STAT 830
Convergence in Distribution

In the previous chapter I showed you examples in which we worked out
precisely the distribution of some statistics. Usually this is not possible.
Instead we are reduced to approximation. Omne method, nowadays likely
the default method, is Monte Carlo simulation. The method can be very
effective for computing the first two digits of a probability. That generally
requires about 10,000 replicates of the basic experiment. Each succeeding
digit required forces you to multiply the sample size by 100. I note that in this
case leading zeros after the decimal point count — so to get a decent estimate
of a probability down around 10~* requires more than 10% simulations (or
some extra cleverness —see the chapter later on Monte Carlo.

In this chapter I discuss a second method — large sample, or limit, theory
— in which we compute limits as n — oo to approximate probabilities. I
begin with the most famous limit of this type — the central limit theorem.

In undergraduate courses we often teach the following version of the cen-
tral limit theorem: if Xy,..., X,, are an iid sample from a population with
mean £ and standard deviation o then n'/?(X — u)/o has approximately
a standard normal distribution. Also we say that a Binomial(n, p) random
variable has approximately a N(np,np(1 — p)) distribution.

What is the precise meaning of statements like “X and Y have approxi-
mately the same distribution”? The desired meaning is that X and Y have
nearly the same cdf. But care is needed. Here are some questions designed
to try to highlight why care is needed.

Q1) If n is a large number is the N(0,1/n) distribution close to the distri-
bution of X = 07
Q2) Is N(0,1/n) close to the N(1/n,1/n) distribution?
Q3) Is N(0,1/n) close to N(1/y/n,1/n) distribution?
Q4) If X,, = 27" is the distribution of X, close to that of X = 07

Answers depend on how close close needs to be so it’s a matter of defini-
tion. In practice the usual sort of approximation we want to make is to say
that some random variable X, say, has nearly some continuous distribution,

like N(0,1). So: we want to know probabilities like P(X > z) are nearly
P(N(0,1) > x). The real difficulties arise in the case of discrete random



variables or in infinite dimensions: the latter is not done in this course. For
discrete variables the following discussion highlights some of the problems.
See the homework for an example of the so-called local central limit theorem.

Mathematicians mean one of two things by “close”: Either they can pro-
vide an upper bound on the distance between the two things or they are
talking about taking a limit. In this course we take limits.

Definition: A sequence of random variables X,, converges in distribution to
a random variable X if

E(9(Xn)) = E(g(X))

for every bounded continuous function g.

Theorem 1 For real random variables X,,, X the following are equivalent:
1. X,, converges in distribution to X.
2. P(X, <z)— P(X <=x) for each x such that P(X =x) =0

3. The limit of the characteristic functions of X, is the characteristic
function of X : ' '
E(eltX")%E(QZtX)

for every real t.

These are all implied by
Mx, (t) = Mx(t) < o0
for all |t| < e for some positive €.
Now let’s go back to the questions I asked:

e Take X, ~ N(0,1/n) and X = 0. Then

1 x>0
PX,<z)—»¢ 0 2<0
1/2 =0

Now the limit is the cdf of X = 0 except for z = 0 and the cdf of X is
not continuous at x = 0 so yes, X,, converges to X in distribution.
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Figure 1: Comparison of the N(0,1/n) distribution and point mass at 0.
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o [ asked if X,, ~ N(1/n,1/n) had a distribution close to that of Y,, ~
N(0,1/n). The definition I gave really requires me to answer by finding
a limit X and proving that both X, and Y,, converge to X in distribu-
tion. Take X = 0. Then

E(etXn) — et/n+t2/(2n) N 1 — E(etX)

and
E<€tYn) _ et2/(2n) 1

so that both X,, and Y,, have the same limit in distribution.

e Multiply both X, and Y,, by n'/? and let X ~ N(0,1). Then \/nX,, ~
N(n=/2,1) and \/nY,, ~ N(0,1). Use characteristic functions to prove
that both /nX, and y/nY,, converge to N(0,1) in distribution.
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Figure 2: Comparison of the N(0,1/n) distribution and the N(1/n,1/n)
distribution.
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Figure 3: Comparison of the N(n~'/2 1/n) distribution and the N(0,1/n)
distribution.
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e If younow let X,, ~ N(n=Y/21/n) and Y;, ~ N(0, 1/n) then again both
X, and Y,, converge to 0 in distribution.

e If you multiply X, and Y,, in the previous point by n'/? then n'/2X,, ~
N(1,1) and n'/2Y, ~ N(0,1) so that n'/2X,, and n'/?Y,, are not close
together in distribution.

e You can check that 27" — 0 in distribution.

