
0.0.1 Inversion

The previous theorem is non-constructive characterization. That is, it says
that φX determines FX and fX but it does not say how to find the latter
from the former. This raises the question: Can get from φX to FX or fX by
inversion.

If X is a random variable taking only integer values then for each integer
k

P (X = k) =
1

2π

∫ 2π

0

φX(t)e−itkdt

=
1

2π

∫ π

−π
φX(t)e−itkdt .

The proof proceeds from the formula

φX(t) =
∑
k

eiktP (X = k) .

You multiply this by e−ijt and integrate from 0 to 2π. This produces∫ 2π

0

e−ijtφX(t) dt =
∑
k

P (X = k)

∫ 2π

0

ei(k−j)t dt.

Now for k 6= j the derivative of

ei(k−j)t

with respect to t is just
i(k − j)ei(k−j)t

so the integral is simply

ei(k−j)t

i(k − j)

∣∣∣∣t=2π

t=0

=
cos(2(k − j)π) + i sin(2(k − j)π)− cos(0)− i sin(0)

i(k − j)
=

1 + 0i− 1− 0i

i(k − j)
= 0.

The integral with k = j, however, is different. It is just∫ 2π

0

ei0tdt =

∫ 2π

0

1dt = 2π.
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So ∫ 2π

0

e−ijtφX(t) dt = 2πP (X = j).

Now suppose X has continuous bounded density f . Define

Xn = [nX]/n

where [a] denotes the integer part (rounding down to the next smallest inte-
ger). We have

P (k/n ≤ X < (k + 1)/n)

=P ([nX] = k)

=
1

2π

∫ π

−π
φ[nX](t)× e−itkdt .

Make the substitution t = u/n, and get

nP (k/n ≤ X < (k + 1)/n) =
1

2π
×
∫ nπ

−nπ
φ[nX](u/n)e−iuk/ndu .

Now, as n→∞ we have

φ[nX](u/n) = E(eiu[nX]/n)→ E(eiuX) .

(Dominated convergence: |eiu| ≤ 1.)
Range of integration converges to the whole real line.
If k/n→ x left hand side converges to density f(x) while right hand side

converges to
1

2π

∫ ∞
−∞

φX(u)e−iuxdu

which gives the inversion formula

fX(x) =
1

2π

∫ ∞
−∞

φX(u)e−iuxdu .

Many other such formulas are available to compute things like F (b) − F (a)
and so on; the book by Loève on probability is a good source for such formulas
and their proofs.

All such formulas are called Fourier inversion formulas. The charac-
teristic function is also called the Fourier transform of f or F .
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0.0.2 Inversion of the Moment Generating Function
and Saddlepoint Approximations

The moment generating function and the characteristic function are related
formally:

MX(it) = φX(t) .

When MX exists this relationship is not merely formal; the methods of com-
plex variables mean there is a “nice” (analytic) function which is E(ezX) for
any complex z = x + iy for which MX(x) is finite. So: there is an inversion
formula for MX using a complex contour integral:

If z1 and z2 are two points in the complex plane and C a path between
these two points we can define the path integral∫

C

f(z)dz

by the methods of line integration.
The inversion formula just derived was

2πif(x) =

∫ ∞
−∞

MX(it)e−itxdt

Now imagine making a change of variables to z = it. As t, a real variable,
goes from −∞ to ∞ the variable z runs up the imaginary axis. We also
have dz = i dt. This leads to the following inversion formula for the moment
generating function

2πif(x) =

∫ i∞

−i∞
M(z)e−zxdz

(the limits of integration indicate a contour integral running up the imaginary
axis.)

It is now possible to replace contour (using complex variables theory)
with the line Re(z) = c. (Re(Z) denotes the real part of z, that is, x when
z = x+ iy with x and y real.) We must choose c so that M(c) <∞. In this
case we rewrite the inversion formula using the cumulant generating function
K(t) = log(M(t)) in the following form:

2πif(x) =

∫ c+i∞

c−i∞
exp(K(z)− zx)dz .
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Along the contour in question we have z = c + iy so we can think of the
integral as being

i

∫ ∞
−∞

exp(K(c+ iy)− (c+ iy)x)dy .

Now we do a Taylor expansion of the exponent:

K(c+ iy)− (c+ iy)x = K(c)− cx+ iy(K ′(c)− x)− y2K ′′(c)/2 + · · · .

Ignore the higher order terms and select a c so that the first derivative

K ′(c)− x

vanishes. Such a c is called a saddlepoint. We get the formula

2πf(x) ≈ exp(K(c)− cx)

∫ ∞
−∞

exp(−y2K ′′(c)/2)dy .

The integral is a normal density calculation; it gives√
2π/K ′′(c) .

Thus our saddlepoint approximation is

f(x) ≈ exp(K(c)− cx)√
2πK ′′(c)

.

The tactic used here is essentially the same idea as in Laplace’s approxi-
mation whose most famous example is Stirling’s formula

Example: Stirling’s approximation to a factorial. We may show, by induc-
tion on n and integration by parts that

n! =

∫ ∞
0

exp(n log(x)− x)dx .

The exponent is maximized when x = n. For n large we approximate f(x) =
n log(x)− x by

f(x) ≈ f(x0) + (x− x0)f ′(x0) + (x− x0)2f ′′(x0)/2
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and choose x0 = n to make f ′(x0) = 0. Then

n! ≈
∫ ∞
0

exp[n log(n)− n− (x− n)2/(2n)]dx .

Substitute y = (x− n)/
√
n; get approximation

n! ≈ n1/2nne−n
∫ ∞
−∞

e−y
2/2dy

or
n! ≈

√
2πnn+1/2e−n .

Note: I am being quite sloppy about limits of integration; this is a fixable
error but I won’t be doing the fixing. A real proof must show that the integral
over x not near n is negligible.
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