STAT 830
 Expectation

Richard Lockhart

Simon Fraser University
STAT 830 — Fall 2013

What I assume you already know

- Continuous case: $\mathrm{E}(X)=\int_{-\infty}^{\infty} x f(x) d x$.
- Discrete case: $\mathrm{E}(X)=\sum_{x} x f(x)$
- Mean, variance, standard deviation, covariance, correlation.
- Conditional analogues of above.

What I want you to learn

- Abstract definition of $\mathrm{E}(X)$.
- Dominated, monotone convergence theorems.
- Mean, variance, standard deviation, covariance, correlation.
- Define conditional expectation and relation to conditional density.
- Give some properties of conditional expectation.

Elementary definitions

p 47-48

- Two elementary definitions of expected values:
- Definition: If X has density f then

$$
E\{g(X)\}=\int g(x) f(x) d x
$$

- Definition: If X has discrete density f then

$$
E\{g(X)\}=\sum_{x} g(x) f(x)
$$

- FACT: if $Y=g(X)$ for a smooth g

$$
\begin{aligned}
E(Y) & =\int y f_{Y}(y) d y=\int g(x) f_{Y}(g(x)) g^{\prime}(x) d x \\
& =E\{g(X)\}
\end{aligned}
$$

by change of variables formula for integration.

- Good: otherwise might have two different values for $E\left(e^{X}\right)$.

General Definition of E

- There are random variables which are neither absolutely continuous nor discrete.
- Definition: RV X is simple if we can write

$$
X(\omega)=\sum_{1}^{n} a_{i} 1\left(\omega \in A_{i}\right)
$$

for some constants a_{1}, \ldots, a_{n} and events A_{i}.

- Definition: For a simple rv X define

$$
E(X)=\sum a_{i} P\left(A_{i}\right)
$$

- For positive random variables which are not simple extend definition by approximation:
- Definition: If $X \geq 0$ then

$$
E(X)=\sup \{E(Y): 0 \leq Y \leq X, Y \text { simple }\} .
$$

Integrable rvs

- Definition: X is integrable if

$$
E(|X|)<\infty
$$

- In this case we define

$$
E(X)=E\{\max (X, 0)\}-E\{\max (-X, 0)\}
$$

- Facts: E is a linear, monotone, positive operator:
(1) Linear: $E(a X+b Y)=a E(X)+b E(Y)$ provided X and Y are integrable.
(2) Positive: $P(X \geq 0)=1$ implies $E(X) \geq 0$.
(3) Monotone: $P(X \geq Y)=1$ and X, Y integrable implies $E(X) \geq E(Y)$.

Convergence Theorems

- Major technical theorems:
- Monotone Convergence: If $0 \leq X_{1} \leq X_{2} \leq \cdots$ and $X=\lim X_{n}$ (which has to exist) then

$$
E(X)=\lim _{n \rightarrow \infty} E\left(X_{n}\right)
$$

- Dominated Convergence: If $\left|X_{n}\right| \leq Y_{n}$ and $\exists r v X$ such that $X_{n} \rightarrow X$ (technical details of this convergence later in the course) and a random variable Y such that $Y_{n} \rightarrow Y$ with $E\left(Y_{n}\right) \rightarrow E(Y)<\infty$ then

$$
E\left(X_{n}\right) \rightarrow E(X) .
$$

- Often used with all Y_{n} the same rv Y.
- These theorems are used in approximation.

Connection to integration

Theorem

With this definition of E :
(1) if X has density $f(x)$ (even in R^{p} say) and $Y=g(X)$ then

$$
E(Y)=\int g(x) f(x) d x
$$

(Could be a multiple integral.)
(2) If X has pmff then

$$
E(Y)=\sum_{x} g(x) f(x)
$$

(3) First conclusion works, e.g., even if X has a density but Y doesn't.

Moments

pp 49-54

- Definition: The $r^{\text {th }}$ moment (about the origin) of a real $r v X$ is $\mu_{r}^{\prime}=E\left(X^{r}\right)$ (provided it exists).
- We generally use μ for $E(X)$.
- Definition: The $r^{\text {th }}$ central moment is

$$
\mu_{r}=E\left[(X-\mu)^{r}\right]
$$

- We call $\sigma^{2}=\mu_{2}$ the variance.
- Definition: For an R^{p} valued random vector X

$$
\mu_{X}=E(X)
$$

is the vector whose $i^{\text {th }}$ entry is $E\left(X_{i}\right)$ (provided all entries exist).

