STAT 801: Mathematical Statistics
Inversion of Generating Functions

Previous theorem is non-constructive characterization. Can get from ¢x to Fx or fx by inversion. See
homework for basic inversion formula:
If X is a random variable taking only integer values then for each integer k
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The proof proceeds from the formula
ox(t) =Y e*P(X =k).
k

Now suppose that X has a continuous bounded density f. Define
X, = [nX]/n
where [a] denotes the integer part (rounding down to the next smallest integer). We have

P(k/n < X < (k+1)/n) =P([nX] = k)
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Make the substitution ¢ = u/n, and get
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nPk/n <X <(k+1)/n)= % X Ppnx] (u/n)e ™ /n gy
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Now, as n — oco we have | |
¢[nX](U/n) = E(ezu[nX]/n) N E(equ)

(by the dominated convergence theorem — the dominating random variable is just the constant 1). The range
of integration converges to the whole real line and if k/n — x we see that the left hand side converges to the
density f(x) while the right hand side converges to
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which gives the inversion formula
1 > —iux
fx(x) = Py /700 ox(u)e du

Many other such formulas are available to compute things like F'(b) — F'(a) and so on.
All such formulas are sometimes referred to as Fourier inversion formulas; the characteristic function
itself is sometimes called the Fourier transform of the distribution or cdf or density of X.

Inversion of the Moment Generating Function



MGF and characteristic function related formally:
Mx (it) = ¢x ()
When Mx exists this relationship is not merely formal; the methods of complex variables mean there is a
“nice” (analytic) function which is E(e*¥) for any complex z = z + iy for which Mx () is finite.

SO: there is an inversion formula for Mx using a complex contour integral:
If z; and 29 are two points in the complex plane and C' a path between these two points we can define

the path integral
| e
c
by the methods of line integration.
Do algebra with such integrals via usual theorems of calculus. The Fourier inversion formula was
© .
2r f(x) = / d(t)e " dt
— 00
so replacing ¢ by M we get
o0
2 f(x) = / M (it)e” " dt
—0o0
If we just substitute z = it then we find
2mif(x) :/ M(z)e™*"dz
c
where the path C is the imaginary axis. Methods of complex integration permit us to replace C' by any
other path which starts and ends at the same place. Sometimes can choose path to make it easy to do the

integral approximately; this is what saddlepoint approximations are. Inversion formula is called the inverse
Laplace transform; the mgf is also called the Laplace transform of the distribution or cdf or density.

Applications of Inversion

1): Numerical calculations
Example: Many statistics have a distribution which is approximately that of

T=Y )\Z;
where the Z; are iid N(0,1). In this case
E(eitT) _ HE(eit,\jzf)
=[] - 2itn) /2.
Imhof (Biometrika, 1961) gives a simplification of the Fourier inversion formula for
Fr(z) — Fr(0)

which can be evaluated numerically:
Fr(z) — Fr(0) =/ fr(y)dy
0

_[fr = S\ \—1/2,—it
_/0 %/ xH(l—ta)\j) e "Vdtdy
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Multiply "
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top and bottom by the complex conjugate of the denominator:

¢(t) =

M +2in) ]
[1(1 + 4202)

The complex number 1+ 2it); is ;e where r; =, /1 + 4t*X? and tan(6;) = 2t\; This allows us to rewrite

T et 2205
4(1) = l“ s

zztan (2tX;)/2
¢(t) = F—reia
[1(1 + 4222)1/7
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We can now collect up the real part of the resulting integral to derive the formula given by Imhof. I don’t
produce the details here.

or
Assemble this to give

where

and p(t) =[(1+ 4t2)\§)1/4. But

2): The central limit theorem (in some versions) can be deduced from the Fourier inversion formula: if
X1,...,X, are iid with mean 0 and variance 1 and T = n'/2X then with ¢ denoting the characteristic
function of a single X we have

E(eitT) _ E(emfl/%zxj)
= [qﬁ(n*l/%)}n

(0 240 n
~ {05(0) + —tqj/(ﬁ) + 2280 ¢2n( ) +o(n™h)
But now ¢(0) = 1 and
§ (1) = S B = iB(Xe )

So ¢'(0) = E(X;) = 0. Similarly
¢/I(t) =3 E(X2 ltX1)

so that
¢"(0) = ~B(X}) = -

It now follows that

By ~ [1—12/(2n) + o(1/n)]" — et /2.



With care we can then apply the Fourier inversion formula and get

fT(ac) 1 /OO e—itz [(b(t’n_l/Q)]ndt
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where ¢z is the characteristic function of a standard normal variable Z. Doing the integral we find

$z7(z) = ¢z(~x) = e /2

efitzeftz/zdt

so that
1 —z2%/2

e
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which is a standard normal random variable.
This proof of the central limit theorem is not terribly general since it requires T to have a bounded
continuous density. The central limit theorem itself is a statement about cdfs not densities and is

P(T<t)—P(Z<t).

3) Saddlepoint approximation from MGF inversion formula

2mif(x) = - M(z)e”**dz

—100

(limits of integration indicate contour integral running up imaginary axis.) Replace contour (using complex
variables) with line Re(z) = c¢. (Re(Z) denotes the real part of z, that is,  when z = z + iy with = and
y real.) Must choose ¢ so that M(c) < oo. Rewrite inversion formula using cumulant generating function
K(t) = log(M(t)):

ct+100
2mif(x) = / exp(K(z) — zx)dz .

Along the contour in question we have z = ¢ + iy so we can think of the integral as being
i ew(K(e+iy) - o+ ipa)dy
Now do a Taylor expansion of the exponent:
K(c+iy) — (c+iy)z = K(c) — cx +iy(K'(c) —z) —y*K"(c)/2+ - -
Ignore the higher order terms and select a ¢ so that the first derivative
K'(c)— =

vanishes. Such a c is a saddlepoint. We get the formula

oo

27 f(z) ~ exp(K (c) — cx) X / exp(—y* K" (c)/2)dy.

— 00
The integral is just a normal density calculation and gives 1/27/K"(c). The saddlepoint approximation is

exp(K(c) — cx)

J@) = 2 K" (c)



Essentially the same idea lies at the heart of the proof of Sterling’s approximation to the factorial function:

nl = / exp(nlog(z) — z)dx
0
The exponent is maximized when 2 = n. For n large we approximate f(x) = nlog(z) — x by

f(@) = f(zo) + (z = o) f'(w0) + (x — w0)* f (20) /2

and choose g = n to make f’'(z9) = 0. Then
n! & /OO exp[nlog(n) —n — (x —n)?/(2n)]dx
0
Substitute y = (x — n)/y/n to get the approximation
nl ~n'/?nte " /OO e_y2/2dy

or
n! ~ 2mn" T/ 2en

This tactic is called Laplace’s method. Note that I am being very sloppy about the limits of integration;
to do the thing properly you have to prove that the integral over x not near n is negligible.



