STAT 830
 Bayesian Estimation

Richard Lockhart

Simon Fraser University
STAT 830 - Fall 2013

Purposes of These Notes

- Discuss Bayesian Estimation
- Motivate posterior mean via Bayes quadratic risk.
- Discuss prior to posterior.
- Define admissibility, minimax estimates

Bayes Risk for Mean Squared Error Loss

- Focus on problem of estimation of 1 dimensional parameter.
- Mean Squared Error corresponds to using

$$
L(d, \theta)=(d-\theta)^{2}
$$

- Risk function of procedure (estimator) $\hat{\theta}$ is

$$
R_{\hat{\theta}}(\theta)=E_{\theta}\left[(\hat{\theta}-\theta)^{2}\right]
$$

- Now consider prior with density $\pi(\theta)$.
- Bayes risk of $\hat{\theta}$ is

$$
\begin{aligned}
r_{\pi} & =\int R_{\hat{\theta}}(\theta) \pi(\theta) d \theta \\
& =\iint(\hat{\theta}(x)-\theta)^{2} f(x ; \theta) \pi(\theta) d x d \theta
\end{aligned}
$$

Posterior mean

- Choose $\hat{\theta}$ to minimize r_{π} ?
- Recognize that $f(x ; \theta) \pi(\theta)$ is really a joint density

$$
\iint f(x ; \theta) \pi(\theta) d x d \theta=1
$$

- For this joint density: conditional density of X given θ is just the model $f(x ; \theta)$.
- Justifies notation $f(x \mid \theta)$.
- Compute r_{π} differently by factoring joint density a different way:

$$
f(x \mid \theta) \pi(\theta)=\pi(\theta \mid x) f(x)
$$

where now $f(x)$ is the marginal density of x and $\pi(\theta \mid x)$ denotes the conditional density of θ given X.

- Call $\pi(\theta \mid x)$ the posterior density.
- Found via Bayes theorem (which is why this is Bayesian statistics):

$$
\pi(\theta \mid x)=\frac{f(x \mid \theta) \pi(\theta)}{\int f(x \mid \phi) \pi(\phi) d \phi}
$$

The posterior mean

- With this notation we can write

$$
r_{\pi}(\hat{\theta})=\int\left[\int(\hat{\theta}(x)-\theta)^{2} \pi(\theta \mid x) d \theta\right] f(x) d x
$$

- Can choose $\hat{\theta}(x)$ separately for each x to minimize the quantity in square brackets (as in the NP lemma).
- Quantity in square brackets is quadratic function of $\hat{\theta}(x)$; minimized by

$$
\hat{\theta}(x)=\int \theta \pi(\theta \mid x) d \theta
$$

which is

$$
E(\theta \mid X)
$$

and is called the posterior mean of θ.

Example

- Example: estimating normal mean μ.
- Imagine, for example that μ is the true speed of sound.
- I think this is around 330 metres per second and am pretty sure that I am within 30 metres per second of the truth with that guess.
- I might summarize my opinion by saying that I think μ has a normal distribution with mean $\nu=330$ and standard deviation $\tau=10$.
- That is, I take a prior density π for μ to be $N\left(\nu, \tau^{2}\right)$.
- Before I make any measurements best guess of μ minimizes

$$
\int(\hat{\mu}-\mu)^{2} \frac{1}{\tau \sqrt{2 \pi}} \exp \left\{-(\mu-\nu)^{2} /\left(2 \tau^{2}\right)\right\} d \mu
$$

- This quantity is minimized by the prior mean of μ, namely,

$$
\hat{\mu}=E_{\pi}(\mu)=\int \mu \pi(\mu) d \mu=\nu
$$

From prior to posterior

- Now collect 25 measurements of the speed of sound.
- Assume: relationship between the measurements and μ is that the measurements are unbiased and that the standard deviation of the measurement errors is $\sigma=15$ which I assume that we know.
- So model is: given $\mu, X_{1}, \ldots, X_{n}$ iid $N\left(\mu, \sigma^{2}\right)$.
- The joint density of the data and μ is then

$$
\frac{\exp \left\{-\sum\left(X_{i}-\mu\right)^{2} /\left(2 \sigma^{2}\right)\right\}}{(2 \pi)^{n / 2} \sigma^{n}} \times \frac{\exp \left\{-(\mu-\nu)^{2} / \tau^{2}\right\}}{(2 \pi)^{1 / 2} \tau}
$$

