STAT 830 Bayesian Estimation

Richard Lockhart

Simon Fraser University

STAT 830 — Fall 2013

Purposes of These Notes

- Discuss Bayesian Estimation
- Motivate posterior mean via Bayes quadratic risk.
- Discuss prior to posterior.
- Define admissibility, minimax estimates

Bayes Risk for Mean Squared Error Loss pp 175-180

- Focus on problem of estimation of 1 dimensional parameter.
- Mean Squared Error corresponds to using

$$L(d,\theta) = (d-\theta)^2$$
.

• Risk function of procedure (estimator) $\hat{\theta}$ is

$$R_{\hat{\theta}}(\theta) = E_{\theta}[(\hat{\theta} - \theta)^2]$$

- Now consider prior with density $\pi(\theta)$.
- Bayes risk of $\hat{\theta}$ is

$$egin{aligned} r_{\pi} &= \int R_{\hat{ heta}}(heta) \pi(heta) d heta \ &= \int \int (\hat{ heta}(x) - heta)^2 f(x; heta) \pi(heta) dx d heta \end{aligned}$$

Posterior mean

- Choose $\hat{\theta}$ to minimize r_{π} ?
- Recognize that $f(x; \theta)\pi(\theta)$ is really a joint density

$$\int \int f(x;\theta)\pi(\theta)dxd\theta = 1$$

- For this joint density: conditional density of X given θ is just the model f(x; θ).
- Justifies notation $f(x|\theta)$.
- Compute r_{π} differently by factoring joint density a different way:

$$f(x|\theta)\pi(\theta) = \pi(\theta|x)f(x)$$

where now f(x) is the marginal density of x and $\pi(\theta|x)$ denotes the conditional density of θ given X.

- Call $\pi(\theta|x)$ the posterior density.
- Found via Bayes theorem (which is why this is Bayesian statistics):

$$\pi(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{\int f(x|\phi)\pi(\phi)d\phi}$$

The posterior mean

• With this notation we can write

$$r_{\pi}(\hat{\theta}) = \int \left[\int (\hat{\theta}(x) - \theta)^2 \pi(\theta|x) d\theta\right] f(x) dx$$

- Can choose θ̂(x) separately for each x to minimize the quantity in square brackets (as in the NP lemma).
- Quantity in square brackets is quadratic function of
 θ(x); minimized by

$$\hat{ heta}(x) = \int heta \pi(heta|x) d heta$$

which is

 $E(\theta|X)$

and is called the **posterior mean** of θ .

Example

- **Example**: estimating normal mean μ .
- Imagine, for example that μ is the true speed of sound.
- I think this is around 330 metres per second and am pretty sure that I am within 30 metres per second of the truth with that guess.
- I might summarize my opinion by saying that I think μ has a normal distribution with mean ν =330 and standard deviation τ = 10.
- That is, I take a prior density π for μ to be $N(\nu, \tau^2)$.
- $\bullet\,$ Before I make any measurements best guess of μ minimizes

$$\int (\hat{\mu} - \mu)^2 \frac{1}{\tau \sqrt{2\pi}} \exp\{-(\mu - \nu)^2 / (2\tau^2)\} d\mu$$

• This quantity is minimized by the prior mean of μ , namely,

$$\hat{\mu}=\mathsf{\textit{E}}_{\pi}(\mu)=\int\mu\pi(\mu)\mathsf{\textit{d}}\mu=
u\,.$$

From prior to posterior

- Now collect 25 measurements of the speed of sound.
- Assume: relationship between the measurements and μ is that the measurements are unbiased and that the standard deviation of the measurement errors is $\sigma = 15$ which I assume that we know.
- So model is: given μ , X_1, \ldots, X_n iid $N(\mu, \sigma^2)$.
- The joint density of the data and μ is then

$$\frac{\exp\{-\sum(X_i-\mu)^2/(2\sigma^2)\}}{(2\pi)^{n/2}\sigma^n}\times\frac{\exp\{-(\mu-\nu)^2/\tau^2\}}{(2\pi)^{1/2}\tau}$$

• Thus
$$(X_1,\ldots,X_n,\mu) \sim MVN$$
.