Summary: to derive approximate distributions:
Show that a sequence of random variables X, converges to some X. The
limit distribution (i.e. the distribution of X') should be non-trivial, like say



N(0,1). Dont say: X, is approximately N(1/n,1/n). Do say: n'/?(X, —
1/n) converges to N(0, 1) in distribution.

Theorem 2 The Central Limit Theorem If Xi, X, - - are iid with mean
0 and variance 1 then n'/?X converges in distribution to N(0,1). That is,

_ 1 z
P(n'?X <z) — —/ eV dy.

27 J—so

Proof: As before
E(eitn1/2)_(> - 67t2/2

This is the characteristic function of a N(0,1) random variable so we are
done by our theorem.

0.0.1 Edgeworth expansions

It is possible to improve the normal approximation, though sometimes n
has to be even larger. For the moment introduce the notation v = F(X?)
(remember that X is standardized to have mean 0 and standard deviation
1). Then

o(t) =1 —t2/2 — iyt /6 + -

keeping one more term than I did for the central limit theorem. Then

log(6(t)) = log(1 + u)

where
w=—t*/2 —iyt? /6 4 - - -

Use log(1+u) =u —u?/2+ -+ to get

log(¢(t)) ~
[—t2/2 —iyt® /6 + - - -]
— 22+

which rearranged is

log(¢(t)) & —t*/2 — iyt /6 + - --



Now apply this calculation to
log(¢r(t)) ~ —t*/2 —iE(T*)* /6 + - - -
Remember FE(T?) = v//n and exponentiate to get
or(t) = e~ exp{—int®/(6v/n) + -}

You can do a Taylor expansion of the second exponential around 0 because
of the square root of n and get

dr(t) = e (1 —int*[(6v/n))

neglecting higher order terms. This approximation to the characteristic func-
tion of T" can be inverted to get an Edgeworth approximation to the density
(or distribution) of 7" which looks like

—_

fr(z) ~ meﬂ”zu —(2® = 32)/(6vn) + -]

Remarks:

1. The error using the central limit theorem to approximate a density or
a probability is proportional to n~1/2

2. This is improved to n~! for symmetric densities for which v = 0.

3. These expansions are asymptotic. This means that the series indi-
cated by --- usually does not converge. For instance, when n = 25 it
may help to take the second term but get worse if you include the third
or fourth or more.

4. You can integrate the expansion above for the density to get an ap-
proximation for the cdf.

Multivariate convergence in distribution



Definition: X,, € RP converges in distribution to X € RP if
E(g(Xn)) = E(9(X))

for each bounded continuous real valued function g on RP. This is equivalent
to either of
Cramér Wold Device: a'X,, converges in distribution to a'X for each
a € RP

or
Convergence of characteristic functions:

E(eiatXn) N E(ez‘atX)

for each a € RP.

Extensions of the CLT

1. Y1,Y,, - iid in R?, mean p, variance covariance ¥ then n'/2(Y — p)
converges in distribution to MV N (0, X).

2. Lyapunov CLT: for each n X1, ..., X,, independent rvs with
E(X,) =0
Var(z Xni) =1
> E(Xul) =0

then ) . X,,; converges to N(0,1).

3. Lindeberg CLT: 1st two conditions of Lyapunov and
> B(X21(1 X0 > €) = 0

each e > 0. Then ), X, converges in distribution to N(0,1). (Lya-
punov’s condition implies Lindeberg’s.)

4. Non-independent rvs: m-dependent CLT, martingale CLT, CLT for
mixing processes.



5. Not sums: Slutsky’s theorem, 6 method.

Theorem 3 Slutsky’s Theorem: If X, converges in distribution to X and
Y, converges in distribution (or in probability) to c, a constant, then X, +Y,
converges in distribution to X + c. More generally, if f(x,y) is continuous

then f(X,,Y,) = f(X,c).

Warning: the hypothesis that the limit of Y,, be constant is essential.
Definition: We say Y,, converges to Y in probability if

P(Y,—Y|>¢) =0

for each € > 0.

The fact is that for Y constant convergence in distribution and in proba-
bility are the same. In general convergence in probability implies convergence
in distribution. Both of these are weaker than almost sure convergence:

Definition: We say Y, converges to Y almost surely if

P{we Q: lim Y, (w) =Y(w)}) =1.

n—o0

The delta method:
Theorem 4 The 6 method: Suppose:

e the sequence Y, of random variables converges to some y, a constant.

e there is a sequence of constants a, — 0 such that if we define X, =
a, (Y, —y) then X,, converges in distribution to some random variable
X.

e the function f is differentiable ftn on range of Y,.

