The basic problem of distribution is to compute the distribution of statistics when the data come from some model. You start with assumptions about the density $f$ or the cumulative distribution function $F$ of some random vector $X=\left(X_{1}, \ldots, X_{p}\right)$; typically $X$ is your data and $f$ or $F$ come from your model. If you don't know $f$ you need to try to do this calculation for all the densities which are possible according to your model. So now suppose $Y=g\left(X_{1}, \ldots, X_{p}\right)$ is some function of $X$ - usually some statistic of interest.

How can we compute the distribution or CDF or density of $Y$ ?

### 0.1 Univariate Techniques

Method 1: our first method is to compute the cumulative distribution function of $Y$ by integration and differentiate to find the density $f_{Y}$.
Example: Suppose $U \sim$ Uniform $[0,1]$ and $Y=-\log U$.

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y)=P(-\log U \leq y) \\
& =P(\log U \geq-y)=P\left(U \geq e^{-y}\right) \\
& = \begin{cases}1-e^{-y} & y>0 \\
0 & y \leq 0 .\end{cases}
\end{aligned}
$$

so that $Y$ has a standard exponential distribution.
Example: The $\chi^{2}$ density. Suppose $Z \sim N(0,1)$, that is, that $Z$ has density

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

and let $Y=Z^{2}$. Then

$$
\begin{aligned}
F_{Y}(y) & =P\left(Z^{2} \leq y\right) \\
& = \begin{cases}0 & y<0 \\
P(-\sqrt{y} \leq Z \leq \sqrt{y}) & y \geq 0\end{cases}
\end{aligned}
$$

Now differentiate

$$
P(-\sqrt{y} \leq Z \leq \sqrt{y})=F_{Z}(\sqrt{y})-F_{Z}(-\sqrt{y})
$$

to get

$$
f_{Y}(y)= \begin{cases}0 & y<0 \\ \frac{d}{d y}\left[F_{Z}(\sqrt{y})-F_{Z}(-\sqrt{y})\right] & y>0 \\ \text { undefined } & y=0\end{cases}
$$

Now we differentiate:

$$
\begin{aligned}
\frac{d}{d y} F_{Z}(\sqrt{y}) & =f_{Z}(\sqrt{y}) \frac{d}{d y} \sqrt{y} \\
& =\frac{1}{\sqrt{2 \pi}} \exp \left(-(\sqrt{y})^{2} / 2\right) \frac{1}{2} y^{-1 / 2} \\
& =\frac{1}{2 \sqrt{2 \pi y}} e^{-y / 2}
\end{aligned}
$$

There is a similar formula for the other derivative. Thus

$$
f_{Y}(y)= \begin{cases}\frac{1}{\sqrt{2 \pi y}} e^{-y / 2} & y>0 \\ 0 & y<0 \\ \text { undefined } & y=0\end{cases}
$$

We will find indicator notation useful:

$$
1(y>0)= \begin{cases}1 & y>0 \\ 0 & y \leq 0\end{cases}
$$

which we use to write

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi y}} e^{-y / 2} 1(y>0)
$$

This changes our definition unimportantly at $y=0$.
Notice: I never evaluated $F_{Y}$ before differentiating it. In fact $F_{Y}$ and $F_{Z}$ are integrals I can't do but I can differentiate them anyway. Remember the fundamental theorem of calculus:

$$
\frac{d}{d x} \int_{a}^{x} f(y) d y=f(x)
$$

at any $x$ where $f$ is continuous.
This leads to the following summary: for $Y=g(X)$ with $X$ and $Y$ each real valued

$$
\begin{aligned}
P(Y \leq y) & =P(g(X) \leq y) \\
& =P\left(X \in g^{-1}(-\infty, y]\right)
\end{aligned}
$$

Take $d / d y$ to compute the density

$$
f_{Y}(y)=\frac{d}{d y} \int_{\{x: g(x) \leq y\}} f_{X}(x) d x
$$

Often we can differentiate without doing the integral.
Method 2: One general case is handled by the method of change of variables. Suppose that $g$ is one to one. I will do the case where $g$ is increasing and differentiable.

