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Purposes of These Notes

Discuss Bayesian Estimation

Motivate posterior mean via Bayes quadratic risk.

Discuss prior to posterior.

Define admissibility, minimax estimates
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Bayes Risk for Mean Squared Error Loss pp 175-180

Focus on problem of estimation of 1 dimensional parameter.

Mean Squared Error corresponds to using

L(d , θ) = (d − θ)2 .

Risk function of procedure (estimator) θ̂ is

Rθ̂(θ) = Eθ[(θ̂ − θ)2]

Now consider prior with density π(θ).

Bayes risk of θ̂ is

rπ =

∫

Rθ̂(θ)π(θ)dθ

=

∫ ∫

(θ̂(x)− θ)2f (x ; θ)π(θ)dxdθ

Richard Lockhart (Simon Fraser University) STAT 830 Bayesian Estimation STAT 830 — Fall 2013 3 / 23



Posterior mean

Choose θ̂ to minimize rπ?
Recognize that f (x ; θ)π(θ) is really a joint density

∫ ∫

f (x ; θ)π(θ)dxdθ = 1

For this joint density: conditional density of X given θ is just the
model f (x ; θ).

Justifies notation f (x |θ).
Compute rπ differently by factoring joint density a different way:

f (x |θ)π(θ) = π(θ|x)f (x)
where now f (x) is the marginal density of x and π(θ|x) denotes the
conditional density of θ given X .
Call π(θ|x) the posterior density.

Found via Bayes theorem (which is why this is Bayesian statistics):

π(θ|x) = f (x |θ)π(θ)
∫

f (x |φ)π(φ)dφ
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The posterior mean

With this notation we can write

rπ(θ̂) =

∫
[
∫

(θ̂(x)− θ)2π(θ|x)dθ
]

f (x)dx

Can choose θ̂(x) separately for each x to minimize the quantity in
square brackets (as in the NP lemma).

Quantity in square brackets is quadratic function of θ̂(x); minimized
by

θ̂(x) =

∫

θπ(θ|x)dθ

which is
E (θ|X )

and is called the posterior mean of θ.
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Example

Example: estimating normal mean µ.

Imagine, for example that µ is the true speed of sound.

I think this is around 330 metres per second and am pretty sure that I
am within 30 metres per second of the truth with that guess.

I might summarize my opinion by saying that I think µ has a normal
distribution with mean ν =330 and standard deviation τ = 10.

That is, I take a prior density π for µ to be N(ν, τ2).

Before I make any measurements best guess of µ minimizes

∫

(µ̂− µ)2
1

τ
√
2π

exp{−(µ − ν)2/(2τ2)}dµ

This quantity is minimized by the prior mean of µ, namely,

µ̂ = Eπ(µ) =

∫

µπ(µ)dµ = ν .
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From prior to posterior

Now collect 25 measurements of the speed of sound.

Assume: relationship between the measurements and µ is that the
measurements are unbiased and that the standard deviation of the
measurement errors is σ = 15 which I assume that we know.

So model is: given µ, X1, . . . ,Xn iid N(µ, σ2).

The joint density of the data and µ is then

exp{−∑(Xi − µ)2/(2σ2)}
(2π)n/2σn

× exp{−(µ− ν)2/τ2}
(2π)1/2τ

.

Thus (X1, . . . ,Xn, µ) ∼ MVN.

Conditional distribution of θ given X1, . . . ,Xn is normal.

Use standard MVN formulas to get conditional means and variances.
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Posterior Density

Alternatively: exponent in joint density has form

−1

2

[

µ2/γ2 − 2µψ/γ2
]

plus terms not involving µ where

1

γ2
=

(

n

σ2
+

1

τ2

)

and
ψ

γ2
=

∑

Xi

σ2
+

ν

τ2
.

So: conditional of µ given data is N(ψ, γ2).

In other words the posterior mean of µ is

n
σ2 X̄ + 1

τ2
ν

n
σ2 +

1
τ2

which is weighted average of prior mean ν and sample mean X̄ .

