STAT 830 Convergence of RVs

Richard Lockhart

Simon Fraser University

STAT 830 — Fall 2013

Purposes of These Notes

- Distinguish convergence in distribution from other modes of convergence.
- Describe which modes of convergence imply which others.

Intuition

pp 71-72

- Think about a sequence X_n and a possible limit X:
 - ► X_n converges in distribution to X depends *only* on marginal distributions of individual X_n and X.
 - ► Convergence in probability and *p*th mean depends only on sequence of bivariate joint distributions of (X_n, X).
 - ► Convergence almost surely depends on joint distribution of all the variables: X₁, X₂,..., X.
- All depend on scaling!
- In an iid sequence \bar{X}_n converges in all senses to $\mu = E(X_1)$ (for pth mean add the hypothesis that $E(|X_1|^p) < \infty$. Y.
- In addition $\sqrt{n}(\bar{X}_n \mu)$ converges in distribution to a normal random variable if $Var(X_1) < \infty$.
- But not in any of the other senses of convergence.

Relation between modes of convergence

- If X_n converges to X almost surely then X_n converges to X in probability.
- If X_n converges to X in probability then X_n converges to X in distribution.
- If X_n converges to X in pth mean for some p > 0 then X_n converges to X in probability.
- If X_n converges to X in probability and the sequence is *uniformly pth* power integrable then X_n converges to X in pth mean.
- **Definition**: Uniformly *p*th power integrable means

$$\lim_{M\to\infty}\sup\{\mathrm{E}(|X_n|^p\mathbb{1}(|X_n|>M))=0.$$

• Most easily checked by: $\exists \delta > 0$ such that

$$\sup\{\mathrm{E}(|X_n|^{p+\delta})<\infty.$$

Some examples

- We generate observation from the exponential and Cauchy distribution, that is, generate X_1, X_2, \cdots independently from these distributions.
- Generation is done in batches of 100.
- Generate a total of 10000 batches.
- Plots:

 - Sample mean X
 n = ∑{i=1}ⁿ X_n/n against n.
 Standardized version; √n(X
 _n − μ) against n for exponential case.

