STAT 830
Distribution Theory

Richard Lockhart

Simon Fraser University

STAT 830 — Fall 2013

Richard Lockhart (Simon Fraser University) STAT 830 Distribution Theory

STAT 830 — Fall 2013

1/23



What | assume you already know

@ The change of variables for integration

@ How to find densities for transformations in R.

@ How to compute probabilities by doing multiple integrals.
@ Material on slides 46, 9-13.
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Distribution Theory pp 41-43

@ Basic Problem: Start with assumptions about f or CDF of random
vector X = (Xq1,...,Xp).

@ Define Y = g(Xi,...,X,) to be some function of X (usually some
statistic of interest).

@ How can we compute the distribution or CDF or density of Y7

=
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Univariate Techniques

Method 1: compute the CDF by integration and differentiate to find fy.
Example: U ~ Uniform[0, 1] and Y = —log U.

F0) = P(Y <) =PIl <y
= P(loglU>—y)=P(U>e)

_ l1—e” y>0
N 0 y <0.

so Y has standard exponential distribution.
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Chi-square
@ Example: Z ~ N(0,1), i.e.

and Y = Z2.
@ Then
Fy(y)=P(Z°<y)
_{O y <0
P(—/y<Z<\ly) y=>0.

@ Now differentiate

P(—vy < Z <) = Fz(Vy) = Fz(=VY)

to get
0 y <0
fr(y) =14 & [Fz(v¥) = Fz(=v¥)] y>0
undefined y=0.
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More

@ Then
in(\/)_/) = fz(\/)_’)i\/)_’
dy dy

= \/12—7T exp (— (V) /2> %y_l/z
= L e V2,

2\/2my

@ (Similar formula for other derivative.) Thus

\/217}/e_y/2 y >0

fy(y)=14 0 y <0
undefined y =0.
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Indicators

@ We will find indicator notation useful:

1 y>0
1(Y>O):{ 0 §<o

which we use to write

1 _
fr(y) = N ¥21(y > 0)

(changing definition unimportantly at y = 0).

=
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Fundamental Theorem of Calculus

@ Notice: | never evaluated Fy before differentiating it.

@ In fact Fy and F7 are integrals | can't do but | can differentiate then
anyway.

@ Remember fundamental theorem of calculus:

= [ fnay =0

at any x where f is continuous.
@ Summary: for Y = g(X) with X and Y each real valued

P(Y <y)=P(g(X) <y)
= P(X € g_l(_oo’y])‘
@ Take d/dy to compute the density

V]
fi = — fx(x)dx.
V) dy Jixg(x)<y} x)

@ Often can differentiate without doing integral.
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Method 2: Change of variables

@ Assume g is one to one.
@ | do: g is increasing and differentiable.

@ Interpretation of density (based on density = F’):

P(y <Y <y+dy)

Fly) = éymo oy
_im PO dy) — ()
oy—0 oy

and
P(x < X < x+ 0x)

i) = i,

ox
@ Now assume y = g(x). Define dy by y + dy = g(x + dx).
@ Then

Py <Y < g(x+0x)) = P(x < X < x +0x).
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Change of Variables Continued

o Get
Ply <Y <y+dy)) Plx<X<x+6x)/6x

Sy — {agx+6x) —y}/ox

@ Take limit to get

fr(y) = fx(x)/g'(x) or fr(g(x))g’(x) = fx(x).
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Alternative view

@ Each probability is integral of a density.
o First is integral of fy from y = g(x) to y = g(x + dx).
@ The interval is narrow so fy is nearly constant and

Ply <Y < g(x + 6x)) = fr(y)(g(x + 0x) — g(x)).
@ Since g has a derivative g(x + dx) — g(x) =~ dxg’(x) so we get
P(y <Y < g(x +0x)) = fy(y)g'(x)ox.
@ Same idea applied to P(x < X < x + dx) gives
P(x < X < x + 6x) = fx(x)dx

so that

fy(y)g'(x)ox ~ fx(x)dx

or, cancelling the dx in the limit

fy(y)g'(x) = fx(x).
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Intution continued

@ If you remember y = g(x) then you get

fx(x) = fr(g(x))g’(x).

@ Or solve y = g(x) to get x in terms of y, that is, x = g71(y) and
then

fr(y) = fx(g ' (v))/&' (g7 ().
@ This is just the change of variables formula for doing integrals.

@ Remark: For g decreasing g’ < 0 but Then the interval
(g(x),g(x + dx)) is really (g(x + dx), g(x)) so that

g(x) — g(x + 0x) =~ —g'(x)dx.
@ In both cases this amounts to the formula

fx(x) = fy(g(x))lg’(x)I-

@ Mnemonic:

fy(y)dy = fx(x)dx.
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Example cf Ex 2.46 p 41
@ X ~ Weibull(shape «, scale 3) or

a—1
K =5 (5) ep -t a6> 0.

o Let Y =log X or g(x) = log(x).
@ Solve y = log x: x = exp(y) or g7 1(y) = ¢”.
o Then g/(x) = 1/x and 1/g'(g71(y)) = 1/(1/e¥) = ¢".
@ Hence

o (e a—1

v =5(5)  ew /a0

BB

@ For any y, € > 0 so indicator = 1. So

fy(y) = o exp{ay — e/} .