Notice: weight on data is large when n is large or σ is small (precise
measurements) and small when τ is small (precise prior opinion).
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Improper priors

When the density does not integrate to 1 we can still follow the
machinery of Bayes’ formula to derive a posterior.

Example: N(µ, σ2); consider prior density

π(µ) ≡ 1.

This “density” integrates to ∞; using Bayes’ theorem to compute the
posterior would give

π(µ|X ) =

(2π)−n/2σ−n exp{−∑(Xi − µ)2/(2σ2)}
∫

(2π)−n/2σ−n exp{−∑(Xi − ν)2/(2σ2)}dν

It is easy to see that this cancels to the limit of the case previously
done when τ → ∞ giving a N(X̄ , σ2/n) density.

I.e., Bayes estimate of µ for this improper prior is X̄ .
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Admissibility

Bayes procedures corresponding to proper priors are admissible.

It follows that for each w ∈ (0, 1) and each real ν the estimate

wX̄ + (1− w)ν

is admissible.

That this is also true for w = 1, that is, that X̄ is admissible is much
harder to prove.

Minimax estimation: The risk function of X̄ is simply σ2/n.

That is, the risk function is constant since it does not depend on µ.

Were X̄ Bayes for a proper prior this would prove that X̄ is minimax.

In fact this is also true but hard to prove.
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Binomial(n, p) example

Given p, X has a Binomial(n, p) distribution.

Give p a Beta(α, β) prior density

π(p) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1

The joint “density” of X and p is

(

n

X

)

pX (1− p)n−X Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1 ;

posterior density of p given X is of the form

cpX+α−1(1− p)n−X+β−1

for a suitable normalizing constant c .

This is Beta(X + α, n − X + β) density.
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Example continued

Mean of Beta(α, β) distribution is α/(α + β).

So Bayes estimate of p is

X + α

n + α+ β
= wp̂ + (1− w)

α

α+ β

where p̂ = X/n is the usual mle.

Notice: again weighted average of prior mean and mle.

Notice: prior is proper for α > 0 and β > 0.

To get w = 1 take α = β = 0; use improper prior

1

p(1− p)

Again: each wp̂ + (1− w)po is admissible for w ∈ (0, 1).

Again: it is true that p̂ is admissible but our theorem is not adequate
to prove this fact.
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Minimax estimate

The risk function of wp̂ + (1− w)p0 is

R(p) = E [(wp̂ + (1− w)p0 − p)2]

which is

w2
Var(p̂) + (wp + (1− w)p − p)2

=

w2p(1− p)/n + (1− w)2(p − p0)
2

Risk function constant if coefficients of p2 and p in risk are 0.

Coefficient of p2 is
−w2/n + (1− w)2

so w = n1/2/(1 + n1/2).

Coefficient of p is then

w2/n − 2p0(1− w)2

which vanishes if 2p0 = 1 or p0 = 1/2.
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Minimax continued

Working backwards: to get these values for w and p0 require α = β.

Moreover
w2/(1 − w)2 = n

gives
n/(α+ β) =

√
n

or α = β =
√
n/2.

Minimax estimate of p is

√
n

1 +
√
n
p̂ +

1

1 +
√
n

1

2

Example: X1, . . . ,Xn iid MVN(µ,Σ) with Σ known.

Take improper prior for µ which is constant.

Posterior of µ given X is then MVN(X̄ ,Σ/n).
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Example 11.9 from text reanalyzed pp 186-188

Finite population called θ1, . . . , θB in text.

Take simple random sample (with replacement) of size n from
population.

Call X1, . . . ,Xn the indexes of the sampled data. Each Xi is an
integer from 1 to B .

Estimate

ψ =
1

B

B
∑

i=1

θi .

In STAT 410 would suggest Horvitz-Thompson estimator

ψ̂ =
1

n

n
∑

i=1

θXi

This is the sample mean of the observed values of θ.
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Mean and variance of our estimate

We have

E(ψ̂) =
1

n

n
∑

i=1

E(θXi
) =

1

n

n
∑

i=1

B
∑

j=1

θjP(Xi = j) = ψ.

And we can compute the variance too:

Var(ψ̂) =
1

n

1

B

B
∑

j=1

(θj − ψ)2.

