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What I assume you already know

The change of variables for integration

How to find densities for transformations in R.

How to compute probabilities by doing multiple integrals.

Material on slides 4–6, 9–13.
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Distribution Theory pp 41-43

Basic Problem: Start with assumptions about f or CDF of random
vector X = (X1, . . . ,Xp).

Define Y = g(X1, . . . ,Xp) to be some function of X (usually some
statistic of interest).

How can we compute the distribution or CDF or density of Y ?
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Univariate Techniques

Method 1: compute the CDF by integration and differentiate to find fY .
Example: U ∼ Uniform[0, 1] and Y = − logU.

FY (y) = P(Y ≤ y) = P(− logU ≤ y)

= P(logU ≥ −y) = P(U ≥ e−y )

=

{

1− e−y y > 0
0 y ≤ 0 .

so Y has standard exponential distribution.
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Chi-square

Example: Z ∼ N(0, 1), i.e.

fZ (z) =
1√
2π

e−z2/2

and Y = Z 2.

Then

FY (y) = P(Z 2 ≤ y)

=

{

0 y < 0
P(−√

y ≤ Z ≤ √
y) y ≥ 0 .

Now differentiate

P(−√
y ≤ Z ≤ √

y) = FZ (
√
y)− FZ (−

√
y)

to get

fY (y) =







0 y < 0
d
dy

[

FZ (
√
y)− FZ (−

√
y)
]

y > 0

undefined y = 0 .
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More

Then

d

dy
FZ (

√
y) = fZ (

√
y)

d

dy

√
y

=
1√
2π

exp
(

− (
√
y)2 /2

) 1

2
y−1/2

=
1

2
√
2πy

e−y/2 .

(Similar formula for other derivative.) Thus

fY (y) =







1√
2πy

e−y/2 y > 0

0 y < 0
undefined y = 0 .
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Indicators

We will find indicator notation useful:

1(y > 0) =

{

1 y > 0
0 y ≤ 0

which we use to write

fY (y) =
1√
2πy

e−y/21(y > 0)

(changing definition unimportantly at y = 0).
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Fundamental Theorem of Calculus

Notice: I never evaluated FY before differentiating it.

In fact FY and FZ are integrals I can’t do but I can differentiate then
anyway.

Remember fundamental theorem of calculus:

d

dx

∫ x

a

f (y) dy = f (x)

at any x where f is continuous.

Summary: for Y = g(X ) with X and Y each real valued

P(Y ≤ y) = P(g(X ) ≤ y)

= P(X ∈ g−1(−∞, y ]) .

Take d/dy to compute the density

fY (y) =
d

dy

∫

{x :g(x)≤y}
fX (x) dx .

Often can differentiate without doing integral.
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Method 2: Change of variables

Assume g is one to one.

I do: g is increasing and differentiable.

Interpretation of density (based on density = F ′):

fY (y) = lim
δy→0

P(y ≤ Y ≤ y + δy)

δy

= lim
δy→0

FY (y + δy)− FY (y)

δy

and

fX (x) = lim
δx→0

P(x ≤ X ≤ x + δx)

δx
.

Now assume y = g(x). Define δy by y + δy = g(x + δx).

Then
P(y ≤ Y ≤ g(x + δx)) = P(x ≤ X ≤ x + δx) .

Richard Lockhart (Simon Fraser University) STAT 830 Distribution Theory STAT 830 — Fall 2013 9 / 23



Change of Variables Continued

Get
P(y ≤ Y ≤ y + δy))

δy
=

P(x ≤ X ≤ x + δx)/δx

{g(x + δx) − y}/δx .

Take limit to get

fY (y) = fX (x)/g
′(x) or fY (g(x))g

′(x) = fX (x) .
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Alternative view

Each probability is integral of a density.

First is integral of fY from y = g(x) to y = g(x + δx).

The interval is narrow so fY is nearly constant and

P(y ≤ Y ≤ g(x + δx)) ≈ fY (y)(g(x + δx) − g(x)) .