- Definition: The $(p \times p)$ variance covariance matrix of X is

$$
\operatorname{Var}(X)=E\left[(X-\mu)(X-\mu)^{t}\right]
$$

which exists provided each component X_{i} has a finite second momes

Moments and independence

Theorem
If X_{1}, \ldots, X_{p} are independent and each X_{i} is integrable then $X=X_{1} \cdots X_{p}$ is integrable and

$$
E\left(X_{1} \cdots X_{p}\right)=E\left(X_{1}\right) \cdots E\left(X_{p}\right)
$$

Proof

Suppose each X_{i} is simple:

$$
X_{i}=\sum_{j} x_{i j} 1\left(X_{i}=x_{i j}\right)
$$

where the $x_{i j}$ are the possible values of X_{i}. Then

$$
\begin{aligned}
E\left(X_{1} \cdots X_{p}\right) & =\sum_{j_{1} \ldots j_{p}} x_{1 j_{1}} \cdots x_{p j_{p}} E\left(1\left(X_{1}=x_{1 j_{1}}\right) \cdots 1\left(X_{p}=x_{p j_{p}}\right)\right) \\
& =\sum_{j_{1} \ldots j_{p}} x_{1 j_{1}} \cdots x_{p j_{p}} P\left(X_{1}=x_{1 j_{1}} \cdots X_{p}=x_{p j_{p}}\right) \\
& =\sum_{j_{1} \ldots j_{p}} x_{1 j_{1}} \cdots x_{p j_{p}} P\left(X_{1}=x_{1 j_{1}}\right) \cdots P\left(X_{p}=x_{p j_{p}}\right) \\
& =\sum_{j_{1}} x_{1 j_{1}} P\left(X_{1}=x_{1 j_{1}}\right) \cdots \sum_{j_{p}} x_{p j_{p}} P\left(X_{p}=x_{p j_{p}}\right) \\
& =\prod E\left(X_{i}\right) .
\end{aligned}
$$

General Case

- General $X_{i} \geq 0$:
- Let $X_{i n}$ be X_{i} rounded down to nearest multiple of 2^{-n} (to maximum of n).
- That is: if

$$
\frac{k}{2^{n}} \leq X_{i}<\frac{k+1}{2^{n}}
$$

then $X_{i n}=k / 2^{n}$ for $k=0, \ldots, n 2^{n}$.

- For $X_{i}>n$ put $X_{i n}=n$.
- Apply case just done:

$$
E\left(\prod X_{i n}\right)=\prod E\left(X_{i n}\right)
$$

- Monotone convergence applies to both sides.
- General case: write each X_{i} as difference of positive and negative parts:

$$
X_{i}=\max \left(X_{i}, 0\right)-\max \left(-X_{i}, 0\right)
$$

- Apply positive case.

Conditional Expectations

- Abstract definition of conditional expectation is:
- Definition: $E(Y \mid X)$ is any function of X such that

$$
E[R(X) E(Y \mid X)]=E[R(X) Y]
$$

for any bounded function $R(X)$.

- Definition: $E(Y \mid X=x)$ is a function $g(x)$ such that

$$
g(X)=E(Y \mid X)
$$

- Fact: If X, Y has joint density $f_{X, Y}(x, y)$ and conditional density $f(y \mid x)$ then

$$
g(x)=\int y f(y \mid x) d y
$$

satisfies these definitions.

Proof

$$
\begin{aligned}
E(R(X) g(X)) & =\int R(x) g(x) f_{X}(x) d x \\
& =\int R(x) \int y f(y \mid x) d y f_{X}(x) d x \\
& =\iint R(x) y f_{X}(x) f(y \mid x) d y d x \\
& =\iint R(x) y f_{X}, Y(x, y) d y d x \\
& =E(R(X) Y)
\end{aligned}
$$

Interpretation of conditional expectation

- Intution: Think of $E(Y \mid X)$ as average Y holding X fixed.
- Behaves like ordinary expected value but functions of X only are like constants:

$$
E\left(\sum A_{i}(X) Y_{i} \mid X\right)=\sum A_{i}(X) E\left(Y_{i} \mid X\right)
$$

- Statement called Adam's law by Jerzy Neyman - he used to say it comes before all the others:

$$
E[E(Y \mid X)]=E(Y)
$$

which is just the definition of $E(Y \mid X)$ with $R(X) \equiv 1$.

- In regression courses we say that the total sum of squares is the sum of the regression sum of squares plus the residual sum of squares:

$$
\operatorname{Var}(Y)=\operatorname{Var}(E(Y \mid X))+E[\operatorname{Var}(Y \mid X)]
$$

- The conditional variance means

$$
\operatorname{Var}(Y \mid X)=E\left[(Y-E(Y \mid X))^{2} \mid X\right]
$$

