0.0.1 Inversion

The previous theorem is non-constructive characterization. That is, it says that ϕ_{X} determines F_{X} and f_{X} but it does not say how to find the latter from the former. This raises the question: Can get from ϕ_{X} to F_{X} or f_{X} by inversion.

If X is a random variable taking only integer values then for each integer k

$$
\begin{aligned}
P(X=k) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi_{X}(t) e^{-i t k} d t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \phi_{X}(t) e^{-i t k} d t
\end{aligned}
$$

The proof proceeds from the formula

$$
\phi_{X}(t)=\sum_{k} e^{i k t} P(X=k) .
$$

You multiply this by $e^{-i j t}$ and integrate from 0 to 2π. This produces

$$
\int_{0}^{2 \pi} e^{-i j t} \phi_{X}(t) d t=\sum_{k} P(X=k) \int_{0}^{2 \pi} e^{i(k-j) t} d t
$$

Now for $k \neq j$ the derivative of

$$
e^{i(k-j) t}
$$

with respect to t is just

$$
i(k-j) e^{i(k-j) t}
$$

so the integral is simply

$$
\left.\frac{e^{i(k-j) t}}{i(k-j)}\right|_{t=0} ^{t=2 \pi}=\frac{\cos (2(k-j) \pi)+i \sin (2(k-j) \pi)-\cos (0)-i \sin (0)}{i(k-j)}=\frac{1+0 i-1-0 i}{i(k-j)}=0 .
$$

The integral with $k=j$, however, is different. It is just

$$
\int_{0}^{2 \pi} e^{i 0 t} d t=\int_{0}^{2 \pi} 1 d t=2 \pi
$$

So

$$
\int_{0}^{2 \pi} e^{-i j t} \phi_{X}(t) d t=2 \pi P(X=j)
$$

Now suppose X has continuous bounded density f. Define

$$
X_{n}=[n X] / n
$$

where $[a]$ denotes the integer part (rounding down to the next smallest integer). We have

$$
\begin{aligned}
P(k / n \leq & X<(k+1) / n) \\
& =P([n X]=k) \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \phi_{[n X]}(t) \times e^{-i t k} d t
\end{aligned}
$$

Make the substitution $t=u / n$, and get

$$
n P(k / n \leq X<(k+1) / n)=\frac{1}{2 \pi} \times \int_{-n \pi}^{n \pi} \phi_{[n X]}(u / n) e^{-i u k / n} d u .
$$

Now, as $n \rightarrow \infty$ we have

$$
\phi_{[n X]}(u / n)=E\left(e^{i u[n X] / n}\right) \rightarrow E\left(e^{i u X}\right) .
$$

(Dominated convergence: $\left|e^{i u}\right| \leq 1$.)
Range of integration converges to the whole real line.
If $k / n \rightarrow x$ left hand side converges to density $f(x)$ while right hand side converges to

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \phi_{X}(u) e^{-i u x} d u
$$

which gives the inversion formula

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \phi_{X}(u) e^{-i u x} d u
$$

Many other such formulas are available to compute things like $F(b)-F(a)$ and so on; the book by Loève on probability is a good source for such formulas and their proofs.

All such formulas are called Fourier inversion formulas. The characteristic function is also called the Fourier transform of f or F.

0.0.2 Inversion of the Moment Generating Function and Saddlepoint Approximations

The moment generating function and the characteristic function are related formally:

$$
M_{X}(i t)=\phi_{X}(t) .
$$

When M_{X} exists this relationship is not merely formal; the methods of complex variables mean there is a "nice" (analytic) function which is $E\left(e^{z X}\right)$ for any complex $z=x+i y$ for which $M_{X}(x)$ is finite. So: there is an inversion formula for M_{X} using a complex contour integral:

If z_{1} and z_{2} are two points in the complex plane and C a path between these two points we can define the path integral

$$
\int_{C} f(z) d z
$$

by the methods of line integration.
The inversion formula just derived was

$$
2 \pi i f(x)=\int_{-\infty}^{\infty} M_{X}(i t) e^{-i t x} d t
$$

Now imagine making a change of variables to $z=i t$. As t, a real variable, goes from $-\infty$ to ∞ the variable z runs up the imaginary axis. We also have $d z=i d t$. This leads to the following inversion formula for the moment generating function

$$
2 \pi i f(x)=\int_{-i \infty}^{i \infty} M(z) e^{-z x} d z
$$

(the limits of integration indicate a contour integral running up the imaginary axis.)

It is now possible to replace contour (using complex variables theory) with the line $\operatorname{Re}(z)=c .(\operatorname{Re}(Z)$ denotes the real part of z, that is, x when $z=x+i y$ with x and y real.) We must choose c so that $M(c)<\infty$. In this case we rewrite the inversion formula using the cumulant generating function $K(t)=\log (M(t))$ in the following form:

$$
2 \pi i f(x)=\int_{c-i \infty}^{c+i \infty} \exp (K(z)-z x) d z
$$

Along the contour in question we have $z=c+i y$ so we can think of the integral as being

$$
i \int_{-\infty}^{\infty} \exp (K(c+i y)-(c+i y) x) d y
$$

Now we do a Taylor expansion of the exponent:

$$
K(c+i y)-(c+i y) x=K(c)-c x+i y\left(K^{\prime}(c)-x\right)-y^{2} K^{\prime \prime}(c) / 2+\cdots .
$$

Ignore the higher order terms and select a c so that the first derivative

$$
K^{\prime}(c)-x
$$

vanishes. Such a c is called a saddlepoint. We get the formula

$$
2 \pi f(x) \approx \exp (K(c)-c x) \int_{-\infty}^{\infty} \exp \left(-y^{2} K^{\prime \prime}(c) / 2\right) d y
$$

The integral is a normal density calculation; it gives

$$
\sqrt{2 \pi / K^{\prime \prime}(c)} .
$$

Thus our saddlepoint approximation is

$$
f(x) \approx \frac{\exp (K(c)-c x)}{\sqrt{2 \pi K^{\prime \prime}(c)}}
$$

The tactic used here is essentially the same idea as in Laplace's approximation whose most famous example is Stirling's formula

Example: Stirling's approximation to a factorial. We may show, by induction on n and integration by parts that

$$
n!=\int_{0}^{\infty} \exp (n \log (x)-x) d x
$$

The exponent is maximized when $x=n$. For n large we approximate $f(x)=$ $n \log (x)-x$ by

$$
f(x) \approx f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\left(x-x_{0}\right)^{2} f^{\prime \prime}\left(x_{0}\right) / 2
$$

and choose $x_{0}=n$ to make $f^{\prime}\left(x_{0}\right)=0$. Then

$$
n!\approx \int_{0}^{\infty} \exp \left[n \log (n)-n-(x-n)^{2} /(2 n)\right] d x
$$

Substitute $y=(x-n) / \sqrt{n}$; get approximation

$$
n!\approx n^{1 / 2} n^{n} e^{-n} \int_{-\infty}^{\infty} e^{-y^{2} / 2} d y
$$

or

$$
n!\approx \sqrt{2 \pi} n^{n+1 / 2} e^{-n}
$$

Note: I am being quite sloppy about limits of integration; this is a fixable error but I won't be doing the fixing. A real proof must show that the integral over x not near n is negligible.

