
Inversion

Previous theorem is non-constructive charac-

terization.

Can get from φX to FX or fX by inversion.

See homework for basic inversion formula:

If X is a random variable taking only integer

values then for each integer k

P(X = k) =
1

2π

∫ 2π

0
φX(t)e−itkdt

=
1

2π

∫ π

−π
φX(t)e−itkdt .

The proof proceeds from the formula

φX(t) =
∑

k

eiktP(X = k) .
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Now suppose X has continuous bounded den-

sity f . Define

Xn = [nX]/n

where [a] denotes the integer part (rounding

down to the next smallest integer). We have

P(k/n ≤ X < (k + 1)/n)

=P([nX] = k)

=
1

2π

∫ π

−π
φ[nX](t) × e−itkdt .

Make the substitution t = u/n, and get

nP(k/n ≤ X < (k + 1)/n) =
1

2π

×
∫ nπ

−nπ
φ[nX](u/n)e−iuk/ndu .
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Now, as n → ∞ we have

φ[nX](u/n) = E(eiu[nX]/n) → E(eiuX) .

(Dominated convergence: |eiu| ≤ 1.)

Range of integration converges to the whole

real line.

If k/n → x left hand side converges to density

f(x) while right hand side converges to

1

2π

∫ ∞

−∞
φX(u)e−iuxdu

which gives the inversion formula

fX(x) =
1

2π

∫ ∞

−∞
φX(u)e−iuxdu .

Many other such formulas are available to com-

pute things like F(b) − F(a) and so on.

All such formulas called Fourier inversion for-

mulas.

Characteristic ftn also called Fourier trans-

form of f or F .
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Inversion of the Moment Generating

Function

MGF and characteristic function related for-

mally:

MX(it) = φX(t) .

When MX exists this relationship is not merely

formal; the methods of complex variables mean

there is a “nice” (analytic) function which is

E(ezX) for any complex z = x + iy for which

MX(x) is finite.

SO: there is an inversion formula for MX using

a complex contour integral:

If z1 and z2 are two points in the complex plane

and C a path between these two points we can

define the path integral
∫

C
f(z)dz

by the methods of line integration.

Do algebra with such integrals via usual theo-

rems of calculus.

85



The Fourier inversion formula was

2πf(x) =
∫ ∞

−∞
φ(t)e−itxdt

so replacing φ by M we get

2πf(x) =

∫ ∞

−∞
M(it)e−itxdt .

If we just substitute z = it then we find

2πif(x) =

∫

C
M(z)e−zxdz

where the path C is the imaginary axis.

Complex contour integration: replace C by any

other path which starts and ends at the same

place.

Sometimes can choose path to make it easy

to do the integral approximately; this is what

saddlepoint approximations are.

Inversion formula is called the inverse Laplace

transform; the mgf is also called the Laplace

transform of f or F .
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Applications of Inversion

1): Numerical calculations

Example: Many statistics have a distribution

which is approximately that of

T =
∑

λjZ
2
j

where the Zj are iid N(0,1). In this case

E(eitT ) =
∏

E(e
itλjZ

2
j )

=
∏

(1 − 2itλj)
−1/2 .

Imhof (Biometrika, 1961) gives a simplification

of the Fourier inversion formula for

FT (x) − FT (0)

which can be evaluated numerically:

FT (x) − FT (0)

=
∫ x

0
fT (y)dy

=

∫ x

0

1

2π

∫ ∞

−∞

∏

(1 − 2itλj)
−1/2e−itydtdy .
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Multiply

φ(t) =

[

1
∏

(1 − 2itλj)

]1/2

top and bottom by the complex conjugate of

the denominator:

φ(t) =





∏

(1 + 2itλj)
∏

(1 + 4t2λ2
j )





1/2

.

The complex number 1 + 2itλj is rje
iθj where

rj =

√

1 + 4t4λ2
j

and

tan(θj) = 2tλj .
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This allows us to rewrite

φ(t) =





∏

rje
i
∑

θj

∏

r2j





1/2

or

φ(t) =
ei

∑

tan−1(2tλj)/2

∏

(1 + 4t2λ2
j )

1/4
.

