
STAT 830

Expectation and Moments

I begin by reviewing the usual undergraduate definitions of expected
value. For absolutely continuous random variables X we usually say:

Definition: If X has density f then

E{g(X)} =

∫
g(x)f(x) dx .

For discrete random variables we say:

Definition: If X has discrete density f then

E{g(X)} =
∑
x

g(x)f(x) .

There is something of a problem with these two definitions. They seem
to define, for instance, E(X2), in two different ways. If X has density fX
then we would have

E(X2) =

∫
x2fX(x) dx.

But we could also define Y = X2 and try to figure out a density fY for Y .
Then we would have

E(Y ) =

∫
yfY (y)dy.

Are these two formulas the same? The answer is yes.

Fact: If Y = g(X) for some one-to-one smooth function g (by which I mean
say g is continuously differentiable) then

E(Y ) =

∫
yfY (y) dy =

∫
g(x)fY (g(x))g′(x) dx

= E{g(X)}

by change of variables formula for integration so we must have

fX(x) = fY (g(x))g′(x).
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For the moment I won’t prove this but let me consider the case where, for
instance Y = e2X . Then g(x) = e2x and g′(x) = 2e2x. Moreover

fX(x) =
d

dx
FX(x)

=
d

dx
P (X ≤ x)

=
d

dx
P (e2X ≤ e2x)

=
d

dx
P (Y ≤ e2x)

=
d

dx
FY (e2x)

= fY (e2x)
d

dx
e2x

as advertised.

General Definition of E

There are random variables which are neither absolutely continuous nor dis-
crete. I now give a definition of expected value which covers such cases and
includes both discrete and continuous random variables.

Definition: We say that a random variable X is simple if we can write

X(ω) =
n∑
1

ai1(ω ∈ Ai)

for some constants a1, . . . , an and events Ai.

Definition: For a simple random variable X we define

E(X) =
∑

aiP (Ai) .

I remark that logically it might be possible to write X in two ways, say

n∑
i=1

ai1(ω ∈ Ai) =
m∑
i=1

bi1(ω ∈ Bi)
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some constants a1, . . . , an, b1, . . . , bm and events A1, . . . , An and B1, . . . , Bm.
I claim that if this happens then we must have

n∑
i=1

aiP (Ai) =
m∑
i=1

biP (Bi).

I won’t prove the claim!
For positive random variables which are not simple we extend our defini-

tion by approximation from below:

Definition: If X ≥ 0 then

E(X) = sup{E(Y ) : 0 ≤ Y ≤ X, Y simple} .

This notation hides the fact that for positive, simple, random variables
X we appear to have given 2 definitions for E(X). It is possible to prove
they are the same.

Finally we extend the definition to general random variables:

Definition: A random variable X is integrable if

E(|X|) <∞ .

In this case we define

E(X) = E{max(X, 0)} − E{max(−X, 0)} .

Again it might seem we have another definition for simple random variable or
for non-negative random variables but it is possible to prove all the definitions
agree.

Fact: : E is a linear, monotone, positive operator. This means:

1. Linear: E(aX + bY ) = aE(X) + bE(Y ) provided X and Y are inte-
grable.

2. Positive: P (X ≥ 0) = 1 implies E(X) ≥ 0.

3. Monotone: P (X ≥ Y ) = 1 and X, Y integrable implies E(X) ≥
E(Y ).

Jargon: An operator is a function whose domain is itself a set of func-
tions. That makes E an operator because random variables are functions.
Sometimes we call operators whose range is in real or complex numbers a
functional.
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Convergence Theorems

There are some important theorems about interchanging limits with integrals
and our definition of E is really the definition of an integral. In fact you will
often see a variety of notations:

E(g(X)) =

∫
g(x)F (dx)

=

∫
g(x)dF (x)

=

∫
gdF

Sometimes the integral notations make it easier to see how a calculation
works out. The notation dF (x) has the advantage that if F has a density
f = F ′ we can write

dF (x) = f(x)dx.

In calculus courses there is quite a bit of attention paid to such questions
as when

d

dy

∫
g(x, y)dx =

∫
∂

∂y
g(x, y)dx.

The issue is that the definition of a derivative involves a limit. The left hand
side is

lim
h→0

∫
g(x, y + h)− g(x, y)

h
dx

while the right hand side is∫
lim
h→0

g(x, y + h)− g(x, y)

h
dx

and the issue is whether or not you can pull limits in and out of integrals.
You often can; the next two theorems give precise conditions for this to work.

Theorem 1 (Monotone Convergence) If 0 ≤ X1 ≤ X2 ≤ · · · and X =
limXn (the limit X automatically exists) then

E(X) = lim
n→∞

E(Xn) .