- Conditional distribution of θ given X_1, \ldots, X_n is normal.
- Use standard MVN formulas to get conditional means and variances

Posterior Density

• Alternatively: exponent in joint density has form

$$-\frac{1}{2}\left[\mu^2/\gamma^2-2\mu\psi/\gamma^2\right]$$

plus terms not involving μ where

$$\frac{1}{\gamma^2} = \left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right) \text{ and } \frac{\psi}{\gamma^2} = \frac{\sum X_i}{\sigma^2} + \frac{\nu}{\tau^2}.$$

- So: conditional of μ given data is $N(\psi, \gamma^2)$.
- In other words the posterior mean of μ is ٩

$$\frac{\frac{n}{\sigma^2}\bar{X} + \frac{1}{\tau^2}\nu}{\frac{n}{\sigma^2} + \frac{1}{\tau^2}}$$

which is weighted average of prior mean ν and sample mean X.

• Notice: weight on data is large when n is large or σ is small (precise measurements) and small when τ is small (precise prior opinion).

Improper priors

- When the density does not integrate to 1 we can still follow the machinery of Bayes' formula to derive a posterior.
- **Example**: $N(\mu, \sigma^2)$; consider prior density

$$\pi(\mu) \equiv 1.$$

 $\bullet\,$ This "density" integrates to $\infty;$ using Bayes' theorem to compute the posterior would give

$$\pi(\mu|X) =$$

$$\frac{(2\pi)^{-n/2}\sigma^{-n}\exp\{-\sum(X_i-\mu)^2/(2\sigma^2)\}}{\int (2\pi)^{-n/2}\sigma^{-n}\exp\{-\sum(X_i-\nu)^2/(2\sigma^2)\}d\nu}$$

- It is easy to see that this cancels to the limit of the case previously done when $\tau \to \infty$ giving a $N(\bar{X}, \sigma^2/n)$ density.
- I.e., Bayes estimate of μ for this improper prior is \bar{X} .

Admissibility

- Bayes procedures corresponding to proper priors are admissible.
- It follows that for each $w \in (0,1)$ and each real u the estimate

$$war{X} + (1-w)
u$$

is admissible.

- That this is also true for w = 1, that is, that \bar{X} is admissible is much harder to prove.
- Minimax estimation: The risk function of \bar{X} is simply σ^2/n .
- That is, the risk function is constant since it does not depend on μ .
- Were \bar{X} Bayes for a proper prior this would prove that \bar{X} is minimax.
- In fact this is also true but hard to prove.

Binomial(n, p) example

- Given p, X has a Binomial(n, p) distribution.
- Give p a Beta (α, β) prior density

$$\pi(p) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$$

• The joint "density" of X and p is

$$\binom{n}{X}p^X(1-p)^{n-X}rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)}p^{lpha-1}(1-p)^{eta-1};$$

posterior density of p given X is of the form

$$cp^{X+lpha-1}(1-p)^{n-X+eta-1}$$

for a suitable normalizing constant c.

• This is $\text{Beta}(X + \alpha, n - X + \beta)$ density.

Example continued

- Mean of Beta(α, β) distribution is $\alpha/(\alpha + \beta)$.
- So Bayes estimate of p is

$$\frac{X+\alpha}{n+\alpha+\beta} = w\hat{p} + (1-w)\frac{\alpha}{\alpha+\beta}$$

where $\hat{p} = X/n$ is the usual mle.

- Notice: again weighted average of prior mean and mle.
- Notice: prior is proper for $\alpha > 0$ and $\beta > 0$.
- To get w = 1 take $\alpha = \beta = 0$; use improper prior

$$\frac{1}{p(1-p)}$$

- Again: each $w\hat{p} + (1 w)p_o$ is admissible for $w \in (0, 1)$.
- Again: it is true that p̂ is admissible but our theorem is not adequate to prove this fact.

