
The basic problem of distribution is to compute the distribution of statis-
tics when the data come from some model. You start with assumptions about
the density f or the cumulative distribution function F of some random vec-
tor X = (X1, . . . , Xp); typically X is your data and f or F come from your
model. If you don’t know f you need to try to do this calculation for all
the densities which are possible according to your model. So now suppose
Y = g(X1, . . . , Xp) is some function of X — usually some statistic of interest.

How can we compute the distribution or CDF or density of Y ?

0.1 Univariate Techniques

Method 1: our first method is to compute the cumulative distribution func-
tion of Y by integration and differentiate to find the density fY .

Example: Suppose U ∼ Uniform[0, 1] and Y = − logU .

FY (y) = P (Y ≤ y) = P (− logU ≤ y)

= P (logU ≥ −y) = P (U ≥ e−y)

=

{
1− e−y y > 0
0 y ≤ 0 .

so that Y has a standard exponential distribution.

Example: The χ2 density. Suppose Z ∼ N(0, 1), that is, that Z has density

fZ(z) =
1√
2π
e−z

2/2

and let Y = Z2. Then

FY (y) = P (Z2 ≤ y)

=

{
0 y < 0
P (−√y ≤ Z ≤ √y) y ≥ 0 .

Now differentiate

P (−√y ≤ Z ≤ √y) = FZ(
√
y)− FZ(−√y)

1



to get

fY (y) =


0 y < 0
d
dy

[
FZ(
√
y)− FZ(−√y)

]
y > 0

undefined y = 0 .

Now we differentiate:

d

dy
FZ(
√
y) = fZ(

√
y)
d

dy

√
y

=
1√
2π

exp
(
− (
√
y)2 /2

) 1

2
y−1/2

=
1

2
√

2πy
e−y/2 .

There is a similar formula for the other derivative. Thus

fY (y) =


1√
2πy
e−y/2 y > 0

0 y < 0
undefined y = 0 .

We will find indicator notation useful:

1(y > 0) =

{
1 y > 0
0 y ≤ 0

which we use to write

fY (y) =
1√
2πy

e−y/21(y > 0) .

This changes our definition unimportantly at y = 0.
Notice: I never evaluated FY before differentiating it. In fact FY and FZ
are integrals I can’t do but I can differentiate them anyway. Remember the
fundamental theorem of calculus:

d

dx

∫ x

a

f(y) dy = f(x)

at any x where f is continuous.
This leads to the following summary: for Y = g(X) with X and Y each

real valued

P (Y ≤ y) = P (g(X) ≤ y)

= P (X ∈ g−1(−∞, y]) .
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Take d/dy to compute the density

fY (y) =
d

dy

∫
{x:g(x)≤y}

fX(x) dx .

Often we can differentiate without doing the integral.
Method 2: One general case is handled by the method of change of variables.
Suppose that g is one to one. I will do the case where g is increasing and
differentiable.

We begin from the interpretation of density (based on the notion that the
density is give by F ′):

fY (y) = lim
δy→0

P (y ≤ Y ≤ y + δy)

δy

= lim
δy→0

FY (y + δy)− FY (y)

δy

and

fX(x) = lim
δx→0

P (x ≤ X ≤ x+ δx)

δx
.

Now assume y = g(x). Define δy by y + δy = g(x+ δx). Then

P (y ≤ Y ≤ g(x+ δx)) = P (x ≤ X ≤ x+ δx) .

We get
P (y ≤ Y ≤ y + δy))

δy
=
P (x ≤ X ≤ x+ δx)/δx

{g(x+ δx)− y}/δx
.

Take the limit as δx→ 0 to get

fY (y) = fX(x)/g′(x) or fY (g(x))g′(x) = fX(x) .

Alternative view: we can now try to look at this calculation in a slightly
different way: each probability above is the integral of a density. The first is
the integral of fY from y = g(x) to y = g(x+ δx). The interval is narrow so
fY is nearly constant over this interval and

P (y ≤ Y ≤ g(x+ δx)) ≈ fY (y)(g(x+ δx)− g(x)) .

Since g has a derivative g(x+ δx)− g(x) ≈ δxg′(x) so we get

P (y ≤ Y ≤ g(x+ δx)) ≈ fY (y)g′(x)δx .
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The same idea applied to P (x ≤ X ≤ x+ δx) gives

P (x ≤ X ≤ x+ δx) ≈ fX(x)δx

so that
fY (y)g′(x)δx ≈ fX(x)δx

or, cancelling the δx in the limit

fY (y)g′(x) = fX(x) .