We begin from the interpretation of density (based on the notion that the density is give by $F^{\prime}$ ):

$$
\begin{aligned}
f_{Y}(y) & =\lim _{\delta y \rightarrow 0} \frac{P(y \leq Y \leq y+\delta y)}{\delta y} \\
& =\lim _{\delta y \rightarrow 0} \frac{F_{Y}(y+\delta y)-F_{Y}(y)}{\delta y}
\end{aligned}
$$

and

$$
f_{X}(x)=\lim _{\delta x \rightarrow 0} \frac{P(x \leq X \leq x+\delta x)}{\delta x}
$$

Now assume $y=g(x)$. Define $\delta y$ by $y+\delta y=g(x+\delta x)$. Then

$$
P(y \leq Y \leq g(x+\delta x))=P(x \leq X \leq x+\delta x)
$$

We get

$$
\frac{P(y \leq Y \leq y+\delta y))}{\delta y}=\frac{P(x \leq X \leq x+\delta x) / \delta x}{\{g(x+\delta x)-y\} / \delta x}
$$

Take the limit as $\delta x \rightarrow 0$ to get

$$
f_{Y}(y)=f_{X}(x) / g^{\prime}(x) \text { or } f_{Y}(g(x)) g^{\prime}(x)=f_{X}(x) .
$$

Alternative view: we can now try to look at this calculation in a slightly different way: each probability above is the integral of a density. The first is the integral of $f_{Y}$ from $y=g(x)$ to $y=g(x+\delta x)$. The interval is narrow so $f_{Y}$ is nearly constant over this interval and

$$
P(y \leq Y \leq g(x+\delta x)) \approx f_{Y}(y)(g(x+\delta x)-g(x))
$$

Since $g$ has a derivative $g(x+\delta x)-g(x) \approx \delta x g^{\prime}(x)$ so we get

$$
P(y \leq Y \leq g(x+\delta x)) \approx f_{Y}(y) g^{\prime}(x) \delta x
$$

The same idea applied to $P(x \leq X \leq x+\delta x)$ gives

$$
P(x \leq X \leq x+\delta x) \approx f_{X}(x) \delta x
$$

so that

$$
f_{Y}(y) g^{\prime}(x) \delta x \approx f_{X}(x) \delta x
$$

or, cancelling the $\delta x$ in the limit

$$
f_{Y}(y) g^{\prime}(x)=f_{X}(x)
$$

If you remember $y=g(x)$ then you get

$$
f_{X}(x)=f_{Y}(g(x)) g^{\prime}(x)
$$

It is often more useful to express the whole formula in terms of the new variable $y$ to get a formula for $f_{Y}(y)$. We do this by solving $y=g(x)$ to get $x$ in terms of $y$, that is, find a formula for $x=g^{-1}(y)$ and then see that

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right) / g^{\prime}\left(g^{-1}(y)\right) .
$$

This is just the change of variables formula for doing integrals.
Remark: : For $g$ decreasing $g^{\prime}<0$ but then the interval $(g(x), g(x+\delta x))$ is really $(g(x+\delta x), g(x))$ so that $g(x)-g(x+\delta x) \approx-g^{\prime}(x) \delta x$. In both cases this amounts to the formula

$$
f_{X}(x)=f_{Y}(g(x))\left|g^{\prime}(x)\right| .
$$

This leads to what I think is a very useful Mnemonic:

$$
f_{Y}(y) d y=f_{X}(x) d x
$$

To use the mnemonic to find a formula for $f_{Y}(y)$ you solve that equation for $f_{Y}(y)$. The right hand side will have $d x / d y$ which is the derivative of $x$ with respect to $y$ when you have a formula for $x$ in terms of $y$. The $x$ is $f_{X}(x)$ must be replaced by the equivalent formula using $y$ to make sure your formula for $f_{Y}(y)$ has only $y$ in it $-\operatorname{not} x$.
Example: Suppose $X \sim$ Weibull(shape $\alpha$, scale $\beta$ ) or

$$
f_{X}(x)=\frac{\alpha}{\beta}\left(\frac{x}{\beta}\right)^{\alpha-1} \exp \left\{-(x / \beta)^{\alpha}\right\} 1(x>0)
$$

