STAT 830

Expectation and Moments

I begin by reviewing the usual undergraduate definitions of expected value. For absolutely continuous random variables X we usually say:

Definition: If X has density f then

$$
\mathrm{E}\{g(X)\}=\int g(x) f(x) d x
$$

For discrete random variables we say:
Definition: If X has discrete density f then

$$
\mathrm{E}\{g(X)\}=\sum_{x} g(x) f(x)
$$

There is something of a problem with these two definitions. They seem to define, for instance, $\mathrm{E}\left(X^{2}\right)$, in two different ways. If X has density f_{X} then we would have

$$
\mathrm{E}\left(X^{2}\right)=\int x^{2} f_{X}(x) d x
$$

But we could also define $Y=X^{2}$ and try to figure out a density f_{Y} for Y. Then we would have

$$
\mathrm{E}(Y)=\int y f_{Y}(y) d y
$$

Are these two formulas the same? The answer is yes.
Fact: If $Y=g(X)$ for some one-to-one smooth function g (by which I mean say g is continuously differentiable) then

$$
\begin{aligned}
\mathrm{E}(Y) & =\int y f_{Y}(y) d y=\int g(x) f_{Y}(g(x)) g^{\prime}(x) d x \\
& =\mathrm{E}\{g(X)\}
\end{aligned}
$$

by change of variables formula for integration so we must have

$$
f_{X}(x)=f_{Y}(g(x)) g^{\prime}(x)
$$

For the moment I won't prove this but let me consider the case where, for instance $Y=e^{2 X}$. Then $g(x)=e^{2 x}$ and $g^{\prime}(x)=2 e^{2 x}$. Moreover

$$
\begin{aligned}
f_{X}(x) & =\frac{d}{d x} F_{X}(x) \\
& =\frac{d}{d x} P(X \leq x) \\
& =\frac{d}{d x} P\left(e^{2 X} \leq e^{2 x}\right) \\
& =\frac{d}{d x} P\left(Y \leq e^{2 x}\right) \\
& =\frac{d}{d x} F_{Y}\left(e^{2 x}\right) \\
& =f_{Y}\left(e^{2 x}\right) \frac{d}{d x} e^{2 x}
\end{aligned}
$$

as advertised.

General Definition of \mathbf{E}

There are random variables which are neither absolutely continuous nor discrete. I now give a definition of expected value which covers such cases and includes both discrete and continuous random variables.

Definition: We say that a random variable X is simple if we can write

$$
X(\omega)=\sum_{1}^{n} a_{i} 1\left(\omega \in A_{i}\right)
$$

for some constants a_{1}, \ldots, a_{n} and events A_{i}.
Definition: For a simple random variable X we define

$$
\mathrm{E}(X)=\sum a_{i} P\left(A_{i}\right)
$$

I remark that logically it might be possible to write X in two ways, say

$$
\sum_{i=1}^{n} a_{i} 1\left(\omega \in A_{i}\right)=\sum_{i=1}^{m} b_{i} 1\left(\omega \in B_{i}\right)
$$

some constants $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}$ and events A_{1}, \ldots, A_{n} and B_{1}, \ldots, B_{m}. I claim that if this happens then we must have

$$
\sum_{i=1}^{n} a_{i} P\left(A_{i}\right)=\sum_{i=1}^{m} b_{i} P\left(B_{i}\right) .
$$

I won't prove the claim!
For positive random variables which are not simple we extend our definition by approximation from below:
Definition: If $X \geq 0$ then

$$
\mathrm{E}(X)=\sup \{\mathrm{E}(Y): 0 \leq Y \leq X, Y \text { simple }\} .
$$

This notation hides the fact that for positive, simple, random variables X we appear to have given 2 definitions for $\mathrm{E}(X)$. It is possible to prove they are the same.

Finally we extend the definition to general random variables:
Definition: A random variable X is integrable if

$$
\mathrm{E}(|X|)<\infty .
$$

In this case we define

$$
\mathrm{E}(X)=\mathrm{E}\{\max (X, 0)\}-\mathrm{E}\{\max (-X, 0)\} .
$$

Again it might seem we have another definition for simple random variable or for non-negative random variables but it is possible to prove all the definitions agree.
Fact: : E is a linear, monotone, positive operator. This means:

1. Linear: $\mathrm{E}(a X+b Y)=a \mathrm{E}(X)+b \mathrm{E}(Y)$ provided X and Y are integrable.
2. Positive: $P(X \geq 0)=1$ implies $\mathrm{E}(X) \geq 0$.
3. Monotone: $P(X \geq Y)=1$ and X, Y integrable implies $\mathrm{E}(X) \geq$ $\mathrm{E}(Y)$.

