
STAT 801: Mathematical Statistics

Inversion of Generating Functions

Previous theorem is non-constructive characterization. Can get from φX to FX or fX by inversion. See
homework for basic inversion formula:
If X is a random variable taking only integer values then for each integer k

P (X = k) =
1

2π

∫ 2π

0

φX(t)e−itkdt

=
1

2π

∫ π

−π

φX(t)e−itkdt .

The proof proceeds from the formula

φX(t) =
∑

k

eiktP (X = k) .

Now suppose that X has a continuous bounded density f . Define

Xn = [nX ]/n

where [a] denotes the integer part (rounding down to the next smallest integer). We have

P (k/n ≤ X < (k + 1)/n) =P ([nX ] = k)

=
1

2π

∫ π

−π

φ[nX](t)

× e−itkdt .

Make the substitution t = u/n, and get

nP (k/n ≤ X < (k + 1)/n) =
1

2π
×
∫ nπ

−nπ

φ[nX](u/n)e
iuk/ndu

Now, as n → ∞ we have
φ[nX](u/n) = E(eiu[nX]/n) → E(eiuX)

(by the dominated convergence theorem – the dominating random variable is just the constant 1). The range
of integration converges to the whole real line and if k/n → x we see that the left hand side converges to the
density f(x) while the right hand side converges to

1

2π

∫

∞

−∞

φX(u)e−iuxdu

which gives the inversion formula

fX(x) =
1

2π

∫

∞

−∞

φX(u)e−iuxdu

Many other such formulas are available to compute things like F (b)− F (a) and so on.
All such formulas are sometimes referred to as Fourier inversion formulas; the characteristic function

itself is sometimes called the Fourier transform of the distribution or cdf or density of X .

Inversion of the Moment Generating Function
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MGF and characteristic function related formally:

MX(it) = φX(t)

When MX exists this relationship is not merely formal; the methods of complex variables mean there is a
“nice” (analytic) function which is E(ezX) for any complex z = x+ iy for which MX(x) is finite.

SO: there is an inversion formula for MX using a complex contour integral:
If z1 and z2 are two points in the complex plane and C a path between these two points we can define

the path integral
∫

C

f(z)dz

by the methods of line integration.
Do algebra with such integrals via usual theorems of calculus. The Fourier inversion formula was

2πf(x) =

∫

∞

−∞

φ(t)e−itxdt

so replacing φ by M we get

2πf(x) =

∫

∞

−∞

M(it)e−itxdt

If we just substitute z = it then we find

2πif(x) =

∫

C

M(z)e−zxdz

where the path C is the imaginary axis. Methods of complex integration permit us to replace C by any
other path which starts and ends at the same place. Sometimes can choose path to make it easy to do the
integral approximately; this is what saddlepoint approximations are. Inversion formula is called the inverse
Laplace transform; the mgf is also called the Laplace transform of the distribution or cdf or density.

Applications of Inversion

1): Numerical calculations
Example: Many statistics have a distribution which is approximately that of

T =
∑

λjZ
2
j

where the Zj are iid N(0, 1). In this case

E(eitT ) =
∏

E(eitλjZ
2

j )

=
∏

(1 − 2itλj)
−1/2 .

Imhof (Biometrika, 1961) gives a simplification of the Fourier inversion formula for

FT (x) − FT (0)

which can be evaluated numerically:

FT (x)− FT (0) =

∫ x

0

fT (y)dy

=

∫ x

0

1

2π

∫

∞

−∞

×
∏

(1 − 2itλj)
−1/2e−itydtdy
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Multiply

φ(t) =

[

1
∏

(1− 2itλj)

]1/2

top and bottom by the complex conjugate of the denominator:

φ(t) =

[

∏

(1 + 2itλj)
∏

(1 + 4t2λ2
j )

]1/2

The complex number 1+2itλj is rje
iθj where rj =

√

1 + 4t4λ2
j and tan(θj) = 2tλj This allows us to rewrite

φ(t) =

[

∏

rje
i
∑

θj

∏

r2j

]1/2

or

φ(t) =
ei

∑
tan−1(2tλj)/2

∏

(1 + 4t2λ2
j )

1/4

Assemble this to give

FT (x)− FT (0) =
1

2π

∫

∞

−∞

eiθ(t)

ρ(t)

∫ x

0

e−iytdydt

where
θ(t) =

∑

tan−1(2tλj)/2

and ρ(t) =
∏

(1 + 4t2λ2
j )

1/4. But
∫ x

0

e−iytdy =
e−ixt − 1

−it

We can now collect up the real part of the resulting integral to derive the formula given by Imhof. I don’t
produce the details here.

