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What | assume you already know

@ Continuous case: E(X) = [* xf(x) dx.
@ Discrete case: E(X) =), xf(x)

@ Mean, variance, standard deviation, covariance, correlation.

o Conditional analogues of above.
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What | want you to learn

Abstract definition of E(X).

Dominated, monotone convergence theorems.

°

°

@ Mean, variance, standard deviation, covariance, correlation.

@ Define conditional expectation and relation to conditional density.
°

Give some properties of conditional expectation.

=
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Elementary definitions p 47-48

@ Two elementary definitions of expected values:
@ Definition: If X has density f then

E((X)} = [ () ox.
o Definition: If X has discrete density f then
Elg(X)} = 3. g()f(x).
o FACT: if Y = g(X) for a smooth gx
EY) = [y oy = [ g0 (g(x))e’(x) o

= E{g(X)}

by change of variables formula for integration.

@ Good: otherwise might have two different values for E(eX).
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General Definition of E p58, Appendix

@ There are random variables which are neither absolutely continuous
nor discrete.

o Definition: RV X is simple if we can write
n
X(w) =) al(we A)
1

for some constants ay, ..., a, and events A;.
@ Definition: For a simple rv X define

E(X)=)aiP(A).

@ For positive random variables which are not simple extend definition
by approximation:
@ Definition: If X > 0 then

E(X) =sup{E(Y):0< Y < X,Y simple}. &
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Integrable rvs

o Definition: X is integrable if
E(|1X]) < o0.
@ In this case we define

E(X) = E{max(X,0)} — E{max(—X,0)}.

@ Facts: E is a linear, monotone, positive operator:
© Linear: E(aX + bY) = aE(X) + bE(Y) provided X and Y are
integrable.
O Positive: P(X > 0) = 1 implies E(X) > 0.
© Monotone: P(X > Y)=1and X, Y integrable implies
E(X) > E(Y).
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Convergence Theorems

(]

Major technical theorems:

Monotone Convergence: If 0 < X; < Xp <--- and X =1lim X,
(which has to exist) then

E(X) = nILngO E(X,).
Dominated Convergence: If |X,| < Y, and 3 rv X such that
X, — X (technical details of this convergence later in the course) and
a random variable Y such that Y, — Y with E(Y,) — E(Y) < o0
then

(]

E(X,) — E(X).

Often used with all Y}, the same rv Y.

(]

These theorems are used in approximation.
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Connection to integration

Theorem
With this definition of E:
Q if X has density f(x) (even in RP say) and Y = g(X) then

E(Y):/g(x)f(x)dx.

(Could be a multiple integral.)
© If X has pmf f then

E(Y) =) g(x)f(x).

© First conclusion works, e.g., even if X has a density but Y doesn't.

L

=
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Moments pp 49-54

o Definition: The r* moment (about the origin) of a real rv X is
w, = E(X") (provided it exists).
We generally use 4 for E(X).

e ©

Definition: The rt® central moment is

pr = E[(X = n)']

We call 02 = 1o the variance.

Definition: For an RP valued random vector X
px = E(X)

is the vector whose i*" entry is E(X;) (provided all entries exist).

(]

Definition: The (p x p) variance covariance matrix of X is

Var(X) = E [(X = u)(X — )]

which exists provided each component X; has a finite second mome
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Moments and independence

Theorem

If Xq,...,X, are independent and each X; is integrable then
X = Xy --- X, is integrable and

(X0 Xp) = E(X1) -+ E(X,).
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Proof

Suppose each X; is simple:

Xi = ZXUl(Xi = Xjj)
J

where the Xx;; are the possible values of X;. Then

E(Xy - =3 xaj X E(U(X = x1j) -+ 1(Xp = xp3,))
J1--dp
= Z lel o 'XPij(Xl = lel T XP = XPjp)
i
= Z xijy e Xpj P(X1 = x1,) -+ P(Xp = Xpj, )
Ji--Jdp

— Z Xl_/l P(Xl - XlJl) Z ijpP(XP = ijP)
Jp
— H E(X

=
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General Case

o General X; > 0:

o Let Xj, be X; rounded down to nearest multiple of 27" (to maximum
of n).

@ Thatis: if P k41

TRT

then Xj, = k/2" for k =0,...,n2".

@ For X; > n putX;, = n.

@ Apply case just done:

E(J[ Xin) = [ EXin) -

@ Monotone convergence applies to both sides.
@ General case: write each X; as difference of positive and negative
parts:

Xi = max(X;,0) — max(—X;,0).
@ Apply positive case.

=

Richard Lockhart (Simon Fraser University) STAT 830 Expectation STAT 830 — Fall 2013 12 /15




Conditional Expectations pp 54-56
@ Abstract definition of conditional expectation is:
o Definition: E(Y|X) is any function of X such that
E[R(X)E(Y[X)] = E[R(X)Y]

for any bounded function R(X).
o Definition: E(Y|X = x) is a function g(x) such that

g(X) = E(Y[X)

@ Fact: If X, Y has joint density fx y(x,y) and conditional density
f(y|x) then

aw=/wmww

satisfies these definitions.
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Proof

E(R(X)g(X)) = / R()g(x)fx (x)dx
- / R(x) / YF(y |x)dyfx (x)dx

/ / x)ytx (x)f (y|x)dydx
/ / x)yfx,y (x, y)dydx

R(X)Y)

Richard Lockhart (Simon Fraser University) STAT 830 Expectation STAT 830 — Fall 2013 14 /15



Interpretation of conditional expectation

@ Intution: Think of E(Y|X) as average Y holding X fixed.
@ Behaves like ordinary expected value but functions of X only are like

constants:
ECOAX)YiIX) = 37 A(X)E(YiIX)

@ Statement called Adam’s law by Jerzy Neyman — he used to say it
comes before all the others:

E[E(Y|X)] = E(Y)

which is just the definition of E(Y|X) with R(X) = 1.
@ In regression courses we say that the total sum of squares is the sum
of the regression sum of squares plus the residual sum of squares:

Var(Y) = Var(E(Y|X)) + E[Var(Y|X)]
@ The conditional variance means

Var(Y|X) = E[(Y — E(Y|X))?|X].
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