Inversion

Previous theorem is non-constructive characterization.

Can get from ϕ_{X} to F_{X} or f_{X} by inversion.

See homework for basic inversion formula:

If X is a random variable taking only integer values then for each integer k

$$
\begin{aligned}
P(X=k) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi_{X}(t) e^{-i t k} d t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \phi_{X}(t) e^{-i t k} d t .
\end{aligned}
$$

The proof proceeds from the formula

$$
\phi_{X}(t)=\sum_{k} e^{i k t} P(X=k) .
$$

Now suppose X has continuous bounded density f. Define

$$
X_{n}=[n X] / n
$$

where [a] denotes the integer part (rounding down to the next smallest integer). We have

$$
\begin{aligned}
P(k / n \leq & X<(k+1) / n) \\
& =P([n X]=k) \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \phi_{[n X]}(t) \times e^{-i t k} d t .
\end{aligned}
$$

Make the substitution $t=u / n$, and get

$$
\begin{aligned}
n P(k / n \leq X<(& (1) / n)=\frac{1}{2 \pi} \\
& \times \int_{-n \pi}^{n \pi} \phi_{[n X]}(u / n) e^{-i u k / n} d u .
\end{aligned}
$$

Now, as $n \rightarrow \infty$ we have

$$
\phi_{[n X]}(u / n)=E\left(e^{i u[n X] / n}\right) \rightarrow E\left(e^{i u X}\right)
$$

(Dominated convergence: $\left|e^{i u}\right| \leq 1$.)
Range of integration converges to the whole real line.

If $k / n \rightarrow x$ left hand side converges to density $f(x)$ while right hand side converges to

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \phi_{X}(u) e^{-i u x} d u
$$

which gives the inversion formula

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \phi_{X}(u) e^{-i u x} d u
$$

Many other such formulas are available to compute things like $F(b)-F(a)$ and so on.

All such formulas called Fourier inversion formulas.

Characteristic ftn also called Fourier transform of f or F.

Inversion of the Moment Generating Function

MGF and characteristic function related formally:

$$
M_{X}(i t)=\phi_{X}(t) .
$$

When M_{X} exists this relationship is not merely formal; the methods of complex variables mean there is a "nice" (analytic) function which is $E\left(e^{z X}\right)$ for any complex $z=x+i y$ for which $M_{X}(x)$ is finite.

SO: there is an inversion formula for M_{X} using a complex contour integral:

If z_{1} and z_{2} are two points in the complex plane and C a path between these two points we can define the path integral

$$
\int_{C} f(z) d z
$$

by the methods of line integration.
Do algebra with such integrals via usual theorems of calculus.

The Fourier inversion formula was

$$
2 \pi f(x)=\int_{-\infty}^{\infty} \phi(t) e^{-i t x} d t
$$

so replacing ϕ by M we get

$$
2 \pi f(x)=\int_{-\infty}^{\infty} M(i t) e^{-i t x} d t
$$

If we just substitute $z=i t$ then we find

$$
2 \pi i f(x)=\int_{C} M(z) e^{-z x} d z
$$

where the path C is the imaginary axis.

Complex contour integration: replace C by any other path which starts and ends at the same place.

Sometimes can choose path to make it easy to do the integral approximately; this is what saddlepoint approximations are.

Inversion formula is called the inverse Laplace transform; the mgf is also called the Laplace transform of f or F.

