0.0.1 Inversion

The previous theorem is non-constructive characterization. That is, it says
that ¢x determines Fx and fx but it does not say how to find the latter
from the former. This raises the question: Can get from ¢x to F'x or fx by
inversion.

If X is a random variable taking only integer values then for each integer
k
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The proof proceeds from the formula

ox(t) =) e*P(X =k).
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You multiply this by e~%! and integrate from 0 to 27. This produces
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Now for k # j the derivative of
pilk—i)t
with respect to t is just
i(k — g)e’ =
so the integral is simply
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The integral with k = j, however, is different. It is just
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So )
/ e ox(t)dt = 2rP(X = j).
0
Now suppose X has continuous bounded density f. Define
X, = [nX]/n

where [a] denotes the integer part (rounding down to the next smallest inte-
ger). We have

Pk/n <X < (k+1)/n)
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Make the substitution ¢t = u/n, and get
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nP(k/n < X < (k+1)/n) = 5 x / Gpnx) (u/n)e™ /" du.

Now, as n — oo we have
Cb[nX](u/n) = E(eiu[nX]/n) N E(eiuX).

(Dominated convergence: [e™| < 1.)

Range of integration converges to the whole real line.

If k/n — x left hand side converges to density f(x) while right hand side
converges to
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which gives the inversion formula
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fx(z) = o | ox(u)e w.

Many other such formulas are available to compute things like F'(b) — F'(a)
and so on; the book by Loeve on probability is a good source for such formulas
and their proofs.

All such formulas are called Fourier inversion formulas. The charac-
teristic function is also called the Fourier transform of f or F.
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0.0.2 Inversion of the Moment Generating Function
and Saddlepoint Approximations

The moment generating function and the characteristic function are related
formally:
M (it) = ¢x(t).

When My exists this relationship is not merely formal; the methods of com-
plex variables mean there is a “nice” (analytic) function which is E(e*X) for
any complex z = x + iy for which Mx (z) is finite. So: there is an inversion
formula for Mx using a complex contour integral:

If z; and zy are two points in the complex plane and C' a path between
these two points we can define the path integral

/C F(2)dz

by the methods of line integration.
The inversion formula just derived was

2mif(x) = /00 My (it)e~ " dt

Now imagine making a change of variables to z = it. As t, a real variable,
goes from —oo to oo the variable z runs up the imaginary axis. We also
have dz = i dt. This leads to the following inversion formula for the moment
generating function
2mif(z) = M(z)e **dz

(the limits of integration indicate a contour integral running up the imaginary
axis.)

It is now possible to replace contour (using complex variables theory)
with the line Re(z) = ¢. (Re(Z) denotes the real part of z, that is,  when
z = x + 4y with x and y real.) We must choose ¢ so that M (c) < co. In this

case we rewrite the inversion formula using the cumulant generating function
K(t) =log(M(t)) in the following form:

2mif(x) = /C N exp(K(z) — zx)dz .
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Along the contour in question we have z = ¢ + iy so we can think of the
integral as being

i/oo exp(K(c+ iy) — (¢ + iy)x)dy .
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Now we do a Taylor expansion of the exponent:
K(c+iy) — (c+iy)r = K(c) — cx +iy(K'(c) — x) —y*K"(c)/2 4 - -- .
Ignore the higher order terms and select a ¢ so that the first derivative
K'(c)—x

vanishes. Such a c is called a saddlepoint. We get the formula

27 f(z) =~ exp(K(c) — cx) /00 exp(—y>K"(c)/2)dy .
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The integral is a normal density calculation; it gives

V2K (c).

Thus our saddlepoint approximation is

__exp(K(c) — cx)
N D)

The tactic used here is essentially the same idea as in Laplace’s approxi-
mation whose most famous example is Stirling’s formula

Example: Stirling’s approximation to a factorial. We may show, by induc-
tion on n and integration by parts that

n! = / exp(nlog(z) — x)dx .
0

The exponent is maximized when x = n. For n large we approximate f(z) =
nlog(z) — x by

f(x) ~ f(@o) + (x — 20) f'(x0) + (& — x0)* f"(0) /2



and choose zg = n to make f'(xy) = 0. Then
n! ~ / exp[nlog(n) —n — (x —n)*/(2n)]dx .
0

Substitute y = (x — n)//n; get approximation

or
n! ~ V2rnt/2em

Note: I am being quite sloppy about limits of integration; this is a fixable
error but I won’t be doing the fixing. A real proof must show that the integral
over x not near n is negligible.