Since g has a derivative g(x + δx) − g(x) ≈ δxg ′(x) so we get

P(y ≤ Y ≤ g(x + δx)) ≈ fY (y)g
′(x)δx .

Same idea applied to P(x ≤ X ≤ x + δx) gives

P(x ≤ X ≤ x + δx) ≈ fX (x)δx

so that
fY (y)g

′(x)δx ≈ fX (x)δx

or, cancelling the δx in the limit

fY (y)g
′(x) = fX (x) .
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Intution continued

If you remember y = g(x) then you get

fX (x) = fY (g(x))g
′(x) .

Or solve y = g(x) to get x in terms of y , that is, x = g−1(y) and
then

fY (y) = fX (g
−1(y))/g ′(g−1(y)) .

This is just the change of variables formula for doing integrals.

Remark: For g decreasing g ′ < 0 but Then the interval
(g(x), g(x + δx)) is really (g(x + δx), g(x)) so that
g(x)− g(x + δx) ≈ −g ′(x)δx .

In both cases this amounts to the formula

fX (x) = fY (g(x))|g ′(x)| .

Mnemonic:
fY (y)dy = fX (x)dx .
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Example cf Ex 2.46 p 41

X ∼ Weibull(shape α, scale β) or

fX (x) =
α

β

(

x

β

)α−1

exp {−(x/β)α} 1(x > 0) .

Let Y = logX or g(x) = log(x).

Solve y = log x : x = exp(y) or g−1(y) = ey .

Then g ′(x) = 1/x and 1/g ′(g−1(y)) = 1/(1/ey ) = ey .

Hence

fY (y) =
α

β

(

ey

β

)α−1

exp {−(ey/β)α} 1(ey > 0)ey .

For any y , ey > 0 so indicator = 1. So

fY (y) =
α

βα
exp {αy − eαy/βα} .
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Example Continued

Define φ = log β and θ = 1/α; then,

fY (y) =
1

θ
exp

{

y − φ

θ
− exp

{

y − φ

θ

}}

.

Extreme Value density with location parameter φ and scale
parameter θ.

Note: several distributions are called Extreme Value.
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Marginalization pp 33-34

Simplest multivariate problem:

X = (X1, . . . ,Xp), Y = X1

(or in general Y is any Xj).

Theorem

If X has density f (x1, . . . , xp) and q < p then Y = (X1, . . . ,Xq) has
density

fY (x1, . . . , xq) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
f (x1, . . . , xp) dxq+1 . . . dxp .

fX1,...,Xq
is the marginal density of X1, . . . ,Xq and fX the joint density of

X but they are both just densities.
“Marginal” just to distinguish from the joint density of X .
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Example

The function f (x1, x2) = Kx1x21(x1 > 0, x2 > 0, x1 + x2 < 1) is a
density provided

P(X ∈ R2) =

∫ ∞

−∞

∫ ∞

−∞
f (x1, x2) dx1 dx2 = 1 .

The integral is

K

∫ 1

0

∫ 1−x1

0
x1x2 dx1 dx2 = K

∫ 1

0
x1(1− x1)

2 dx1/2

= K (1/2 − 2/3 + 1/4)/2 = K/24

so K = 24.
The marginal density of X1 is Beta(2, 3):

fX1
(x1) =

∫ ∞

−∞
24x1x21(x1 > 0, x2 > 0, x1 + x2 < 1) dx2

=24

∫ 1−x1

0
x1x21(0 < x1 < 1)dx2

=12x1(1− x1)
21(0 < x1 < 1) .
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General Problem

General problem has Y = (Y1, . . . ,Yq) with Yi = gi (X1, . . . ,Xp).

Case 1: q > p. Y won’t have density for “smooth” g . Y will have a
singular or discrete distribution.

Problem rarely of real interest. (But, e.g., residuals have singular
distribution.)

Case 2: q = p. Use multivariate change of variables formula.

