

KY (t) =
∑

KXi(t) .

Note that moment generating functions are all positive so that the cumulant
generating functions are defined wherever the moment generating functions
are.

Now KY has a power series expansion. I consider here only the univariate
case.

KY (t) =
∞∑
r=1

κrt
r/r! .

Definition: the κr are the cumulants of Y .
Observe that

κr(Y ) =
∑

κr(Xi) .

In other words cumulants of independent quantities add up. Now we examine
the relation between cumulants and moments by relating the power series
expansion of M with that of its logarithm. The cumulant generating function
is

K(t) = log(M(t))

= log(1 + [µ1t+ µ′2t
2/2 + µ′3t

3/3! + · · · ])

Call the quantity in [. . .] x and expand

log(1 + x) = x− x2/2 + x3/3− x4/4 · · · .

Stick in the power series

x = µt+ µ′2t
2/2 + µ′3t

3/3! + · · · ;
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Expand out powers of x and collect together like terms. For instance,

x2 = µ2t2 + µµ′2t
3 + [2µ′3µ/3! + (µ′2)

2/4]t4 + · · ·
x3 = µ3t3 + 3µ′2µ

2t4/2 + · · ·
x4 = µ4t4 + · · · .

Now gather up the terms. The power t1 occurs only in x with coefficient µ.
The power t2 occurs in x and in x2 and so on. Putting these together gives

K(t) =µt+ [µ′2 − µ2]t2/2 + [µ′3 − 3µµ′2 + 2µ3]t3/3!

+ [µ′4 − 4µ′3µ− 3(µ′2)
2 + 12µ′2µ

2 − 6µ4]t4/4! · · ·

Comparing coefficients of tr/r! we see that

κ1 = µ

κ2 = µ′2 − µ2 = σ2

κ3 = µ′3 − 3µµ′2 + 2µ3 = E[(X − µ)3]

κ4 = µ′4 − 4µ′3µ− 3(µ′2)
2 + 12µ′2µ

2 − 6µ4

= E[(X − µ)4]− 3σ4 .

Reference: Kendall and Stuart (or a new version called Kendall’s Theory
of Advanced Statistics by Stuart and Ord) for formulas for larger orders r.

Example: The normal distribution: Suppose X1, . . . , Xp independent, Xi ∼
N(µi, σ

2
i ) so that

MXi(t) =

∫ ∞
−∞

etxe−
1
2
(x−µi)2/σ2

i dx/(
√

2πσi)

=

∫ ∞
−∞

et(σiz+µi)e−z
2/2dz/

√
2π

=etµi
∫ ∞
−∞

e−(z−tσi)
2/2+t2σ2

i /2dz/
√

2π

=eσ
2
i t

2/2+tµi .

The cumulant generating function is then

KXi(t) = log(MXi(t)) = σ2
i t

2/2 + µit .
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The cumulants are κ1 = µi, κ2 = σ2
i and every other cumulant is 0. Cumulant

generating function for Y =
∑
Xi is

KY (t) =
∑

σ2
i t

2/2 + t
∑

µi

which is the cumulant generating function of N(
∑
µi,

∑
σ2
i ).

Example: The χ2 distribution: In you homework I am asking you to derive
the moment and cumulant generating functions and moments of a Gamma
random variable. Now suppose Z1, . . . , Zν independent N(0, 1) rvs. By def-
inition the random variable Sν =

∑ν
1 Z

2
i has χ2

ν distribution. It is easy to
check S1 = Z2

1 has density

(u/2)−1/2e−u/2/(2
√
π)

and then the moment generating function of S1 is

(1− 2t)−1/2 .

It follows that
MSν (t) = (1− 2t)−ν/2

which is (from the homework) the moment generating function of a Gamma(ν/2, 2)
random variable. So the χ2

ν distribution has a Gamma(ν/2, 2) density given
by

(u/2)(ν−2)/2e−u/2/(2Γ(ν/2)) .

Example: The Cauchy distribution: The Cauchy density is

1

π(1 + x2)
;

the corresponding moment generating function is

M(t) =

∫ ∞
−∞

etx

π(1 + x2)
dx

which is +∞ except for t = 0 where we get 1. Every t distribution has
exactly same moment generating function. So we cannot use moment gener-
ating functions to distinguish such distributions. The problem is that these
distributions do not have infinitely many finite moments. So we now develop
a substitute substitute for the moment generating function which is defined
for every distribution, namely, the characteristic function.
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0.0.3 Aside on complex arithmetic

Complex numbers are a fantastically clever idea. The idea is to imagine that
−1 has a square root and see what happens. We add i ≡

√
−1 to the real

numbers. Then, we insist that all the usual rules of algebra are unchanged.
So, if i and any real numbers a and b are to be complex numbers then so
must be a + bi. Now let us look at each of the arithmetic operations to see
how they have to work:

• Multiplication: If we multiply a complex number a+bi with a and b real
by another such number, say c + di then the usual rules of arithmetic
(associative, commutative and distributive laws) require

(a+ bi)(c+ di) =ac+ adi+ bci+ bdi2

=ac+ bd(−1) + (ad+ bc)i

=(ac− bd) + (ad+ bc)i

so this is precisely how we define multiplication.