Let $Y=\log X$ or $g(x)=\log (x)$. Solve $y=\log x$ to get $x=\exp (y)$ or $g^{-1}(y)=e^{y}$. Then $g^{\prime}(x)=1 / x$ and $1 / g^{\prime}\left(g^{-1}(y)\right)=1 /\left(1 / e^{y}\right)=e^{y}$. Hence

$$
f_{Y}(y)=\frac{\alpha}{\beta}\left(\frac{e^{y}}{\beta}\right)^{\alpha-1} \exp \left\{-\left(e^{y} / \beta\right)^{\alpha}\right\} 1\left(e^{y}>0\right) e^{y} .
$$

For any $y, e^{y}>0$ so the indicator is always just 1 . Thus

$$
f_{Y}(y)=\frac{\alpha}{\beta^{\alpha}} \exp \left\{\alpha y-e^{\alpha y} / \beta^{\alpha}\right\} .
$$

Now define $\phi=\log \beta$ and $\theta=1 / \alpha$; this is called a reparametrization. Then

$$
f_{Y}(y)=\frac{1}{\theta} \exp \left\{\frac{y-\phi}{\theta}-\exp \left\{\frac{y-\phi}{\theta}\right\}\right\} .
$$

This is the Extreme Value density with location parameter $\phi$ and scale parameter $\theta$. You should be warned that there are several distributions are called "Extreme Value".
Marginalization. Sometimes we have a few variables which come from many variables and we want the joint distribution of the few. For example we might want the joint distribution of $\bar{X}$ and $s^{2}$ when we have a sample of size $n$ from the normal distribution. We often approach this problem in two steps. The first step, which I describe later, involves padding out the list of the few variables to make as many as the number of variables you started with (so padding out the list with $n-2$ other variables in the normal case). Then the second step is called marginalization: compute the marginal density of the variables of interest by integrating away the others.

Here is the simplest multivariate problem. We begin with

$$
X=\left(X_{1}, \ldots, X_{p}\right), \quad Y=X_{1}
$$

(or in general $Y$ is any $X_{j}$ ). We know the joint density of $X$ and want simply the density of $Y$. The relevant theorem is one I have already described:

Theorem 1 If $X$ has density $f\left(x_{1}, \ldots, x_{p}\right)$ and $q<p$ then $Y=\left(X_{1}, \ldots, X_{q}\right)$ has density

$$
f_{Y}\left(x_{1}, \ldots, x_{q}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f\left(x_{1}, \ldots, x_{p}\right) d x_{q+1} \ldots d x_{p}
$$

In fact, $f_{X_{1}, \ldots, X_{q}}$ is the marginal density of $X_{1}, \ldots, X_{q}$ and $f_{X}$ is the joint density of $X$. Really they are both just densities. "Marginal" just serves to distinguish it from the joint density of $X$.
Example: The function $f\left(x_{1}, x_{2}\right)=K x_{1} x_{2} 1\left(x_{1}>0, x_{2}>0, x_{1}+x_{2}<1\right)$ is a density provided

$$
P\left(X \in R^{2}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=1
$$

The integral is

$$
\begin{aligned}
K \int_{0}^{1} \int_{0}^{1-x_{1}} x_{1} x_{2} d x_{1} d x_{2} & =K \int_{0}^{1} x_{1}\left(1-x_{1}\right)^{2} d x_{1} / 2 \\
& =K(1 / 2-2 / 3+1 / 4) / 2=K / 24
\end{aligned}
$$

so $K=24$. The marginal density of $X_{1}$ is $\operatorname{Beta}(2,3)$ :

$$
\begin{aligned}
f_{X_{1}}\left(x_{1}\right) & =\int_{-\infty}^{\infty} 24 x_{1} x_{2} 1\left(x_{1}>0, x_{2}>0, x_{1}+x_{2}<1\right) d x_{2} \\
& =24 \int_{0}^{1-x_{1}} x_{1} x_{2} 1\left(0<x_{1}<1\right) d x_{2} \\
& =12 x_{1}\left(1-x_{1}\right)^{2} 1\left(0<x_{1}<1\right) .
\end{aligned}
$$