This is the population variance of the θs divided by n so it gets small
as n grows.
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Bayesian Analysis

Text motivates the parameter ψ in terms of non-response mechanism.

Analyzed later.

Put down prior density π(θ1, . . . , θB).

Define Wi = θXi
. Data is (X1,W1), . . . , (Xn,Wn).

Likelihood is

Pθ(X1 = i1, . . . ,Xn = in,W1 = w1, . . . ,Wn = wn)

Posterior is just conditional of ψ given

(θi1 = w1, . . . , θin = wn).

This is
π(θ1, . . . , θn)

πi1,...,im(θi1 , . . . , θin)

Denominator is supposed to be marginal density of the observed θs.
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Where’s the problem?

The text takes it for granted that the conditional law of unobserved
θs is not changed.

Suppose that our prior says θ1, . . . , θn are independent.

Let’s say iid with prior density p(θi ) – same p for each i .

Then the posterior density of all the θj other than θi1, . . . , θin is

∏

j 6∈{i1,...,in}

p(θj).

This is the same as the prior!

So except for learning the n particular θs in the sample you learned
nothing.

So Bayes is a flop, right?

Wrong: the message is the prior matters.
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Realistic Priors

If your prior says you are a priori sure of something stupid, your
posterior will be stupid too.

In this case: if I tell you the sampled θi you do learn about the θi .

Try the following prior:
◮ There is a quantity µ. Given µ the θi are iid N(µ, 1).
◮ The quantity µ has a N(0, 1) prior.

So θ1, . . . , θB has a multivariate normal distribution with mean vector
0 and variance matrix

ΣB = IB×B + 1B1
t
B

This is a hierarchical prior – specified in two layers.
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Posterior for hierarchical prior

Notationally simpler if we imagine our sample happened to be the
first n elements.

So we observe θ1, . . . , θn.

Posterior is just conditional density of θn+1, . . . , θB given θ1, . . . , θn.

The density of θ1, . . . , θn is multivariate normal with mean vector 0
and variance covariance matrix

ΣnIn×n + 1n1
t
n

so get posterior by dividing two multivariate normal densities.
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Posterior for a reasonable prior

To get specific formulas need matrix inverses and determinants.

We can check:

detΣ = B

det Σn = n

Σ−1 = IB×B − 1B1
t
B/(B + 1)

Σ−1
n = In×n − 1n1

t
n/(n + 1)

Get posterior density of unobserved θs from joint over marginal.

(2π)−B/2B−1/2 exp(−
[

∑B
1 θ

2
i − (

∑B
1 θi )

2/(B + 1)
]

/2)

(2π)−n/2n−1/2 exp(−
[
∑n

1 θ
2
i − (

∑n
1 θi)

2/(n + 1)
]

/2)

Can simplify but I just want Bayes estimate

E(ψ|θ1, · · · , θn) = B−1

(

n
∑

1

θi +

B
∑

n+1

E(θj |θ1, · · · , θn)
)

.
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Better prior details

Calculate the individual conditional expectations using MVN
conditionals.

Find, denoting θ̄ =
∑n

1 θi/n,

E(θj |θ1, · · · , θn) = nθ̄/(n + 1)

This gives the Bayes estimate

θ̄(1− 1/(n + 1))(1 + 1/B).

Compare this to Horvitz-Thompson estimator θ̄.

Not much different!

The formula for the Bayes estimate is right regardless of sample
drawn.
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The example in the text

In the text you don’t observe θXi
but a variable RXi

which is Bernoulli
with success probability ξXi

, given Xi .

Then if Ri = 1 you observe Yi which is Bernoulli with success
probability θXi

, again conditional on Xi .

This leads to a more complicated Horvitz-Thompson estimator and
means you don’t directly observe the θi .

But the hierarchical prior means you believe that learning about some
θs tells you about others.

The hierarchical prior says the θs are correlated!

In the example in the text the priors appear to be independence priors.

So you can’t learn about one θ from another.

In my independence prior as B → ∞ the prior variance of ψ goes to 0!

So you are saying you know ψ if you specify an independence prior.
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