- Thus $\left(X_{1}, \ldots, X_{n}, \mu\right) \sim M V N$.
- Conditional distribution of θ given X_{1}, \ldots, X_{n} is normal.
- Use standard MVN formulas to get conditional means and variances

Posterior Density

- Alternatively: exponent in joint density has form

$$
-\frac{1}{2}\left[\mu^{2} / \gamma^{2}-2 \mu \psi / \gamma^{2}\right]
$$

plus terms not involving μ where

$$
\frac{1}{\gamma^{2}}=\left(\frac{n}{\sigma^{2}}+\frac{1}{\tau^{2}}\right) \text { and } \frac{\psi}{\gamma^{2}}=\frac{\sum X_{i}}{\sigma^{2}}+\frac{\nu}{\tau^{2}}
$$

- So: conditional of μ given data is $N\left(\psi, \gamma^{2}\right)$.
- In other words the posterior mean of μ is

$$
\frac{\frac{n}{\sigma^{2}} \bar{X}+\frac{1}{\tau^{2}} \nu}{\frac{n}{\sigma^{2}}+\frac{1}{\tau^{2}}}
$$

which is weighted average of prior mean ν and sample mean \bar{X}.

- Notice: weight on data is large when n is large or σ is small (precis measurements) and small when τ is small (precise prior opinion).

Improper priors

- When the density does not integrate to 1 we can still follow the machinery of Bayes' formula to derive a posterior.
- Example: $N\left(\mu, \sigma^{2}\right)$; consider prior density

$$
\pi(\mu) \equiv 1
$$

- This "density" integrates to ∞; using Bayes' theorem to compute the posterior would give

$$
\pi(\mu \mid X)=
$$

$$
\frac{(2 \pi)^{-n / 2} \sigma^{-n} \exp \left\{-\sum\left(X_{i}-\mu\right)^{2} /\left(2 \sigma^{2}\right)\right\}}{\int(2 \pi)^{-n / 2} \sigma^{-n} \exp \left\{-\sum\left(X_{i}-\nu\right)^{2} /\left(2 \sigma^{2}\right)\right\} d \nu}
$$

- It is easy to see that this cancels to the limit of the case previously done when $\tau \rightarrow \infty$ giving a $N\left(\bar{X}, \sigma^{2} / n\right)$ density.
- I.e., Bayes estimate of μ for this improper prior is \bar{X}.

Admissibility

- Bayes procedures corresponding to proper priors are admissible.
- It follows that for each $w \in(0,1)$ and each real ν the estimate

$$
w \bar{X}+(1-w) \nu
$$

is admissible.

- That this is also true for $w=1$, that is, that \bar{X} is admissible is much harder to prove.
- Minimax estimation: The risk function of \bar{X} is simply σ^{2} / n.
- That is, the risk function is constant since it does not depend on μ.
- Were \bar{X} Bayes for a proper prior this would prove that \bar{X} is minimax.
- In fact this is also true but hard to prove.

$\operatorname{Binomial}(n, p)$ example

- Given p, X has a $\operatorname{Binomial}(n, p)$ distribution.
- Give p a $\operatorname{Beta}(\alpha, \beta)$ prior density

$$
\pi(p)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1}
$$

- The joint "density" of X and p is

$$
\binom{n}{X} p^{X}(1-p)^{n-X} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1} ;
$$

posterior density of p given X is of the form

$$
c p^{X+\alpha-1}(1-p)^{n-X+\beta-1}
$$

for a suitable normalizing constant c.

- This is $\operatorname{Beta}(X+\alpha, n-X+\beta)$ density.

Example continued

- Mean of $\operatorname{Beta}(\alpha, \beta)$ distribution is $\alpha /(\alpha+\beta)$.
- So Bayes estimate of p is

$$
\frac{X+\alpha}{n+\alpha+\beta}=w \hat{p}+(1-w) \frac{\alpha}{\alpha+\beta}
$$

where $\hat{p}=X / n$ is the usual mle.

- Notice: again weighted average of prior mean and mle.
- Notice: prior is proper for $\alpha>0$ and $\beta>0$.
- To get $w=1$ take $\alpha=\beta=0$; use improper prior

$$
\frac{1}{p(1-p)}
$$

- Again: each $w \hat{p}+(1-w) p_{o}$ is admissible for $w \in(0,1)$.
- Again: it is true that \hat{p} is admissible but our theorem is not adequat to prove this fact.