Remark: In the hypotheses we need P (Xn+1 ≥ Xn) = 1 and P (X1 ≥ 0) = 1.
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Theorem 2 (Dominated Convergence) If |Xn| ≤ Yn and ∃ a random
variable X such that Xn → X (technical details of this convergence come later
in the course) and a random variable Y such that Yn → Y with limn→∞ E(Yn) =
E(Y ) <∞ then

lim
n→∞

E(Xn) = E(X) .

Remark: The dominated convergence theorem is often used with all Yn the
same random variable Y . In this case the hypothesis that limn→∞ E(Yn) =
E(Y ) <∞ is just the hypothesis that E(Y ) <∞.

Remark: These theorems are used in approximation. We compute the limit
of the expected values of a sequence of random variables Xn and then ap-
proximate E(X225) (or whatever n we actually have instead of 225) by E(X).

Connection to ordinary integrals

Theorem 3 With this definition of E:

1. if X has density f(x) (even in Rp say) and Y = g(X) then

E(Y ) =

∫
g(x)f(x)dx .

(This could be a multiple integral.)

2. If X has probability mass function f then

E(Y ) =
∑
x

g(x)f(x) .

3. The first conclusion works, e.g., even if X has a density but Y doesn’t.

Moments

• Definition: The rth moment (about the origin) of a real random vari-
able X is µ′r = E(Xr) (provided it exists).

• We generally use µ for E(X).
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• Definition: The rth central moment is

µr = E[(X − µ)r]

• We call σ2 = µ2 the variance.

• Definition: For an Rp valued random vector X

µX = E(X)

is the vector whose ith entry is E(Xi) (provided all entries exist).

• Definition: The (p× p) variance covariance matrix of X is

Var(X) = E
[
(X − µ)(X − µ)t

]
which exists provided each component Xi has a finite second moment.

Moments and independence

Theorem 4 If X1, . . . , Xp are independent and each Xi is integrable then
X = X1 · · ·Xp is integrable and

E(X1 · · ·Xp) = E(X1) · · ·E(Xp) .

Proof: Suppose each Xi is simple:

Xi =
∑
j

xij1(Xi = xij)

where the xij are the possible values of Xi. Then

E(X1 · · ·Xp) =
∑
j1...jp

x1j1 · · ·xpjpE(1(X1 = x1j1) · · · 1(Xp = xpjp))

=
∑
j1...jp

x1j1 · · ·xpjpP (X1 = x1j1 · · ·Xp = xpjp)

=
∑
j1...jp

x1j1 · · ·xpjpP (X1 = x1j1) · · ·P (Xp = xpjp)

=
∑
j1

x1j1P (X1 = x1j1) · · ·
∑
jp

xpjpP (Xp = xpjp)

=
∏

E(Xi) .
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Non-negative Case: Now consider non-negative random variables Xi, Let
Xin be Xi rounded down to the nearest multiple of 2−n to a maximum of n.
That is: if

k

2n
≤ Xi <

k + 1

2n

then Xin = k/2n for k = 0, . . . , n2n. For Xi > n putXin = n. Now apply the
case we have just done:

E(
∏

Xin) =
∏

E(Xin) .

Monotone convergence applies to both sides to prove the result for non-
negative Xi.

General case: now consider general Xi and write each Xi as the difference
of positive and negative parts:

Xi = max(Xi, 0)−max(−Xi, 0) .

Write out
∏

i |Xi| as a sum of products and apply the positive case to see
that if all the Xi are integrable then so is

∏
iXi.

Conditional Expectations

• Abstract definition of conditional expectation is:

• Definition: E(Y |X) is any function of X such that

E [R(X)E(Y |X)] = E [R(X)Y ]

for any bounded function R(X).

• Definition: E(Y |X = x) is a function g(x) such that

g(X) = E(Y |X)

• Fact: If X, Y has joint density fX,Y (x, y) and conditional density
f(y|x) then

g(x) =

∫
yf(y|x)dy

satisfies these definitions.
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Proof:

E(R(X)g(X)) =

∫
R(x)g(x)fX(x)dx

=

∫
R(x)

∫
yf(y|x)dyfX(x)dx

=

∫ ∫
R(x)yfX(x)f(y|x)dydx

=

∫ ∫
R(x)yfX,Y (x, y)dydx

= E(R(X)Y )

Interpretation of conditional expectation

• Intuition: Think of E(Y |X) as average Y holding X fixed.

• Behaves like ordinary expected value but functions of X only are like
constants:

E(
∑

Ai(X)Yi|X) =
∑

Ai(X)E(Yi|X)

• Statement called Adam’s law by Jerzy Neyman – he used to say it
comes before all the others:

E[E(Y |X)] = E(Y )

which is just the definition of E(Y |X) with R(X) ≡ 1.