Assemble this to give

FT (x) − FT (0) =
1

2π

∫ ∞

−∞
eiθ(t)

ρ(t)

∫ x

0
e−iytdydt

where

θ(t) =
∑

tan−1(2tλj)/2

and ρ(t) =
∏

(1 + 4t2λ2
j )

1/4. But

∫ x

0
e−iytdy =

e−ixt − 1

−it
.

We can now collect up the real part of the

resulting integral to derive the formula given

by Imhof. I don’t produce the details here.
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2): The central limit theorem (in some ver-

sions) can be deduced from the Fourier inver-

sion formula: if X1, . . . , Xn are iid with mean

0 and variance 1 and T = n1/2X̄ then with φ

denoting the characteristic function of a single

X we have

E(eitT ) = E(ein−1/2t
∑

Xj)

=
[

φ(n−1/2t)
]n

≈
[

φ(0) +
tφ′(0)√

n
+

t2φ′′(0)
2n

+ o(n−1)

]n

But now φ(0) = 1 and

φ′(t) =
d

dt
E(eitX1) = iE(X1eitX1) .

So φ′(0) = E(X1) = 0. Similarly

φ′′(t) = i2E(X2
1eitX1)

so that

φ′′(0) = −E(X2
1) = −1 .

It now follows that

E(eitT ) ≈ [1 − t2/(2n) + o(1/n)]n

→ e−t2/2 .
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With care we can then apply the Fourier inver-

sion formula and get

fT (x) =
1

2π

∫ ∞

−∞
e−itx[φ(tn−1/2)]ndt

→ 1

2π

∫ ∞

−∞
e−itxe−t2/2dt

=
1√
2π

φZ(−x)

where φZ is the characteristic function of a

standard normal variable Z. Doing the integral

we find

φZ(x) = φZ(−x) = e−x2/2

so that

fT (x) → 1√
2π

e−x2/2

which is a standard normal density.
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Proof of the central limit theorem not general:

requires T to have bounded continuous density.

Central limit theorem: statement about cdfs

not densities:

P(T ≤ t) → P(Z ≤ t) .

3) Saddlepoint approximation from MGF in-

version formula

2πif(x) =

∫ i∞

−i∞
M(z)e−zxdz

(limits of integration indicate contour integral

running up imaginary axis.)

Replace contour (using complex variables) with

line Re(z) = c. (Re(Z) denotes the real part

of z, that is, x when z = x + iy with x and

y real.) Must choose c so that M(c) < ∞.

Rewrite inversion formula using cumulant gen-

erating function K(t) = log(M(t)):

2πif(x) =
∫ c+i∞

c−i∞
exp(K(z) − zx)dz .
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Along the contour in question we have z =

c + iy so we can think of the integral as being

i
∫ ∞

−∞
exp(K(c + iy) − (c + iy)x)dy .

Now do a Taylor expansion of the exponent:

K(c + iy) − (c + iy)x =

K(c) − cx + iy(K ′(c) − x) − y2K ′′(c)/2 + · · · .

Ignore the higher order terms and select a c so

that the first derivative

K ′(c) − x

vanishes. Such a c is a saddlepoint. We get

the formula

2πf(x) ≈ exp(K(c) − cx)

×
∫ ∞

−∞
exp(−y2K ′′(c)/2)dy .

Integral is normal density calculation; gives
√

2π/K ′′(c) .

Saddlepoint approximation is

f(x) =
exp(K(c) − cx)

√

2πK ′′(c)
.
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Essentially same idea: Laplace’s approxima-

tion.

Example: Sterling’s approximation to facto-

rial:

n! =

∫ ∞

0
exp(n log(x) − x)dx .

Exponent maximized when x = n.

For n large approximate f(x) = n log(x)− x by

f(x) ≈ f(x0)+(x−x0)f
′(x0)+(x−x0)

2f ′′(x0)/2

and choose x0 = n to make f ′(x0) = 0. Then

n! ≈
∫ ∞

0
exp[n log(n) − n − (x − n)2/(2n)]dx .

Substitute y = (x − n)/
√

n; get approximation

n! ≈ n1/2nne−n
∫ ∞

−∞
e−y2/2dy

or

n! ≈
√

2πnn+1/2e−n .

Note: sloppy about limits of integration.

Real proof must show integral over x not near

n is negligible.
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