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What I assume you already know

Continuous case: E(X ) =
∫

∞

−∞
xf (x) dx .

Discrete case: E(X ) =
∑

x xf (x)

Mean, variance, standard deviation, covariance, correlation.

Conditional analogues of above.
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What I want you to learn

Abstract definition of E(X ).

Dominated, monotone convergence theorems.

Mean, variance, standard deviation, covariance, correlation.

Define conditional expectation and relation to conditional density.

Give some properties of conditional expectation.
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Elementary definitions p 47-48

Two elementary definitions of expected values:

Definition: If X has density f then

E{g(X )} =

∫

g(x)f (x) dx .

Definition: If X has discrete density f then

E{g(X )} =
∑

x

g(x)f (x) .

FACT: if Y = g(X ) for a smooth g

E (Y ) =

∫

yfY (y) dy =

∫

g(x)fY (g(x))g
′(x) dx

= E{g(X )}

by change of variables formula for integration.

Good: otherwise might have two different values for E (eX ).
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General Definition of E p58, Appendix

There are random variables which are neither absolutely continuous
nor discrete.

Definition: RV X is simple if we can write

X (ω) =

n
∑

1

ai1(ω ∈ Ai)

for some constants a1, . . . , an and events Ai .

Definition: For a simple rv X define

E (X ) =
∑

aiP(Ai) .

For positive random variables which are not simple extend definition
by approximation:

Definition: If X ≥ 0 then

E (X ) = sup{E (Y ) : 0 ≤ Y ≤ X ,Y simple} .
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Integrable rvs

Definition: X is integrable if

E (|X |) < ∞ .

In this case we define

E (X ) = E{max(X , 0)} − E{max(−X , 0)} .

Facts: E is a linear, monotone, positive operator:
1 Linear: E (aX + bY ) = aE (X ) + bE (Y ) provided X and Y are

integrable.
2 Positive: P(X ≥ 0) = 1 implies E (X ) ≥ 0.
3 Monotone: P(X ≥ Y ) = 1 and X , Y integrable implies

E (X ) ≥ E (Y ).
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Convergence Theorems

Major technical theorems:

Monotone Convergence: If 0 ≤ X1 ≤ X2 ≤ · · · and X = limXn

(which has to exist) then

E (X ) = lim
n→∞

E (Xn) .

Dominated Convergence: If |Xn| ≤ Yn and ∃ rv X such that
Xn → X (technical details of this convergence later in the course) and
a random variable Y such that Yn → Y with E (Yn) → E (Y ) < ∞
then

E (Xn) → E (X ) .

Often used with all Yn the same rv Y .

These theorems are used in approximation.
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Connection to integration

Theorem

With this definition of E :

1 if X has density f (x) (even in Rp say) and Y = g(X ) then

E (Y ) =

∫

g(x)f (x)dx .

(Could be a multiple integral.)

2 If X has pmf f then

E (Y ) =
∑

x

g(x)f (x) .

3 First conclusion works, e.g., even if X has a density but Y doesn’t.
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Moments pp 49-54

Definition: The r th moment (about the origin) of a real rv X is
µ′

r = E (X r ) (provided it exists).

We generally use µ for E (X ).

Definition: The r th central moment is

µr = E [(X − µ)r ]

We call σ2 = µ2 the variance.

Definition: For an Rp valued random vector X

µX = E (X )

is the vector whose i th entry is E (Xi ) (provided all entries exist).

Definition: The (p × p) variance covariance matrix of X is

Var(X ) = E
[

(X − µ)(X − µ)t
]

which exists provided each component Xi has a finite second moment.
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Moments and independence

Theorem

If X1, . . . ,Xp are independent and each Xi is integrable then
X = X1 · · ·Xp is integrable and

E (X1 · · ·Xp) = E (X1) · · · E (Xp) .

Richard Lockhart (Simon Fraser University) STAT 830 Expectation STAT 830 — Fall 2013 10 / 15



Proof
Suppose each Xi is simple:

Xi =
∑

j

xij1(Xi = xij)

where the xij are the possible values of Xi . Then

E (X1 · · ·Xp) =
∑

j1...jp

x1j1 · · · xpjpE (1(X1 = x1j1) · · · 1(Xp = xpjp ))

=
∑

j1...jp

x1j1 · · · xpjpP(X1 = x1j1 · · ·Xp = xpjp )

=
∑

j1...jp

x1j1 · · · xpjpP(X1 = x1j1) · · ·P(Xp = xpjp )

=
∑

j1

x1j1P(X1 = x1j1) · · ·
∑

jp

xpjpP(Xp = xpjp)

=
∏

E (Xi) .
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General Case

General Xi ≥ 0:

Let Xin be Xi rounded down to nearest multiple of 2−n (to maximum
of n).

That is: if
k

2n
≤ Xi <

k + 1

2n

then Xin = k/2n for k = 0, . . . , n2n.

For Xi > n putXin = n.

Apply case just done:

E (
∏

Xin) =
∏

E (Xin) .

Monotone convergence applies to both sides.

General case: write each Xi as difference of positive and negative
parts:

Xi = max(Xi , 0)−max(−Xi , 0) .

Apply positive case.
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Conditional Expectations pp 54-56

Abstract definition of conditional expectation is:

Definition: E (Y |X ) is any function of X such that

E [R(X )E (Y |X )] = E [R(X )Y ]

for any bounded function R(X ).

Definition: E (Y |X = x) is a function g(x) such that

g(X ) = E (Y |X )

Fact: If X ,Y has joint density fX ,Y (x , y) and conditional density
f (y |x) then

g(x) =

∫

yf (y |x)dy

satisfies these definitions.
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Proof

E (R(X )g(X )) =

∫

R(x)g(x)fX (x)dx

=

∫

R(x)

∫

yf (y |x)dyfX (x)dx

=

∫ ∫

R(x)yfX (x)f (y |x)dydx

=

∫ ∫

R(x)yfX ,Y (x , y)dydx

= E (R(X )Y )
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Interpretation of conditional expectation

Intution: Think of E (Y |X ) as average Y holding X fixed.

Behaves like ordinary expected value but functions of X only are like
constants:

E (
∑

Ai(X )Yi |X ) =
∑

Ai(X )E (Yi |X )

Statement called Adam’s law by Jerzy Neyman – he used to say it
comes before all the others:

E [E (Y |X )] = E (Y )

which is just the definition of E (Y |X ) with R(X ) ≡ 1.

In regression courses we say that the total sum of squares is the sum
of the regression sum of squares plus the residual sum of squares:

Var(Y) = Var(E (Y |X )) + E [Var(Y |X )]

The conditional variance means

Var(Y |X ) = E [(Y − E (Y |X ))2|X ].
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