Then a,{f(Yn)— f(y)} converges in distribution to f'(y)X. (If X,, € R? and
f: RP — R? then f' is ¢ X p matriz of first derivatives of components of f.)



Example: Suppose Xi,..., X, are a sample from a population with mean
u, variance o2, and third and fourth central moments p3 and 4. Then

n'?(s* — %) = N(0, g — o)
where = is notation for convergence in distribution. For simplicity I define
2 =X2 - X2
Take Y, = (X2, X). Then Y, converges to y = (u? + 02, j1). Take a, =
n'/2. Then

nl/g(Yn - y)
converges in distribution to MV N(0,¥) with
5 pra — o’ ps — p(p® +0®)
pz — p(p? +0?) o’

Define f(x1,22) = 1 — z3. Then s* = f(Y,). The gradient of f has
components (1, —2x5). This leads to
n1/2(32 . 02) ~
/211 X2 _7(,“2 + 02)
gy | X
which converges in distribution to (1, —2u)Y". This random variable is N (0, a'Xa) =
N(0, pug — 02) where a = (1, —2pu)".

Remark: In this sort of problem it is best to learn to recognize that the
sample variance is unaffected by subtracting p from each X. Thus there is
no loss in assuming p = 0 which simplifies > and a.

Special case: if the observations are N (1, 0?) then puz = 0 and pg = 30, Our
calculation has
n'?(s*> — 6%) = N(0,20%)

You can divide through by ¢? and get
1/2 5”

In fact (n — 1)s*/0? has a x2_; distribution and so the usual central limit
theorem shows that

(n— 1)_1/2[(n —1)s*/o* — (n—1)] = N(0,2)
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(using mean of x? is 1 and variance is 2). Factoring out n — 1 gives the
assertion that
(n —1)?3(s*/o* — 1) = N(0,2)

which is our 0 method calculation except for using n — 1 instead of n. This
difference is unimportant as can be checked using Slutsky’s theorem.

0.0.2 The sample median

In this subsection I consider an example which is intended to illustrate the
fact that many statistics which do not seem to be directly functions of sums
can nevertheless be analyzed by thinking about sums. Later we will see
examples in maximum likelihood estimation and estimating equations but
here I consider the sample median.

The example has a number of irritating little points surrounding the me-
dian. First, the median of a distribution might not be unique. Second, it
turns out that the sample median can be badly behaved even if the popula-
tion median is unique — if the density of the distribution being studied is 0
at the population median. Third the definition of the sample median is not
unique when the sample size is even. We will avoid all these complications
by giving an restricting our attention to distributions with a unique median,
m, and a density f which is continuous and has f(m) > 0.

Here is the framework. We have a sample X,..., X, drawn from a cdf
F. We assume:

1. There is a unique solution x = m of the equation

F(z) = 1/2.

2. The distribution F' has a density f which is continuous and has

f(m) > 0.

We will define the sample median as follows. If the sample size n is odd,
say n = 2k — 1 then the sample median, m, is the kth smallest (=kth largest)
X;. If n is even, n = 2k then again we let m be the kth smallest X;. The
most important point in what follows is this:

{m <z} = {Z 1(X; < x)> k).
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The random variable

Un(x) = 1(X; < x)

i

has a Binomial(n, p) distribution with p = F(z). Thus

. _ JVnlUn()/n—p] _ Vn(k/n—p)
(Uaa) > 1} { lir il _p(l_p)}

Now put = m + y/+/n and compute

o Vik/n—p)

n—co\/p(1—p)

First note that p(1 — p) — 1/4. Then /n(k/n —1/2) — 0. Next
I VA(1/2 = F(e) = fom).

Assembling these pieces we find

lim Vilk/n —p) = —2f(m)y.
Finally applying the central limit theorem we find
p(1—=p)

(0,1).

This gives

P(yn(in —m) <y) = 1 = &(=2f(m)y) = (2f(m)y)

Setting u = 2f(m)y shows

V(i —m) % N(0,1/(4f3(m))).

The important take-away point is that this is another example of how
the behaviour of many statistics is determined by the behaviour of averages
(because U, (x)/n is an average). I remark that similar calculations apply to
other quantiles.
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