A more general problem has $Y=\left(Y_{1}, \ldots, Y_{q}\right)$ with $Y_{i}=g_{i}\left(X_{1}, \ldots, X_{p}\right)$. We distinguish the cases where $q>p, q<p$ and $q=p$.
Case 1: $q>p$. In this case $Y$ won't have a density for "smooth" transformations $g$. In fact $Y$ will have a singular or discrete distribution. This problem is rarely of real interest. (But, e.g., the vector of all residuals in a regression problem has a singular distribution.)
Case 2: $q=p$. In this case we use a multivariate change of variables formula. (See below.)
Case 3: $q<p$. In this case we pad out $Y$-add on $p-q$ more variables (carefully chosen) say $Y_{q+1}, \ldots, Y_{p}$. We define these extra variables by finding functions $g_{q+1}, \ldots, g_{p}$ and setting, for $q<i \leq p, Y_{i}=g_{i}\left(X_{1}, \ldots, X_{p}\right)$ and then let $Z=\left(Y_{1}, \ldots, Y_{p}\right)$. We need to choose $g_{i}$ so that we can use the Case 2 change of variables on $g=\left(g_{1}, \ldots, g_{p}\right)$ to compute $f_{Z}$. We then hope to find $f_{Y}$ by integration:

$$
f_{Y}\left(y_{1}, \ldots, y_{q}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{Z}\left(y_{1}, \ldots, y_{q}, z_{q+1}, \ldots, z_{p}\right) d z_{q+1} \ldots d z_{p}
$$

### 0.2 Multivariate Change of Variables

Suppose $Y=g(X) \in R^{p}$ with $X \in R^{p}$ having density $f_{X}$. Assume $g$ is a one to one ("injective") map, i.e., $g\left(x_{1}\right)=g\left(x_{2}\right)$ if and only if $x_{1}=x_{2}$. Find $f_{Y}$ using the following steps (sometimes they are easier said than done).

Step 1 : Solve for $x$ in terms of $y: x=g^{-1}(y)$.
Step 2 : Use our basic equation

$$
f_{Y}(y) d y=f_{X}(x) d x
$$

and rewrite it in the form

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right) \frac{d x}{d y}
$$

Step 3: Now we need an interpretation of the derivative $\frac{d x}{d y}$ when $p>1$ :

$$
\frac{d x}{d y}=\left|\operatorname{det}\left(\frac{\partial x_{i}}{\partial y_{j}}\right)\right|
$$

which is the so called Jacobian.

- Equivalent formula inverts the matrix:

$$
f_{Y}(y)=\frac{f_{X}\left(g^{-1}(y)\right)}{\left|\frac{d y}{d x}\right|}
$$

- This notation means

$$
\left|\frac{d y}{d x}\right|=\left|\operatorname{det}\left[\begin{array}{cccc}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \cdots & \frac{\partial y_{1}}{\partial x_{p}} \\
& \vdots & & \\
\frac{\partial y_{p}}{\partial x_{1}} & \frac{\partial y_{p}}{\partial x_{2}} & \cdots & \frac{\partial y_{p}}{\partial x_{p}}
\end{array}\right]\right|
$$

but with $x$ replaced by the corresponding value of $y$, that is, replace $x$ by $g^{-1}(y)$.