Jargon: An operator is a function whose domain is itself a set of functions. That makes E an operator because random variables are functions. Sometimes we call operators whose range is in real or complex numbers a functional.

Convergence Theorems

There are some important theorems about interchanging limits with integrals and our definition of E is really the definition of an integral. In fact you will often see a variety of notations:

$$
\begin{aligned}
\mathrm{E}(g(X)) & =\int g(x) F(d x) \\
& =\int g(x) d F(x) \\
& =\int g d F
\end{aligned}
$$

Sometimes the integral notations make it easier to see how a calculation works out. The notation $d F(x)$ has the advantage that if F has a density $f=F^{\prime}$ we can write

$$
d F(x)=f(x) d x
$$

In calculus courses there is quite a bit of attention paid to such questions as when

$$
\frac{d}{d y} \int g(x, y) d x=\int \frac{\partial}{\partial y} g(x, y) d x
$$

The issue is that the definition of a derivative involves a limit. The left hand side is

$$
\lim _{h \rightarrow 0} \int \frac{g(x, y+h)-g(x, y)}{h} d x
$$

while the right hand side is

$$
\int \lim _{h \rightarrow 0} \frac{g(x, y+h)-g(x, y)}{h} d x
$$

and the issue is whether or not you can pull limits in and out of integrals. You often can; the next two theorems give precise conditions for this to work.

Theorem 1 (Monotone Convergence) If $0 \leq X_{1} \leq X_{2} \leq \cdots$ and $X=$ $\lim X_{n}$ (the limit X automatically exists) then

$$
\mathrm{E}(X)=\lim _{n \rightarrow \infty} \mathrm{E}\left(X_{n}\right)
$$

Remark: In the hypotheses we need $P\left(X_{n+1} \geq X_{n}\right)=1$ and $P\left(X_{1} \geq 0\right)=1$.

Theorem 2 (Dominated Convergence) If $\left|X_{n}\right| \leq Y_{n}$ and \exists a random variable X such that $X_{n} \rightarrow X$ (technical details of this convergence come later in the course) and a random variable Y such that $Y_{n} \rightarrow Y$ with $\lim _{n \rightarrow \infty} \mathrm{E}\left(Y_{n}\right)=$ $\mathrm{E}(Y)<\infty$ then

$$
\lim _{n \rightarrow \infty} \mathrm{E}\left(X_{n}\right)=\mathrm{E}(X)
$$

Remark: The dominated convergence theorem is often used with all Y_{n} the same random variable Y. In this case the hypothesis that $\lim _{n \rightarrow \infty} \mathrm{E}\left(Y_{n}\right)=$ $\mathrm{E}(Y)<\infty$ is just the hypothesis that $\mathrm{E}(Y)<\infty$.
Remark: These theorems are used in approximation. We compute the limit of the expected values of a sequence of random variables X_{n} and then approximate $\mathrm{E}\left(X_{225}\right)$ (or whatever n we actually have instead of 225) by $\mathrm{E}(X)$.

Connection to ordinary integrals

Theorem 3 With this definition of E :

1. if X has density $f(x)$ (even in R^{p} say) and $Y=g(X)$ then

$$
\mathrm{E}(Y)=\int g(x) f(x) d x
$$

(This could be a multiple integral.)
2. If X has probability mass function f then

$$
\mathrm{E}(Y)=\sum_{x} g(x) f(x)
$$

3. The first conclusion works, e.g., even if X has a density but Y doesn't.

Moments

- Definition: The $r^{\text {th }}$ moment (about the origin) of a real random variable X is $\mu_{r}^{\prime}=\mathrm{E}\left(X^{r}\right)$ (provided it exists).
- We generally use μ for $\mathrm{E}(X)$.
- Definition: The $r^{\text {th }}$ central moment is

$$
\mu_{r}=\mathrm{E}\left[(X-\mu)^{r}\right]
$$

- We call $\sigma^{2}=\mu_{2}$ the variance.
- Definition: For an R^{p} valued random vector X

$$
\mu_{X}=\mathrm{E}(X)
$$

is the vector whose $i^{\text {th }}$ entry is $\mathrm{E}\left(X_{i}\right)$ (provided all entries exist).