• In regression courses we say that the total sum of squares is the sum
of the regression sum of squares plus the residual sum of squares:

Var(Y) = Var(E(Y |X)) + E[Var(Y |X)]

• The conditional variance means

Var(Y |X) = E[(Y − E(Y |X))2|X].
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Moments

Moment is an old word from physics used in such terms as moments of inertia.
There is actually a good analogy between the physics use of the term and
our use. If you made a block of wood shaped like the density of a random
variable X and you tried to balance the block (it will be thin, long, flat on
the bottom and curved into the shape of the density on the top) on a pencil
the pencil would have to be located under the mean of the density. The
moment of force about this pencil would be 0. Warning: go elsewhere to
learn physics.

Definition: The rth moment (about the origin) of a real random variable X
is µ′r = E(Xr) (provided it exists – that is, provided Xr is integrable).

Notation: We generally use µ for E(X).

Definition: The rth central moment is

µr = E[(X − µ)r]

Notation: We call σ2 = µ2 the variance.

Definition: For an Rp valued random vector X

µX = E(X)

is the vector whose ith entry is E(Xi) (provided all entries exist). Similarly
for matrices we take expected values entry by entry.

Definition: The (p× p) variance covariance matrix of X is

Var(X) = E
[
(X − µ)(X − µ)t

]
which exists provided each component Xi has a finite second moment.

The ijth entry in (X −µ)(X −µ)t is (Xi−µi)(Xj −µj). As a result this
matrix has diagonal entries which are the usual variances of the individual
Xi and off diagonal entries which are covariances.

Moments and independence

Theorem 5 If X1, . . . , Xp are independent and each Xi is integrable then
X = X1 · · ·Xp is integrable and

E(X1 · · ·Xp) = E(X1) · · ·E(Xp) .
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Proof: First suppose each Xi is simple:

Xi =
∑
j

xij1(Xi = xij)

where the xij are the possible values of Xi. Then

E(X1 · · ·Xp) =
∑
j1...jp

x1j1 · · ·xpjpE(1(X1 = x1j1) · · · 1(Xp = xpjp))

=
∑
j1...jp

x1j1 · · ·xpjpP (X1 = x1j1 · · ·Xp = xpjp)

=
∑
j1...jp

x1j1 · · ·xpjpP (X1 = x1j1) · · ·P (Xp = xpjp)

=
∑
j1

x1j1P (X1 = x1j1) · · ·
∑
jp

xpjpP (Xp = xpjp)

=
∏

E(Xi) .

Now we consider the case of general Xi ≥ 0. Let Xin be Xi rounded down
to nearest multiple of 2−n (to maximum of n). That is, if

k

2n
≤ Xi <

k + 1

2n

then we define Xin = k/2n for k = 0, . . . , n2n and for Xi > n we put Xin = n.
Now we apply the case we have just done:

E(
∏

Xin) =
∏

E(Xin) .

Finally we apply the monotone convergence theorem to both sides.
It remains to consider Xi which might not be positive. Use the previous

case to prove that

|
∏

Xi| =
∏
|Xi|

is integrable. Then expend the product of positive minus negative parts,

Xi = max(Xi, 0)−max(−Xi, 0) .

Next check that all of the 2p terms you get, after expanding out, are integrable
and apply the previous case. The details are algebraically messy and not very
informative in my view. An alternative theory is that I am too lazy to write
them out.
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Conditional Expectations

I am going to give here the abstract “definition” of a conditional expectation.
The definition is indirect – it is a thing which has a certain property. That
means that I ought to prove there is a thing with that property and that the
thing with the property is unique. As usual – I won’t be doing that here.

The abstract definition of conditional expectation is:

Definition: E(Y |X) is any function of X such that

E [R(X)E(Y |X)] = E [R(X)Y ]

for any bounded function R(X).

Definition: E(Y |X = x) is a function g(x) such that

g(X) = E(Y |X)

that is, such that g(X) satisfies the previous definition.

Fact: If X, Y has joint density fX,Y (x, y) and conditional density f(y|x) then

g(x) =

∫
yf(y|x)dy

satisfies these definitions.

Proof:

E(R(X)g(X)) =

∫
R(x)g(x)fX(x)dx

=

∫
R(x)

∫
yf(y|x)dyfX(x)dx

=

∫ ∫
R(x)yfX(x)f(y|x)dydx

=

∫ ∫
R(x)yfX,Y (x, y)dydx

= E(R(X)Y )
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Interpretation and properties of conditional expectation

• Intuition: Think of E(Y |X) as average Y holding X fixed.

• Behaves like ordinary expected value but functions of X only are like
constants:

E(
∑

Ai(X)Yi|X) =
∑

Ai(X)E(Yi|X)

• Statement called Adam’s law by Jerzy Neyman – he used to say it
comes before all the others:

E[E(Y |X)] = E(Y )

which is just the definition of E(Y |X) with R(X) ≡ 1.

• In regression courses we say that the total sum of squares is the sum
of the regression sum of squares plus the residual sum of squares:

Var(Y) = Var(E(Y |X)) + E[Var(Y |X)]

• The conditional variance means

Var(Y |X) = E[(Y − E(Y |X))2|X].

12