Minimax estimate

• The risk function of $w\hat{p} + (1-w)p_0$ is

$$R(p) = E[(w\hat{p} + (1 - w)p_0 - p)^2]$$

which is

$$w^{2} \operatorname{Var}(\hat{p}) + (wp + (1 - w)p - p)^{2}$$

=
 $w^{2} p(1 - p)/n + (1 - w)^{2} (p - p_{0})^{2}$

Risk function constant if coefficients of p² and p in risk are 0.
Coefficient of p² is

$$-w^2/n + (1-w)^2$$

so $w = n^{1/2}/(1 + n^{1/2})$.

• Coefficient of *p* is then

$$w^2/n - 2p_0(1-w)^2$$

which vanishes if $2p_0 = 1$ or $p_0 = 1/2$.

13 / 23

Minimax continued

• Working backwards: to get these values for w and p_0 require $\alpha = \beta$.

Moreover

$$w^2/(1-w)^2 = n$$

gives

$$n/(\alpha+\beta)=\sqrt{n}$$

or $\alpha = \beta = \sqrt{n}/2$.

• Minimax estimate of p is

$$\frac{\sqrt{n}}{1+\sqrt{n}}\hat{p} + \frac{1}{1+\sqrt{n}}\frac{1}{2}$$

- **Example**: X_1, \ldots, X_n iid $MVN(\mu, \Sigma)$ with Σ known.
- Take improper prior for μ which is constant.
- Posterior of μ given X is then $MVN(\bar{X}, \Sigma/n)$.

Example 11.9 from text reanalyzed pp 186-188

- Finite population called $\theta_1, \ldots, \theta_B$ in text.
- Take simple random sample (with replacement) of size *n* from population.
- Call X_1, \ldots, X_n the indexes of the sampled data. Each X_i is an integer from 1 to B.
- Estimate

$$\psi = \frac{1}{B} \sum_{i=1}^{B} \theta_i.$$

• In STAT 410 would suggest Horvitz-Thompson estimator

$$\hat{\psi} = \frac{1}{n} \sum_{i=1}^{n} \theta_{X_i}$$

• This is the sample mean of the observed values of θ .

Mean and variance of our estimate

• We have

$$\mathrm{E}(\hat{\psi}) = \frac{1}{n} \sum_{i=1}^{n} \mathrm{E}(\theta_{X_i}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{B} \theta_j P(X_i = j) = \psi.$$

• And we can compute the variance too:

$$\operatorname{Var}(\hat{\psi}) = \frac{1}{n} \frac{1}{B} \sum_{j=1}^{B} (\theta_j - \psi)^2.$$

 This is the population variance of the θs divided by n so it gets small as n grows.

Bayesian Analysis

- $\bullet\,$ Text motivates the parameter ψ in terms of non-response mechanism.
- Analyzed later.
- Put down prior density $\pi(\theta_1, \ldots, \theta_B)$.
- Define $W_i = \theta_{X_i}$. Data is $(X_1, W_1), \dots, (X_n, W_n)$.
- Likelihood is

$$P_{\theta}(X_1 = i_1, \ldots, X_n = i_n, W_1 = w_1, \ldots, W_n = w_n)$$

 $\bullet\,$ Posterior is just conditional of ψ given

$$(\theta_{i_1}=w_1,\ldots,\theta_{i_n}=w_n).$$

This is

$$\frac{\pi(\theta_1,\ldots,\theta_n)}{\pi_{i_1,\ldots,i_m}(\theta_{i_1},\ldots,\theta_{i_n})}$$

• Denominator is supposed to be marginal density of the observed θ s

Where's the problem?

- The text takes it for granted that the conditional law of unobserved θ s is not changed.
- Suppose that our prior says $\theta_1, \ldots, \theta_n$ are independent.
- Let's say iid with prior density $p(\theta_i)$ same p for each i.

J

• Then the posterior density of all the θ_j other than $\theta_{i_1}, \ldots, \theta_{i_n}$ is

$$\prod_{i\notin\{i_1,\ldots,i_n\}}p(\theta_j).$$

- This is the same as the prior!
- So except for learning the *n* particular θs in the sample you learned nothing.
- So Bayes is a flop, right?
- Wrong: the message is the prior matters.