2): The central limit theorem (in some versions) can be deduced from the Fourier inversion formula: if
X1, . . . , Xn are iid with mean 0 and variance 1 and T = n1/2X̄ then with φ denoting the characteristic
function of a single X we have

E(eitT ) = E(ein
−1/2t

∑
Xj )

=
[

φ(n−1/2t)
]n

≈
[

φ(0) +
tφ′(0)
√
n

+
t2φ′′(0)

2n
+ o(n−1)

]n

But now φ(0) = 1 and

φ′(t) =
d

dt
E(eitX1 ) = iE(X1e

itX1)

So φ′(0) = E(X1) = 0. Similarly
φ′′(t) = i2E(X2

1e
itX1)

so that
φ′′(0) = −E(X2

1 ) = −1

It now follows that

E(eitT ) ≈ [1− t2/(2n) + o(1/n)]n → e−t2/2.
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With care we can then apply the Fourier inversion formula and get

fT (x) =
1

2π

∫

∞

−∞

e−itx[φ(tn−1/2)]ndt

→
1

2π

∫

∞

−∞

e−itxe−t2/2dt

=
1

√
2π

φZ(−x)

where φZ is the characteristic function of a standard normal variable Z. Doing the integral we find

φZ(x) = φZ(−x) = e−x2/2

so that

fT (x) →
1

√
2π

e−x2/2

which is a standard normal random variable.
This proof of the central limit theorem is not terribly general since it requires T to have a bounded

continuous density. The central limit theorem itself is a statement about cdfs not densities and is

P (T ≤ t) → P (Z ≤ t) .

3) Saddlepoint approximation from MGF inversion formula

2πif(x) =

∫ i∞

−i∞

M(z)e−zxdz

(limits of integration indicate contour integral running up imaginary axis.) Replace contour (using complex
variables) with line Re(z) = c. (Re(Z) denotes the real part of z, that is, x when z = x + iy with x and
y real.) Must choose c so that M(c) < ∞. Rewrite inversion formula using cumulant generating function
K(t) = log(M(t)):

2πif(x) =

∫ c+i∞

c−i∞

exp(K(z)− zx)dz .

Along the contour in question we have z = c+ iy so we can think of the integral as being

i

∫

∞

−∞

exp(K(c+ iy)− (c+ iy)x)dy

Now do a Taylor expansion of the exponent:

K(c+ iy)− (c+ iy)x = K(c)− cx+ iy(K ′(c)− x)− y2K ′′(c)/2 + · · ·

Ignore the higher order terms and select a c so that the first derivative

K ′(c)− x

vanishes. Such a c is a saddlepoint. We get the formula

2πf(x) ≈ exp(K(c)− cx)×
∫

∞

−∞

exp(−y2K ′′(c)/2)dy.

The integral is just a normal density calculation and gives
√

2π/K ′′(c). The saddlepoint approximation is

f(x) =
exp(K(c)− cx)
√

2πK ′′(c)
.
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Essentially the same idea lies at the heart of the proof of Sterling’s approximation to the factorial function:

n! =

∫

∞

0

exp(n log(x) − x)dx

The exponent is maximized when x = n. For n large we approximate f(x) = n log(x)− x by

f(x) ≈ f(x0) + (x− x0)f
′(x0) + (x − x0)

2f ′′(x0)/2

and choose x0 = n to make f ′(x0) = 0. Then

n! ≈
∫

∞

0

exp[n log(n)− n− (x− n)2/(2n)]dx

Substitute y = (x− n)/
√
n to get the approximation

n! ≈ n1/2nne−n

∫

∞

−∞

e−y2/2dy

or
n! ≈

√
2πnn+1/2e−n

This tactic is called Laplace’s method. Note that I am being very sloppy about the limits of integration;
to do the thing properly you have to prove that the integral over x not near n is negligible.
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