Applications of Inversion

1): Numerical calculations

Example: Many statistics have a distribution which is approximately that of

$$
T=\sum \lambda_{j} Z_{j}^{2}
$$

where the Z_{j} are iid $N(0,1)$. In this case

$$
\begin{aligned}
E\left(e^{i t T}\right) & =\prod E\left(e^{i t \lambda_{j} Z_{j}^{2}}\right) \\
& =\prod\left(1-2 i t \lambda_{j}\right)^{-1 / 2} .
\end{aligned}
$$

Imhof (Biometrika, 1961) gives a simplification of the Fourier inversion formula for

$$
F_{T}(x)-F_{T}(0)
$$

which can be evaluated numerically:

$$
\begin{aligned}
& F_{T}(x)-F_{T}(0) \\
& \quad=\int_{0}^{x} f_{T}(y) d y \\
& \quad=\int_{0}^{x} \frac{1}{2 \pi} \int_{-\infty}^{\infty} \Pi\left(1-2 i t \lambda_{j}\right)^{-1 / 2} e^{-i t y} d t d y .
\end{aligned}
$$

Multiply

$$
\phi(t)=\left[\frac{1}{\Pi\left(1-2 i t \lambda_{j}\right)}\right]^{1 / 2}
$$

top and bottom by the complex conjugate of the denominator:

$$
\phi(t)=\left[\frac{\Pi\left(1+2 i t \lambda_{j}\right)}{\Pi\left(1+4 t^{2} \lambda_{j}^{2}\right)}\right]^{1 / 2}
$$

The complex number $1+2 i t \lambda_{j}$ is $r_{j} e^{i \theta_{j}}$ where

$$
r_{j}=\sqrt{1+4 t^{4} \lambda_{j}^{2}}
$$

and

$$
\tan \left(\theta_{j}\right)=2 t \lambda_{j} .
$$

This allows us to rewrite

$$
\phi(t)=\left[\frac{\prod r_{j} e^{i \sum \theta_{j}}}{\prod r_{j}^{2}}\right]^{1 / 2}
$$

or

$$
\phi(t)=\frac{e^{i \sum \tan ^{-1}\left(2 t \lambda_{j}\right) / 2}}{\prod\left(1+4 t^{2} \lambda_{j}^{2}\right)^{1 / 4}}
$$

Assemble this to give

$$
F_{T}(x)-F_{T}(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{i \theta(t)}}{\rho(t)} \int_{0}^{x} e^{-i y t} d y d t
$$

where

$$
\theta(t)=\sum \tan ^{-1}\left(2 t \lambda_{j}\right) / 2
$$

and $\rho(t)=\Pi\left(1+4 t^{2} \lambda_{j}^{2}\right)^{1 / 4}$. But

$$
\int_{0}^{x} e^{-i y t} d y=\frac{e^{-i x t}-1}{-i t}
$$

We can now collect up the real part of the resulting integral to derive the formula given by Imhof. I don't produce the details here.
2): The central limit theorem (in some versions) can be deduced from the Fourier inversion formula: if X_{1}, \ldots, X_{n} are iid with mean 0 and variance 1 and $T=n^{1 / 2} \bar{X}$ then with ϕ denoting the characteristic function of a single X we have

$$
\begin{aligned}
E\left(e^{i t T}\right) & =E\left(e^{i n^{-1 / 2} t \sum X_{j}}\right) \\
& =\left[\phi\left(n^{-1 / 2} t\right)\right]^{n} \\
& \approx\left[\phi(0)+\frac{t \phi^{\prime}(0)}{\sqrt{n}}+\frac{t^{2} \phi^{\prime \prime}(0)}{2 n}+o\left(n^{-1}\right)\right]^{n}
\end{aligned}
$$

But now $\phi(0)=1$ and

$$
\phi^{\prime}(t)=\frac{d}{d t} E\left(e^{i t X_{1}}\right)=i E\left(X_{1} e^{i t X_{1}}\right) .
$$

So $\phi^{\prime}(0)=E\left(X_{1}\right)=0$. Similarly

$$
\phi^{\prime \prime}(t)=i^{2} E\left(X_{1}^{2} e^{i t X_{1}}\right)
$$

so that

$$
\phi^{\prime \prime}(0)=-E\left(X_{1}^{2}\right)=-1 .
$$

It now follows that

$$
\begin{aligned}
E\left(e^{i t T}\right) & \approx\left[1-t^{2} /(2 n)+o(1 / n)\right]^{n} \\
& \rightarrow e^{-t^{2} / 2}
\end{aligned}
$$