ﬁ
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Example Continued

@ Define ¢ =log 8 and 6 = 1/q; then,

fr(y) = %m{% —m{%}} :

o Extreme Value density with location parameter ¢ and scale
parameter 6.

@ Note: several distributions are called Extreme Value.

=
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Marginalization pp 33-34

Simplest multivariate problem:
X=(X,....%,), Y=X
(or in general Y is any Xj).

Theorem

If X has density f(x1,...,xp) and g < p then Y = (X1,...,Xq) has
density

fy(xl,...,xq):/ / f(x1,...,Xp) dXgq1 ... dxp.

fxi,...x, is the marginal density of Xi,..., X, and fx the joint density of
X but they are both just densities.

“Marginal” just to distinguish from the joint density of X.

=
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Example
@ The function f(x1,x2) = Kxixol(x1 > 0,x2 > 0,x1 +x2 < 1) is a
density provided

P(X € R?) :/ / f(x1,x2) dxg dxp = 1.
—oo J —00

@ The integral is

1—x1
/ / X1X2 dX1 dX2 / Xl(]. — Xl) dX1/2

= K(1/2 - 2/3+1/4)/2 = K /24
so K = 24.
@ The marginal density of Xj is Beta(2,3):

00
fX1 (Xl) :/ 24X1X21(X1 >0, >0,x1 +x < 1) dxo

—00

1—x1
:24/ X1X21(0 <X < 1)dX2
0

=12x(1 — x1)?1(0 < x; < 1).
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General Problem

@ General problem has Y = (Yi,..., Yq) with Y; = gi(X1,..., Xp).

@ Case 1: g > p. Y won't have density for “smooth” g. Y will have a
singular or discrete distribution.

@ Problem rarely of real interest. (But, e.g., residuals have singular
distribution.)

@ Case 2: g = p. Use multivariate change of variables formula.

@ Case 3: g < p. Pad out Y—add on p — g more variables (carefully

chosen) say Ygi1,...,Yp. Find functions gq11,...,8p. Define for
g<i<p Yi=gi(Xi,....,.Xp)and Z =(Y1,...,Yp).
@ Choose gj so that we can use change of variables on g = (g1,...,8p)

to compute fz. Find fy by integration:

[o¢] [o¢]
fy(yl,...,yq):/ / fz(V1s- - Yqs Zg+1, - - - Zp)dZg41
—00 — o0
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Multivariate Change of Variables

@ Suppose Y = g(X) € RP with X € RP having density fx.

@ Assume g is a one to one (“injective”) map, i.e., g(x1) = g(x) if
and only if x3 = xo.

o Find fy:

@ noindent Step 1: Solve for x in terms of y: x = g~ 1(y).

@ Step 2: Use basic equation:

fy(y)dy = fx(x)dx

and rewrite it in the form

Al) = fele " )

@ Interpretation of derlvatlve When p>1

e (2)
dy dyj

which is the so called Jacobian.
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Multivariate Change of Variables

o Equivalent formula inverts the matrix:

-1
fy(y):fx(g (v))
dy
dx
@ This notation means
Oy o ... On
ox1  Ox Oxp
Y | det :
Ix
o O ... O
Ox1  Oxo Oxp

but with x replaced by the corresponding value of y, that is, replace
x by g7 (y).

=
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Example pp39-40, Chap 14

@ The standard bivariate normal density is

1 X2 + x2
fx(Xl,Xz)Z%eXP{— L 2}.

2

o Let Y = (Y1, Y2) where Y1 = /X2 + X2 and 0 < Y> < 27 is angle
from positive x axis to ray from origin to point (X, X2).
@ l.e., Y is X in polar co-ordinates.

@ Solve for x in terms of y:

X1 = Yl COS(Yz) X2 = Yl Sin(Yz)
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Example

@ This makes

g(X17X2) = (gl(X17X2)’g2(X17X2))
= (y/x + x3, argument(x, x2))
g ny2) = (& (1,2),8 (y1.52))
= (y1cos(y2), y1sin(y2))

‘det( cos(y2) —yisin(y2) )‘

sin(y2)  y1cos(y2)

dx
dy

= Y1

o It follows that

21

2

1 2
Fr (1, y2) = ~ exp {—y—l}yll(o <y < 00)1(0 < o < 27).

=
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Marginal densities of Y7, Y57

@ Factor fy as fy(y1,y2) = hi(y1)h2(y2) where

hi(y1) = y1e1/21(0 < y1 < )

and
hg(yg) = 1(0 <yp< 271')/(27[') .
@ Then
Fra() = / " ) ha(y2) dys = ha() / " halya) dys

so marginal density of Y7 is a multiple of hy.
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Continued
@ Multiplier makes [ fy; =1 but in this case
2

o0
/ ha(y2) dy> = (2m) tdy, =1
[e'e] 0

so that Yj has the Weibull or Rayleigh law
fri(1) = e 210 < y1 < o).
@ Similarly
fy2(y2) = 1(0 <y, < 271')/(27‘(')
which is the Uniform(0, 27) density.

Exercise: W = Y?/2 has standard exponential distribution.

Recall: by definition U = Y has a x? dist on 2 degrees of freedom.

Exercise: find 3 density.
Notice that Y7 L Y5%.

e © ¢ ¢
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