• Addition: we follow the usual rules (commutative, associative and dis-
tributive laws) to get

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i .

• Additive inverses:
−(a+ bi) = −a+ (−b)i.

Notice that 0 + 0i functions as 0 – it is an additive identity. In fact we
normally just write 0.

• Multiplicative inverses:

1

a+ bi
=

1

a+ bi

a− bi
a− bi

=
a− bi

a2 − abi+ abi− b2i2
=

a− bi
a2 + b2

.

• Division:

a+ bi

c+ di
=

(a+ bi)

(c+ di)

(c− di)
(c− di)

=
ac− bd+ (bc+ ad)i

c2 + d2
.
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This rule for clearing the complex number from the denominator is a
perfect match for the technique taught in high school and used in cal-
culus, for dealing with fractions involving a+ b

√
c in the denominator.

• You should now notice that the usual rules of arithmetic don’t require
any more numbers than

x+ yi

where x and y are real. So the complex numbers C are just all these
numbers.

• Transcendental functions: For real x have ex =
∑
xk/k! and ea+b =

eaeb so we want to insist that

ex+iy = exeiy .

The problem is how to compute eiy?

• Remember i2 = −1 so i3 = −i, i4 = 1 i5 = i1 = i and so on. Then

eiy =
∞∑
0

(iy)k

k!

=1 + iy + (iy)2/2 + (iy)3/6 + · · ·
=1− y2/2 + y4/4!− y6/6! + · · ·

+ iy − iy3/3! + iy5/5! + · · ·
= cos(y) + i sin(y)

• We can thus write

ex+iy = ex(cos(y) + i sin(y))

• Identify x+ yi with the corresponding point (x, y) in the plane.

• Picture the complex numbers as forming a plane.

• Now every point in the plane can be written in polar co-ordinates as
(r cos θ, r sin θ) and comparing this with our formula for the exponential
we see we can write

x+ iy =
√
x2 + y2 eiθ = reiθ

for an angle θ ∈ [0, 2π).
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• Multiplication revisited: if x+ iy = reiθ and x′+ iy′ = r′eiθ
′

then when
we multiply we get

(x+ iy)(x′ + iy′) = reiθr′eiθ
′
= rr′ei(θ+θ

′) .

• We will need from time to time a couple of other definitions:

• Definition: The modulus of x+ iy is

|x+ iy| =
√
x2 + y2 .

• Definition: The complex conjugate of x+ iy is x+ iy = x− iy.

• Some identities: z = x+ iy = reiθ and z′ = x′ + iy′ = r′eiθ
′
.

• Then
zz = x2 + y2 = r2 = |z|2

z′

z
=
z′z

|z|2
= rr′ei(θ

′−θ)

reiθ = re−iθ.

0.0.4 Notes on calculus with complex variables

The rules for calculus with complex numbers are really very much like the
usual rules. For example,

d

dt
eit = ieit .

We will (mostly) be doing only integrals over the real line; the theory of
integrals along paths in the complex plane is a very important part of math-
ematics, however.

Fact: (This fact is not used explicitly in course). If f : C 7→ C is differen-
tiable then f is analytic (has power series expansion).

8



0.0.5 Characteristic Functions

Definition: The characteristic function of a real random variable X is

φX(t) = E(eitX)

where i =
√
−1 is the imaginary unit.

Since
eitX = cos(tX) + i sin(tX)

we find that
φX(t) = E(cos(tX)) + iE(sin(tX)) .

Since the trigonometric functions are bounded by 1 the expected values must
be finite for all t. This is precisely the reason for using characteristic rather
than moment generating functions in probability theory courses.

The characteristic function is called “characteristic” because if you know
it you know the distribution of the random variable involved. That is what is
meant in mathematics when we say something characterizes something else.

Theorem 3 For any two real random vectors X and Y (say p-dimensional)
the following are equivalent:

1. X and Y have the same distribution, that is, for any (Borel) set A ⊂ Rp

we have
P (X ∈ A) = P (Y ∈ A) .

2. FX(t) = FY (t) for all t ∈ Rp.

3. φX(u) = E(eiu
tX) = E(eiu

tY ) = φY (u) for all u ∈ Rp.

Moreover, all these are implied if there is ε > 0 such that for all |t| ≤ ε

MX(t) = MY (t) <∞ .
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