- Definition: The $(p \times p)$ variance covariance matrix of X is

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)(X-\mu)^{t}\right]
$$

which exists provided each component X_{i} has a finite second moment.

Moments and independence

Theorem 4 If X_{1}, \ldots, X_{p} are independent and each X_{i} is integrable then $X=X_{1} \cdots X_{p}$ is integrable and

$$
\mathrm{E}\left(X_{1} \cdots X_{p}\right)=\mathrm{E}\left(X_{1}\right) \cdots \mathrm{E}\left(X_{p}\right) .
$$

Proof: Suppose each X_{i} is simple:

$$
X_{i}=\sum_{j} x_{i j} 1\left(X_{i}=x_{i j}\right)
$$

where the $x_{i j}$ are the possible values of X_{i}. Then

$$
\begin{aligned}
\mathrm{E}\left(X_{1} \cdots X_{p}\right) & =\sum_{j_{1} \ldots j_{p}} x_{1 j_{1}} \cdots x_{p j_{p}} \mathrm{E}\left(1\left(X_{1}=x_{1 j_{1}}\right) \cdots 1\left(X_{p}=x_{p j_{p}}\right)\right) \\
& =\sum_{j_{1} \cdots j_{p}} x_{1 j_{1}} \cdots x_{p j_{p}} P\left(X_{1}=x_{1 j_{1}} \cdots X_{p}=x_{p j_{p}}\right) \\
& =\sum_{j_{1} \cdots j_{p}} x_{1 j_{1}} \cdots x_{p j_{p}} P\left(X_{1}=x_{1 j_{1}}\right) \cdots P\left(X_{p}=x_{p j_{p}}\right) \\
& =\sum_{j_{1}} x_{1 j_{1}} P\left(X_{1}=x_{1 j_{1}}\right) \cdots \sum_{j_{p}} x_{p j_{p}} P\left(X_{p}=x_{p j_{p}}\right) \\
& =\prod \mathrm{E}\left(X_{i}\right) .
\end{aligned}
$$

Non-negative Case: Now consider non-negative random variables X_{i}, Let $X_{i n}$ be X_{i} rounded down to the nearest multiple of 2^{-n} to a maximum of n. That is: if

$$
\frac{k}{2^{n}} \leq X_{i}<\frac{k+1}{2^{n}}
$$

then $X_{i n}=k / 2^{n}$ for $k=0, \ldots, n 2^{n}$. For $X_{i}>n$ put $X_{i n}=n$. Now apply the case we have just done:

$$
\mathrm{E}\left(\prod X_{i n}\right)=\prod \mathrm{E}\left(X_{i n}\right)
$$

Monotone convergence applies to both sides to prove the result for nonnegative X_{i}.

General case: now consider general X_{i} and write each X_{i} as the difference of positive and negative parts:

$$
X_{i}=\max \left(X_{i}, 0\right)-\max \left(-X_{i}, 0\right)
$$

Write out $\prod_{i}\left|X_{i}\right|$ as a sum of products and apply the positive case to see that if all the X_{i} are integrable then so is $\prod_{i} X_{i}$.

Conditional Expectations

- Abstract definition of conditional expectation is:
- Definition: $\mathrm{E}(Y \mid X)$ is any function of X such that

$$
\mathrm{E}[R(X) \mathrm{E}(Y \mid X)]=\mathrm{E}[R(X) Y]
$$

for any bounded function $R(X)$.

- Definition: $\mathrm{E}(Y \mid X=x)$ is a function $g(x)$ such that

$$
g(X)=\mathrm{E}(Y \mid X)
$$

- Fact: If X, Y has joint density $f_{X, Y}(x, y)$ and conditional density $f(y \mid x)$ then

$$
g(x)=\int y f(y \mid x) d y
$$

satisfies these definitions.