If you remember y = g(x) then you get

fX(x) = fY (g(x))g′(x) .

It is often more useful to express the whole formula in terms of the new
variable y to get a formula for fY (y). We do this by solving y = g(x) to get
x in terms of y, that is, find a formula for x = g−1(y) and then see that

fY (y) = fX(g−1(y))/g′(g−1(y)) .

This is just the change of variables formula for doing integrals.

Remark: : For g decreasing g′ < 0 but then the interval (g(x), g(x+ δx)) is
really (g(x + δx), g(x)) so that g(x) − g(x + δx) ≈ −g′(x)δx. In both cases
this amounts to the formula

fX(x) = fY (g(x))|g′(x)| .

This leads to what I think is a very useful Mnemonic:

fY (y)dy = fX(x)dx .

To use the mnemonic to find a formula for fY (y) you solve that equation
for fY (y). The right hand side will have dx/dy which is the derivative of x
with respect to y when you have a formula for x in terms of y. The x is
fX(x) must be replaced by the equivalent formula using y to make sure your
formula for fY (y) has only y in it – not x.

Example: Suppose X ∼Weibull(shape α, scale β) or

fX(x) =
α

β

(
x

β

)α−1
exp {−(x/β)α} 1(x > 0) .
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Let Y = logX or g(x) = log(x). Solve y = log x to get x = exp(y) or
g−1(y) = ey. Then g′(x) = 1/x and 1/g′(g−1(y)) = 1/(1/ey) = ey. Hence

fY (y) =
α

β

(
ey

β

)α−1
exp {−(ey/β)α} 1(ey > 0)ey .

For any y, ey > 0 so the indicator is always just 1. Thus

fY (y) =
α

βα
exp {αy − eαy/βα} .

Now define φ = log β and θ = 1/α; this is called a reparametrization. Then

fY (y) =
1

θ
exp

{
y − φ
θ
− exp

{
y − φ
θ

}}
.

This is the Extreme Value density with location parameter φ and scale
parameter θ. You should be warned that there are several distributions are
called “Extreme Value”.
Marginalization. Sometimes we have a few variables which come from
many variables and we want the joint distribution of the few. For example
we might want the joint distribution of X̄ and s2 when we have a sample
of size n from the normal distribution. We often approach this problem in
two steps. The first step, which I describe later, involves padding out the
list of the few variables to make as many as the number of variables you
started with (so padding out the list with n−2 other variables in the normal
case). Then the second step is called marginalization: compute the marginal
density of the variables of interest by integrating away the others.

Here is the simplest multivariate problem. We begin with

X = (X1, . . . , Xp), Y = X1

(or in general Y is any Xj). We know the joint density of X and want simply
the density of Y . The relevant theorem is one I have already described:

Theorem 1 If X has density f(x1, . . . , xp) and q < p then Y = (X1, . . . , Xq)
has density

fY (x1, . . . , xq) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, . . . , xp) dxq+1 . . . dxp .
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In fact, fX1,...,Xq is the marginal density of X1, . . . , Xq and fX is the joint
density of X. Really they are both just densities. “Marginal” just serves to
distinguish it from the joint density of X.

Example: The function f(x1, x2) = Kx1x21(x1 > 0, x2 > 0, x1 + x2 < 1) is
a density provided

P (X ∈ R2) =

∫ ∞
−∞

∫ ∞
−∞

f(x1, x2) dx1 dx2 = 1 .

The integral is

K

∫ 1

0

∫ 1−x1

0

x1x2 dx1 dx2 = K

∫ 1

0

x1(1− x1)2 dx1/2

= K(1/2− 2/3 + 1/4)/2 = K/24

so K = 24. The marginal density of X1 is Beta(2, 3):

fX1(x1) =

∫ ∞
−∞

24x1x21(x1 > 0, x2 > 0, x1 + x2 < 1) dx2

=24

∫ 1−x1

0

x1x21(0 < x1 < 1)dx2

=12x1(1− x1)21(0 < x1 < 1) .