With care we can then apply the Fourier inversion formula and get

$$
\begin{aligned}
f_{T}(x) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x}\left[\phi\left(t n^{-1 / 2}\right)\right]^{n} d t \\
& \rightarrow \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} e^{-t^{2} / 2} d t \\
& =\frac{1}{\sqrt{2 \pi}} \phi_{Z}(-x)
\end{aligned}
$$

where ϕ_{Z} is the characteristic function of a standard normal variable Z. Doing the integral we find

$$
\phi_{Z}(x)=\phi_{Z}(-x)=e^{-x^{2} / 2}
$$

so that

$$
f_{T}(x) \rightarrow \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

which is a standard normal density.

Proof of the central limit theorem not general: requires T to have bounded continuous density.

Central limit theorem: statement about cdfs not densities:

$$
P(T \leq t) \rightarrow P(Z \leq t) .
$$

3) Saddlepoint approximation from MGF inversion formula

$$
2 \pi i f(x)=\int_{-i \infty}^{i \infty} M(z) e^{-z x} d z
$$

(limits of integration indicate contour integral running up imaginary axis.)

Replace contour (using complex variables) with line $\operatorname{Re}(z)=c$. $\quad(\operatorname{Re}(Z)$ denotes the real part of z, that is, x when $z=x+i y$ with x and y real.) Must choose c so that $M(c)<\infty$. Rewrite inversion formula using cumulant generating function $K(t)=\log (M(t))$:

$$
2 \pi i f(x)=\int_{c-i \infty}^{c+i \infty} \exp (K(z)-z x) d z
$$

Along the contour in question we have $z=$ $c+i y$ so we can think of the integral as being

$$
i \int_{-\infty}^{\infty} \exp (K(c+i y)-(c+i y) x) d y
$$

Now do a Taylor expansion of the exponent:

$$
\begin{aligned}
& K(c+i y)-(c+i y) x= \\
& K(c)-c x+i y\left(K^{\prime}(c)-x\right)-y^{2} K^{\prime \prime}(c) / 2+\cdots .
\end{aligned}
$$

Ignore the higher order terms and select a c so that the first derivative

$$
K^{\prime}(c)-x
$$

vanishes. Such a c is a saddlepoint. We get the formula

$$
\begin{aligned}
& 2 \pi f(x) \approx \exp (K(c)-c x) \\
& \quad \times \int_{-\infty}^{\infty} \exp \left(-y^{2} K^{\prime \prime}(c) / 2\right) d y .
\end{aligned}
$$

Integral is normal density calculation; gives

$$
\sqrt{2 \pi / K^{\prime \prime}(c)} .
$$

Saddlepoint approximation is

$$
f(x)=\frac{\exp (K(c)-c x)}{\sqrt{2 \pi K^{\prime \prime}(c)}} .
$$

Essentially same idea: Laplace's approximation.

Example: Sterling's approximation to factorial:

$$
n!=\int_{0}^{\infty} \exp (n \log (x)-x) d x
$$

Exponent maximized when $x=n$.
For n large approximate $f(x)=n \log (x)-x$ by $f(x) \approx f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\left(x-x_{0}\right)^{2} f^{\prime \prime}\left(x_{0}\right) / 2$ and choose $x_{0}=n$ to make $f^{\prime}\left(x_{0}\right)=0$. Then

$$
n!\approx \int_{0}^{\infty} \exp \left[n \log (n)-n-(x-n)^{2} /(2 n)\right] d x
$$

Substitute $y=(x-n) / \sqrt{n}$; get approximation

$$
n!\approx n^{1 / 2} n^{n} e^{-n} \int_{-\infty}^{\infty} e^{-y^{2} / 2} d y
$$

or

$$
n!\approx \sqrt{2 \pi} n^{n+1 / 2} e^{-n} .
$$

Note: sloppy about limits of integration.
Real proof must show integral over x not near n is negligible.