Minimax estimate

- The risk function of $w \hat{p}+(1-w) p_{0}$ is

$$
R(p)=E\left[\left(w \hat{p}+(1-w) p_{0}-p\right)^{2}\right]
$$

which is

$$
\begin{aligned}
& w^{2} \operatorname{Var}(\hat{p})+(w p+(1-w) p-p)^{2} \\
& = \\
& \quad w^{2} p(1-p) / n+(1-w)^{2}\left(p-p_{0}\right)^{2}
\end{aligned}
$$

- Risk function constant if coefficients of p^{2} and p in risk are 0 .
- Coefficient of p^{2} is

$$
-w^{2} / n+(1-w)^{2}
$$

so $w=n^{1 / 2} /\left(1+n^{1 / 2}\right)$.

- Coefficient of p is then

$$
w^{2} / n-2 p_{0}(1-w)^{2}
$$

which vanishes if $2 p_{0}=1$ or $p_{0}=1 / 2$.

Minimax continued

- Working backwards: to get these values for w and p_{0} require $\alpha=\beta$.
- Moreover

$$
w^{2} /(1-w)^{2}=n
$$

gives

$$
n /(\alpha+\beta)=\sqrt{n}
$$

or $\alpha=\beta=\sqrt{n} / 2$.

- Minimax estimate of p is

$$
\frac{\sqrt{n}}{1+\sqrt{n}} \hat{p}+\frac{1}{1+\sqrt{n}} \frac{1}{2}
$$

- Example: X_{1}, \ldots, X_{n} iid $\operatorname{MVN}(\mu, \Sigma)$ with Σ known.
- Take improper prior for μ which is constant.
- Posterior of μ given X is then $\operatorname{MVN}(\bar{X}, \Sigma / n)$.

Example 11.9 from text reanalyzed

- Finite population called $\theta_{1}, \ldots, \theta_{B}$ in text.
- Take simple random sample (with replacement) of size n from population.
- Call X_{1}, \ldots, X_{n} the indexes of the sampled data. Each X_{i} is an integer from 1 to B.
- Estimate

$$
\psi=\frac{1}{B} \sum_{i=1}^{B} \theta_{i}
$$

- In STAT 410 would suggest Horvitz-Thompson estimator

$$
\hat{\psi}=\frac{1}{n} \sum_{i=1}^{n} \theta_{X_{i}}
$$

- This is the sample mean of the observed values of θ.

Mean and variance of our estimate

- We have

$$
\mathrm{E}(\hat{\psi})=\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left(\theta_{X_{i}}\right)=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{B} \theta_{j} P\left(X_{i}=j\right)=\psi
$$

- And we can compute the variance too:

$$
\operatorname{Var}(\hat{\psi})=\frac{1}{n} \frac{1}{B} \sum_{j=1}^{B}\left(\theta_{j}-\psi\right)^{2}
$$

- This is the population variance of the θ s divided by n so it gets small as n grows.

Bayesian Analysis

- Text motivates the parameter ψ in terms of non-response mechanism.
- Analyzed later.
- Put down prior density $\pi\left(\theta_{1}, \ldots, \theta_{B}\right)$.
- Define $W_{i}=\theta_{X_{i}}$. Data is $\left(X_{1}, W_{1}\right), \ldots,\left(X_{n}, W_{n}\right)$.
- Likelihood is

$$
P_{\theta}\left(X_{1}=i_{1}, \ldots, X_{n}=i_{n}, W_{1}=w_{1}, \ldots, W_{n}=w_{n}\right)
$$

- Posterior is just conditional of ψ given

$$
\left(\theta_{i_{1}}=w_{1}, \ldots, \theta_{i_{n}}=w_{n}\right)
$$

- This is

$$
\frac{\pi\left(\theta_{1}, \ldots, \theta_{n}\right)}{\pi_{i_{1}, \ldots, i_{m}}\left(\theta_{i_{1}}, \ldots, \theta_{i_{n}}\right)}
$$

- Denominator is supposed to be marginal density of the observed $\theta \mathrm{s}$

Where's the problem?

- The text takes it for granted that the conditional law of unobserved θ s is not changed.
- Suppose that our prior says $\theta_{1}, \ldots, \theta_{n}$ are independent.
- Let's say iid with prior density $p\left(\theta_{i}\right)$ - same p for each i.
- Then the posterior density of all the θ_{j} other than $\theta_{i_{1}}, \ldots, \theta_{i_{n}}$ is

$$
\prod_{j \notin\left\{i_{1}, \ldots, i_{n}\right\}} p\left(\theta_{j}\right) .
$$

- This is the same as the prior!
- So except for learning the n particular θ s in the sample you learned nothing.
- So Bayes is a flop, right?
- Wrong: the message is the prior matters.