Proof:

$$
\begin{aligned}
\mathrm{E}(R(X) g(X)) & =\int R(x) g(x) f_{X}(x) d x \\
& =\int R(x) \int y f(y \mid x) d y f_{X}(x) d x \\
& =\iint R(x) y f_{X}(x) f(y \mid x) d y d x \\
& =\iint R(x) y f_{X, Y}(x, y) d y d x \\
& =\mathrm{E}(R(X) Y)
\end{aligned}
$$

Interpretation of conditional expectation

- Intuition: Think of $\mathrm{E}(Y \mid X)$ as average Y holding X fixed.
- Behaves like ordinary expected value but functions of X only are like constants:

$$
\mathrm{E}\left(\sum A_{i}(X) Y_{i} \mid X\right)=\sum A_{i}(X) \mathrm{E}\left(Y_{i} \mid X\right)
$$

- Statement called Adam's law by Jerzy Neyman - he used to say it comes before all the others:

$$
\mathrm{E}[\mathrm{E}(Y \mid X)]=\mathrm{E}(Y)
$$

which is just the definition of $\mathrm{E}(Y \mid X)$ with $R(X) \equiv 1$.

- In regression courses we say that the total sum of squares is the sum of the regression sum of squares plus the residual sum of squares:

$$
\operatorname{Var}(\mathrm{Y})=\operatorname{Var}(\mathrm{E}(Y \mid X))+\mathrm{E}[\operatorname{Var}(Y \mid X)]
$$

- The conditional variance means

$$
\operatorname{Var}(Y \mid X)=\mathrm{E}\left[(Y-\mathrm{E}(Y \mid X))^{2} \mid X\right]
$$

Moments

Moment is an old word from physics used in such terms as moments of inertia. There is actually a good analogy between the physics use of the term and our use. If you made a block of wood shaped like the density of a random variable X and you tried to balance the block (it will be thin, long, flat on the bottom and curved into the shape of the density on the top) on a pencil the pencil would have to be located under the mean of the density. The moment of force about this pencil would be 0 . Warning: go elsewhere to learn physics.
Definition: The $r^{\text {th }}$ moment (about the origin) of a real random variable X is $\mu_{r}^{\prime}=\mathrm{E}\left(X^{r}\right)$ (provided it exists - that is, provided X^{r} is integrable).
Notation: We generally use μ for $\mathrm{E}(X)$.
Definition: The $r^{\text {th }}$ central moment is

$$
\mu_{r}=\mathrm{E}\left[(X-\mu)^{r}\right]
$$

Notation: We call $\sigma^{2}=\mu_{2}$ the variance.
Definition: For an R^{p} valued random vector X

$$
\mu_{X}=\mathrm{E}(X)
$$

is the vector whose $i^{\text {th }}$ entry is $\mathrm{E}\left(X_{i}\right)$ (provided all entries exist). Similarly for matrices we take expected values entry by entry.
Definition: The $(p \times p)$ variance covariance matrix of X is

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)(X-\mu)^{t}\right]
$$

which exists provided each component X_{i} has a finite second moment.
The $i j$ th entry in $(X-\mu)(X-\mu)^{t}$ is $\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)$. As a result this matrix has diagonal entries which are the usual variances of the individual X_{i} and off diagonal entries which are covariances.

Moments and independence

Theorem 5 If X_{1}, \ldots, X_{p} are independent and each X_{i} is integrable then $X=X_{1} \cdots X_{p}$ is integrable and

$$
\mathrm{E}\left(X_{1} \cdots X_{p}\right)=\mathrm{E}\left(X_{1}\right) \cdots \mathrm{E}\left(X_{p}\right)
$$

Proof: First suppose each X_{i} is simple:

$$
X_{i}=\sum_{j} x_{i j} 1\left(X_{i}=x_{i j}\right)
$$

where the $x_{i j}$ are the possible values of X_{i}. Then

$$
\begin{aligned}
E\left(X_{1} \cdots X_{p}\right) & =\sum_{j_{1} \cdots j_{p}} x_{1 j_{1}} \cdots x_{p j_{p}} E\left(1\left(X_{1}=x_{1 j_{1}}\right) \cdots 1\left(X_{p}=x_{p j_{p}}\right)\right) \\
& =\sum_{j_{1} \cdots j_{p}} x_{1 j_{1}} \cdots x_{p j_{p}} P\left(X_{1}=x_{1 j_{1}} \cdots X_{p}=x_{p j_{p}}\right) \\
& =\sum_{j_{1} \ldots j_{p}} x_{1 j_{1}} \cdots x_{p j_{p}} P\left(X_{1}=x_{1 j_{1}}\right) \cdots P\left(X_{p}=x_{p j_{p}}\right) \\
& =\sum_{j_{1}} x_{1 j_{1}} P\left(X_{1}=x_{1 j_{1}}\right) \cdots \sum_{j_{p}} x_{p j_{p}} P\left(X_{p}=x_{p j_{p}}\right) \\
& =\prod E\left(X_{i}\right) .
\end{aligned}
$$

Now we consider the case of general $X_{i} \geq 0$. Let $X_{i n}$ be X_{i} rounded down to nearest multiple of 2^{-n} (to maximum of n). That is, if

$$
\frac{k}{2^{n}} \leq X_{i}<\frac{k+1}{2^{n}}
$$

then we define $X_{i n}=k / 2^{n}$ for $k=0, \ldots, n 2^{n}$ and for $X_{i}>n$ we put $X_{i n}=n$.
Now we apply the case we have just done:

$$
E\left(\prod X_{i n}\right)=\prod E\left(X_{i n}\right)
$$

Finally we apply the monotone convergence theorem to both sides.
It remains to consider X_{i} which might not be positive. Use the previous case to prove that

$$
\left|\prod X_{i}\right|=\prod\left|X_{i}\right|
$$

is integrable. Then expend the product of positive minus negative parts,

$$
X_{i}=\max \left(X_{i}, 0\right)-\max \left(-X_{i}, 0\right)
$$

Next check that all of the 2^{p} terms you get, after expanding out, are integrable and apply the previous case. The details are algebraically messy and not very informative in my view. An alternative theory is that I am too lazy to write them out.

Conditional Expectations

I am going to give here the abstract "definition" of a conditional expectation. The definition is indirect - it is a thing which has a certain property. That means that I ought to prove there is a thing with that property and that the thing with the property is unique. As usual - I won't be doing that here.

The abstract definition of conditional expectation is:
Definition: $\mathrm{E}(Y \mid X)$ is any function of X such that

$$
\mathrm{E}[R(X) \mathrm{E}(Y \mid X)]=\mathrm{E}[R(X) Y]
$$

for any bounded function $R(X)$.
Definition: $\mathrm{E}(Y \mid X=x)$ is a function $g(x)$ such that

$$
g(X)=E(Y \mid X)
$$

that is, such that $g(X)$ satisfies the previous definition.
Fact: If X, Y has joint density $f_{X, Y}(x, y)$ and conditional density $f(y \mid x)$ then

$$
g(x)=\int y f(y \mid x) d y
$$

satisfies these definitions.
Proof:

$$
\begin{aligned}
E(R(X) g(X)) & =\int R(x) g(x) f_{X}(x) d x \\
& =\int R(x) \int y f(y \mid x) d y f_{X}(x) d x \\
& =\iint R(x) y f_{X}(x) f(y \mid x) d y d x \\
& =\iint R(x) y f_{X, Y}(x, y) d y d x \\
& =E(R(X) Y)
\end{aligned}
$$

Interpretation and properties of conditional expectation

- Intuition: Think of $E(Y \mid X)$ as average Y holding X fixed.
- Behaves like ordinary expected value but functions of X only are like constants:

$$
E\left(\sum A_{i}(X) Y_{i} \mid X\right)=\sum A_{i}(X) E\left(Y_{i} \mid X\right)
$$

- Statement called Adam's law by Jerzy Neyman - he used to say it comes before all the others:

$$
E[E(Y \mid X)]=E(Y)
$$

which is just the definition of $E(Y \mid X)$ with $R(X) \equiv 1$.

- In regression courses we say that the total sum of squares is the sum of the regression sum of squares plus the residual sum of squares:

$$
\operatorname{Var}(\mathrm{Y})=\operatorname{Var}(E(Y \mid X))+E[\operatorname{Var}(Y \mid X)]
$$

- The conditional variance means

$$
\operatorname{Var}(Y \mid X)=E\left[(Y-E(Y \mid X))^{2} \mid X\right]
$$