A more general problem has Y = (Y1, . . . , Yq) with Yi = gi(X1, . . . , Xp).
We distinguish the cases where q > p, q < p and q = p.
Case 1: q > p. In this case Y won’t have a density for “smooth” trans-
formations g. In fact Y will have a singular or discrete distribution. This
problem is rarely of real interest. (But, e.g., the vector of all residuals in a
regression problem has a singular distribution.)
Case 2: q = p. In this case we use a multivariate change of variables formula.
(See below.)
Case 3: q < p. In this case we pad out Y –add on p − q more variables
(carefully chosen) say Yq+1, . . . , Yp. We define these extra variables by finding
functions gq+1, . . . , gp and setting, for q < i ≤ p, Yi = gi(X1, . . . , Xp) and then
let Z = (Y1, . . . , Yp) . We need to choose gi so that we can use the Case 2
change of variables on g = (g1, . . . , gp) to compute fZ . We then hope to find
fY by integration:

fY (y1, . . . , yq) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

fZ(y1, . . . , yq, zq+1, . . . , zp)dzq+1 . . . dzp
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0.2 Multivariate Change of Variables

Suppose Y = g(X) ∈ Rp with X ∈ Rp having density fX . Assume g is a
one to one (“injective”) map, i.e., g(x1) = g(x2) if and only if x1 = x2.
Find fY using the following steps (sometimes they are easier said than done).

Step 1 : Solve for x in terms of y: x = g−1(y).

Step 2 : Use our basic equation

fY (y)dy = fX(x)dx

and rewrite it in the form

fY (y) = fX(g−1(y))
dx

dy
.

Step 3 : Now we need an interpretation of the derivative dx
dy

when p > 1:

dx

dy
=

∣∣∣∣det

(
∂xi
∂yj

)∣∣∣∣
which is the so called Jacobian.

• Equivalent formula inverts the matrix:

fY (y) =
fX(g−1(y))∣∣ dy

dx

∣∣
• This notation means

∣∣∣∣dydx
∣∣∣∣ =

∣∣∣∣∣∣∣det


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xp

...
∂yp
∂x1

∂yp
∂x2

· · · ∂yp
∂xp


∣∣∣∣∣∣∣

but with x replaced by the corresponding value of y, that is, replace x
by g−1(y).
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Example: : The bivariate normal density. The standard bivariate nor-
mal density is

fX(x1, x2) =
1

2π
exp

{
−x

2
1 + x22

2

}
.

Let Y = (Y1, Y2) where Y1 =
√
X2

1 +X2
2 and 0 ≤ Y2 < 2π is the angle from

the positive x axis to the ray from the origin to the point (X1, X2). I.e., Y
is X in polar co-ordinates. Solve for x in terms of y to get:

X1 = Y1 cos(Y2) X2 = Y1 sin(Y2)

This makes

g(x1, x2) = (g1(x1, x2), g2(x1, x2))

= (
√
x21 + x22, argument(x1, x2))

g−1(y1, y2) = (g−11 (y1, y2), g
−1
2 (y1, y2))

= (y1 cos(y2), y1 sin(y2))∣∣∣∣dxdy
∣∣∣∣ =

∣∣∣∣det

(
cos(y2) −y1 sin(y2)
sin(y2) y1 cos(y2)

)∣∣∣∣
= y1 .

It follows that

fY (y1, y2) =
1

2π
exp

{
−y

2
1

2

}
y11(0 ≤ y1 <∞)1(0 ≤ y2 < 2π) .

It remains to compute the marginal densities of Y1 and Y2. Factor fY as
fY (y1, y2) = h1(y1)h2(y2) where

h1(y1) = y1e
−y21/21(0 ≤ y1 <∞)

and
h2(y2) = 1(0 ≤ y2 < 2π)/(2π) .

Then

fY1(y1) =

∫ ∞
−∞

h1(y1)h2(y2) dy2 = h1(y1)

∫ ∞
−∞

h2(y2) dy2

so the marginal density of Y1 is a multiple of h1. The multiplier makes∫
fY1 = 1 but in this case∫ ∞

−∞
h2(y2) dy2 =

∫ 2π

0

(2π)−1dy2 = 1
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so that Y1 has the Weibull or Rayleigh law

fY1(y1) = y1e
−y21/21(0 ≤ y1 <∞) .

Similarly
fY2(y2) = 1(0 ≤ y2 < 2π)/(2π)

which is the Uniform(0, 2π) density.
I leave you the following exercise: show that W = Y 2

1 /2 has a standard
exponential distribution. Recall: by definition U = Y 2

1 has a χ2 dist on 2
degrees of freedom. I also leave you the exercise of finding the χ2

2 density.
Notice that Y1 ⊥⊥ Y2.
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