Example: : The bivariate normal density. The standard bivariate normal density is

$$
f_{X}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi} \exp \left\{-\frac{x_{1}^{2}+x_{2}^{2}}{2}\right\} .
$$

Let $Y=\left(Y_{1}, Y_{2}\right)$ where $Y_{1}=\sqrt{X_{1}^{2}+X_{2}^{2}}$ and $0 \leq Y_{2}<2 \pi$ is the angle from the positive $x$ axis to the ray from the origin to the point $\left(X_{1}, X_{2}\right)$. I.e., $Y$ is $X$ in polar co-ordinates. Solve for $x$ in terms of $y$ to get:

$$
X_{1}=Y_{1} \cos \left(Y_{2}\right) \quad X_{2}=Y_{1} \sin \left(Y_{2}\right)
$$

This makes

$$
\begin{aligned}
g\left(x_{1}, x_{2}\right) & =\left(g_{1}\left(x_{1}, x_{2}\right), g_{2}\left(x_{1}, x_{2}\right)\right) \\
& =\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, \operatorname{argument}\left(x_{1}, x_{2}\right)\right) \\
g^{-1}\left(y_{1}, y_{2}\right) & =\left(g_{1}^{-1}\left(y_{1}, y_{2}\right), g_{2}^{-1}\left(y_{1}, y_{2}\right)\right) \\
& =\left(y_{1} \cos \left(y_{2}\right), y_{1} \sin \left(y_{2}\right)\right) \\
\left|\frac{d x}{d y}\right| & =\left|\operatorname{det}\left(\begin{array}{cc}
\cos \left(y_{2}\right) & -y_{1} \sin \left(y_{2}\right) \\
\sin \left(y_{2}\right) & y_{1} \cos \left(y_{2}\right)
\end{array}\right)\right| \\
& =y_{1} .
\end{aligned}
$$

It follows that

$$
f_{Y}\left(y_{1}, y_{2}\right)=\frac{1}{2 \pi} \exp \left\{-\frac{y_{1}^{2}}{2}\right\} y_{1} 1\left(0 \leq y_{1}<\infty\right) 1\left(0 \leq y_{2}<2 \pi\right)
$$

It remains to compute the marginal densities of $Y_{1}$ and $Y_{2}$. Factor $f_{Y}$ as $f_{Y}\left(y_{1}, y_{2}\right)=h_{1}\left(y_{1}\right) h_{2}\left(y_{2}\right)$ where

$$
h_{1}\left(y_{1}\right)=y_{1} e^{-y_{1}^{2} / 2} 1\left(0 \leq y_{1}<\infty\right)
$$

and

$$
h_{2}\left(y_{2}\right)=1\left(0 \leq y_{2}<2 \pi\right) /(2 \pi) .
$$

Then

$$
f_{Y_{1}}\left(y_{1}\right)=\int_{-\infty}^{\infty} h_{1}\left(y_{1}\right) h_{2}\left(y_{2}\right) d y_{2}=h_{1}\left(y_{1}\right) \int_{-\infty}^{\infty} h_{2}\left(y_{2}\right) d y_{2}
$$

so the marginal density of $Y_{1}$ is a multiple of $h_{1}$. The multiplier makes $\int f_{Y_{1}}=1$ but in this case

$$
\int_{-\infty}^{\infty} h_{2}\left(y_{2}\right) d y_{2}=\int_{0}^{2 \pi}(2 \pi)^{-1} d y_{2}=1
$$

so that $Y_{1}$ has the Weibull or Rayleigh law

$$
f_{Y_{1}}\left(y_{1}\right)=y_{1} e^{-y_{1}^{2} / 2} 1\left(0 \leq y_{1}<\infty\right)
$$

Similarly

$$
f_{Y_{2}}\left(y_{2}\right)=1\left(0 \leq y_{2}<2 \pi\right) /(2 \pi)
$$

which is the Uniform $(0,2 \pi)$ density.
I leave you the following exercise: show that $W=Y_{1}^{2} / 2$ has a standard exponential distribution. Recall: by definition $U=Y_{1}^{2}$ has a $\chi^{2}$ dist on 2 degrees of freedom. I also leave you the exercise of finding the $\chi_{2}^{2}$ density. Notice that $Y_{1} \Perp Y_{2}$.