Realistic Priors

- If your prior says you are a priori sure of something stupid, your posterior will be stupid too.
- In this case: if I tell you the sampled θ_{i} you do learn about the θ_{i}.
- Try the following prior:
- There is a quantity μ. Given μ the θ_{i} are iid $N(\mu, 1)$.
- The quantity μ has a $N(0,1)$ prior.
- So $\theta_{1}, \ldots, \theta_{B}$ has a multivariate normal distribution with mean vector 0 and variance matrix

$$
\Sigma_{B}=\mathbf{I}_{B \times B}+\mathbf{1}_{B} \mathbf{1}_{B}^{t}
$$

- This is a hierarchical prior - specified in two layers.

Posterior for hierarchical prior

- Notationally simpler if we imagine our sample happened to be the first n elements.
- So we observe $\theta_{1}, \ldots, \theta_{n}$.
- Posterior is just conditional density of $\theta_{n+1}, \ldots, \theta_{B}$ given $\theta_{1}, \ldots, \theta_{n}$.
- The density of $\theta_{1}, \ldots, \theta_{n}$ is multivariate normal with mean vector 0 and variance covariance matrix

$$
\sum_{n} \mathbf{I}_{n \times n}+\mathbf{1}_{n} \mathbf{1}_{n}^{t}
$$

- so get posterior by dividing two multivariate normal densities.

Posterior for a reasonable prior

- To get specific formulas need matrix inverses and determinants.
- We can check:

$$
\begin{aligned}
\operatorname{det} \Sigma & =B \\
\operatorname{det} \Sigma_{n} & =n \\
\Sigma^{-1} & =\mathbf{I}_{B \times B}-\mathbf{1}_{B} \mathbf{1}_{B}^{t} /(B+1) \\
\Sigma_{n}^{-1} & =\mathbf{I}_{n \times n}-\mathbf{1}_{n} \mathbf{1}_{n}^{t} /(n+1)
\end{aligned}
$$

- Get posterior density of unobserved θ s from joint over marginal.

$$
\frac{(2 \pi)^{-B / 2} B^{-1 / 2} \exp \left(-\left[\sum_{1}^{B} \theta_{i}^{2}-\left(\sum_{1}^{B} \theta_{i}\right)^{2} /(B+1)\right] / 2\right)}{(2 \pi)^{-n / 2} n^{-1 / 2} \exp \left(-\left[\sum_{1}^{n} \theta_{i}^{2}-\left(\sum_{1}^{n} \theta_{i}\right)^{2} /(n+1)\right] / 2\right)}
$$

- Can simplify but I just want Bayes estimate

$$
\mathrm{E}\left(\psi \mid \theta_{1}, \cdots, \theta_{n}\right)=B^{-1}\left(\sum_{1}^{n} \theta_{i}+\sum_{n+1}^{B} \mathrm{E}\left(\theta_{j} \mid \theta_{1}, \cdots, \theta_{n}\right)\right) .
$$

Better prior details

- Calculate the individual conditional expectations using MVN conditionals.
- Find, denoting $\bar{\theta}=\sum_{1}^{n} \theta_{i} / n$,

$$
\mathrm{E}\left(\theta_{j} \mid \theta_{1}, \cdots, \theta_{n}\right)=n \bar{\theta} /(n+1)
$$

- This gives the Bayes estimate

$$
\bar{\theta}(1-1 /(n+1))(1+1 / B)
$$

- Compare this to Horvitz-Thompson estimator $\bar{\theta}$.
- Not much different!
- The formula for the Bayes estimate is right regardless of sample drawn.

The example in the text

- In the text you don't observe $\theta_{X_{i}}$ but a variable $R_{X_{i}}$ which is Bernoulli with success probability $\xi_{X_{i}}$, given X_{i}.
- Then if $R_{i}=1$ you observe Y_{i} which is Bernoulli with success probability $\theta_{X_{i}}$, again conditional on X_{i}.
- This leads to a more complicated Horvitz-Thompson estimator and means you don't directly observe the θ_{i}.
- But the hierarchical prior means you believe that learning about some θ s tells you about others.
- The hierarchical prior says the θ s are correlated!
- In the example in the text the priors appear to be independence priors.
- So you can't learn about one θ from another.
- In my independence prior as $B \rightarrow \infty$ the prior variance of ψ goes to 0 !
- So you are saying you know ψ if you specify an independence prior.

