STAT 830
 Convergence of RVs

Richard Lockhart

Simon Fraser University
STAT 830 - Fall 2013

Purposes of These Notes

- Distinguish convergence in distribution from other modes of convergence.
- Describe which modes of convergence imply which others.

Intuition

- Think about a sequence X_{n} and a possible limit X :
- X_{n} converges in distribution to X depends only on marginal distributions of individual X_{n} and X.
- Convergence in probability and p th mean depends only on sequence of bivariate joint distributions of $\left(X_{n}, X\right)$.
- Convergence almost surely depends on joint distribution of all the variables: X_{1}, X_{2}, \ldots, X.
- All depend on scaling!
- In an iid sequence \bar{X}_{n} converges in all senses to $\mu=\mathrm{E}\left(X_{1}\right)$ (for p th mean add the hypothesis that $\mathrm{E}\left(\left|X_{1}\right|^{p}\right)<\infty$. Y.
- In addition $\sqrt{n}\left(\bar{X}_{n}-\mu\right)$ converges in distribution to a normal random variable if $\operatorname{Var}\left(X_{1}\right)<\infty$.
- But not in any of the other senses of convergence.

Relation between modes of convergence

- If X_{n} converges to X almost surely then X_{n} converges to X in probability.
- If X_{n} converges to X in probability then X_{n} converges to X in distribution.
- If X_{n} converges to X in p th mean for some $p>0$ then X_{n} converges to X in probability.
- If X_{n} converges to X in probability and the sequence is uniformly pth power integrable then X_{n} converges to X in p th mean.
- Definition: Uniformly p th power integrable means

$$
\lim _{M \rightarrow \infty} \sup \left\{\mathrm{E}\left(\left|X_{n}\right|^{p} 1\left(\left|X_{n}\right|>M\right)\right)=0\right.
$$

- Most easily checked by: $\exists \delta>0$ such that

$$
\sup \left\{\mathrm{E}\left(\left|X_{n}\right|^{p+\delta}\right)<\infty\right.
$$

Some examples

- We generate observation from the exponential and Cauchy distribution, that is, generate X_{1}, X_{2}, \cdots independently from these distributions.
- Generation is done in batches of 100 .
- Generate a total of 10000 batches.
- Plots:
- Sample mean $\bar{X}_{n}=\sum_{i=1}^{n} X_{n} / n$ against n.
- Standardized version; $\sqrt{n}\left(\bar{X}_{n}-\mu\right)$ against n for exponential case.