Realistic Priors

- If your prior says you are *a priori* sure of something stupid, your posterior will be stupid too.
- In this case: if I tell you the sampled θ_i you do learn about the θ_i .
- Try the following prior:
 - There is a quantity μ . Given μ the θ_i are iid $N(\mu, 1)$.
 - The quantity μ has a N(0,1) prior.
- So $\theta_1, \ldots, \theta_B$ has a multivariate normal distribution with mean vector 0 and variance matrix

$$\Sigma_B = \mathbf{I}_{B \times B} + \mathbf{1}_B \mathbf{1}_B^t$$

• This is a *hierarchical* prior – specified in two layers.

Posterior for hierarchical prior

- Notationally simpler if we imagine our sample happened to be the first *n* elements.
- So we observe $\theta_1, \ldots, \theta_n$.
- Posterior is just conditional density of $\theta_{n+1}, \ldots, \theta_B$ given $\theta_1, \ldots, \theta_n$.
- The density of θ₁,...,θ_n is multivariate normal with mean vector 0 and variance covariance matrix

$$\Sigma_n \mathbf{I}_{n \times n} + \mathbf{1}_n \mathbf{1}_n^t$$

• so get posterior by dividing two multivariate normal densities.

Posterior for a reasonable prior

- To get specific formulas need matrix inverses and determinants.
- We can check:

$$det \Sigma = B$$
$$det \Sigma_n = n$$
$$\Sigma^{-1} = \mathbf{I}_{B \times B} - \mathbf{1}_B \mathbf{1}_B^t / (B+1)$$
$$\Sigma_n^{-1} = \mathbf{I}_{n \times n} - \mathbf{1}_n \mathbf{1}_n^t / (n+1)$$

• Get posterior density of unobserved θ s from joint over marginal.

$$\frac{(2\pi)^{-B/2}B^{-1/2}\exp(-\left[\sum_{1}^{B}\theta_{i}^{2}-(\sum_{1}^{B}\theta_{i})^{2}/(B+1)\right]/2)}{(2\pi)^{-n/2}n^{-1/2}\exp(-\left[\sum_{1}^{n}\theta_{i}^{2}-(\sum_{1}^{n}\theta_{i})^{2}/(n+1)\right]/2)}$$

• Can simplify but I just want Bayes estimate

$$\mathrm{E}(\psi|\theta_1,\cdots,\theta_n)=B^{-1}\left(\sum_{1}^n\theta_i+\sum_{n+1}^B\mathrm{E}(\theta_j|\theta_1,\cdots,\theta_n)\right).$$

Better prior details

- Calculate the individual conditional expectations using MVN conditionals.
- Find, denoting $\bar{\theta} = \sum_{1}^{n} \theta_i / n$,

$$\mathrm{E}(\theta_j|\theta_1,\cdots,\theta_n)=n\overline{\theta}/(n+1)$$

• This gives the Bayes estimate

$$\bar{\theta}(1-1/(n+1))(1+1/B).$$

- Compare this to Horvitz-Thompson estimator $\bar{\theta}$.
- Not much different!
- The formula for the Bayes estimate is right regardless of sample drawn.

The example in the text

Richard Lockhart (Simon Fraser University)

- In the text you don't observe θ_{X_i} but a variable R_{X_i} which is Bernoulli with success probability ξ_{X_i} , given X_i .
- Then if $R_i = 1$ you observe Y_i which is Bernoulli with success probability θ_{X_i} , again conditional on X_i .
- This leads to a more complicated Horvitz-Thompson estimator and means you don't directly observe the θ_i.
- But the hierarchical prior means you believe that learning about some θ s tells you about others.
- The hierarchical prior says the θ s are correlated!
- In the example in the text the priors appear to be independence priors.
- So you can't learn about one θ from another.
- In my independence prior as $B
 ightarrow \infty$ the prior variance of ψ goes to 0!
- So you are saying you know ψ if you specify an independence prior.