Case 3: q < p. Pad out Y –add on p − q more variables (carefully
chosen) say Yq+1, . . . ,Yp . Find functions gq+1, . . . , gp . Define for
q < i ≤ p, Yi = gi (X1, . . . ,Xp) and Z = (Y1, . . . ,Yp) .

Choose gi so that we can use change of variables on g = (g1, . . . , gp)
to compute fZ . Find fY by integration:

fY (y1, . . . , yq) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
fZ (y1, . . . , yq, zq+1, . . . , zp)dzq+1 . . . dzp
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Multivariate Change of Variables

Suppose Y = g(X ) ∈ Rp with X ∈ Rp having density fX .

Assume g is a one to one (“injective”) map, i.e., g(x1) = g(x2) if
and only if x1 = x2.

Find fY :

noindent Step 1: Solve for x in terms of y : x = g−1(y).

Step 2: Use basic equation:

fY (y)dy = fX (x)dx

and rewrite it in the form

fY (y) = fX (g
−1(y))

dx

dy
.

Interpretation of derivative dx
dy

when p > 1:

dx

dy
=

∣

∣

∣

∣

det

(

∂xi
∂yj

)
∣

∣

∣

∣

which is the so called Jacobian.
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Multivariate Change of Variables

Equivalent formula inverts the matrix:

fY (y) =
fX (g

−1(y))
∣

∣

∣

dy
dx

∣

∣

∣

This notation means

∣

∣

∣

∣

dy

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

det









∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xp

...
∂yp
∂x1

∂yp
∂x2

· · · ∂yp
∂xp









∣

∣

∣

∣

∣

∣

∣

∣

but with x replaced by the corresponding value of y , that is, replace
x by g−1(y).
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Example pp39-40, Chap 14

The standard bivariate normal density is

fX (x1, x2) =
1

2π
exp

{

−x21 + x22
2

}

.

Let Y = (Y1,Y2) where Y1 =
√

X 2
1 + X 2

2 and 0 ≤ Y2 < 2π is angle

from positive x axis to ray from origin to point (X1,X2).

I.e., Y is X in polar co-ordinates.

Solve for x in terms of y :

X1 = Y1 cos(Y2) X2 = Y1 sin(Y2)
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Example

This makes

g(x1, x2) = (g1(x1, x2), g2(x1, x2))

= (
√

x21 + x22 , argument(x1, x2))

g−1(y1, y2) = (g−1
1 (y1, y2), g

−1
2 (y1, y2))

= (y1 cos(y2), y1 sin(y2))
∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

=

∣

∣

∣

∣

det

(

cos(y2) −y1 sin(y2)
sin(y2) y1 cos(y2)

)∣

∣

∣

∣

= y1 .

It follows that

fY (y1, y2) =
1

2π
exp

{

−y21
2

}

y11(0 ≤ y1 < ∞)1(0 ≤ y2 < 2π) .
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Marginal densities of Y1, Y2?

Factor fY as fY (y1, y2) = h1(y1)h2(y2) where

h1(y1) = y1e
−y2

1 /21(0 ≤ y1 < ∞)

and
h2(y2) = 1(0 ≤ y2 < 2π)/(2π) .

Then

fY1
(y1) =

∫ ∞

−∞
h1(y1)h2(y2) dy2 = h1(y1)

∫ ∞

−∞
h2(y2) dy2

so marginal density of Y1 is a multiple of h1.
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Continued

Multiplier makes
∫

fY1
= 1 but in this case

∫ ∞

−∞
h2(y2) dy2 =

∫ 2π

0
(2π)−1dy2 = 1

so that Y1 has the Weibull or Rayleigh law

fY1
(y1) = y1e

−y2
1 /21(0 ≤ y1 < ∞) .

Similarly
fY2

(y2) = 1(0 ≤ y2 < 2π)/(2π)

which is the Uniform(0, 2π) density.

Exercise: W = Y 2
1 /2 has standard exponential distribution.

Recall: by definition U = Y 2
1 has a χ2 dist on 2 degrees of freedom.

Exercise: find χ2
2 density.

Notice that Y1 ⊥⊥ Y2.
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