STAT 830
 Bayesian Point Estimation

In this section I will focus on the problem of estimation of a 1 dimensional parameter, θ. Earlier we discussed comparing estimators in terms of Mean Squared Error. In the language of decision theory Mean Squared Error corresponds to using

$$
L(d, \theta)=(d-\theta)^{2}
$$

which is called squared error loss. The multivariate version would be

$$
L(d, \theta)=\|d-\theta\|^{2}
$$

or possibly the more general formula

$$
L(d, \theta)=(d-\theta)^{T} \mathbf{Q}(d-\theta)
$$

for some positive definite symmetric matrix \mathbf{Q}. The risk function of a procedure (estimator) $\hat{\theta}$ is

$$
R_{\hat{\theta}}(\theta)=E_{\theta}\left[(\hat{\theta}-\theta)^{2}\right] .
$$

Now consider prior with density $\pi(\theta)$. The Bayes risk of $\hat{\theta}$ is

$$
\begin{aligned}
r_{\pi} & =\int R_{\hat{\theta}}(\theta) \pi(\theta) d \theta \\
& =\iint(\hat{\theta}(x)-\theta)^{2} f(x ; \theta) \pi(\theta) d x d \theta
\end{aligned}
$$

For a Bayesian the problem is then to choose $\hat{\theta}$ to minimize r_{π} ? This problem will turn out to be analogous to the calculations I made when I minimized $\beta+\lambda \alpha$ in hypothesis testing. First recognize that $f(x ; \theta) \pi(\theta)$ is really a joint density

$$
\iint f(x ; \theta) \pi(\theta) d x d \theta=1
$$

For this joint density: conditional density of X given θ is just the model $f(x ; \theta)$. This justifies the standard notation $f(x \mid \theta)$ for $f(; \theta)$ ¿ Now I will compute r_{π} a different way by factoring the joint density a different way:

$$
f(x \mid \theta) \pi(\theta)=\pi(\theta \mid x) f(x)
$$

where now $f(x)$ is the marginal density of x and $\pi(\theta \mid x)$ denotes the conditional density of θ given X. We call $\pi(\theta \mid x)$ the posterior density of θ given the data $X=x$. This posterior density may be found via Bayes' theorem (which is why this is Bayesian statistics):

$$
\pi(\theta \mid x)=\frac{f(x \mid \theta) \pi(\theta)}{\int f(x \mid \phi) \pi(\phi) d \phi}
$$

With this notation we can write

$$
r_{\pi}(\hat{\theta})=\int\left[\int(\hat{\theta}(x)-\theta)^{2} \pi(\theta \mid x) d \theta\right] f(x) d x
$$

[REMEMBER the meta-theorem: when you see a double integral it is always written in the wrong order. Change the order of integration to learn something useful.] Notice that by writing the integral in this order you see that you can choose $\hat{\theta}(x)$ separately for each x to minimize the quantity in square brackets (as in the NP lemma).

The quantity in square brackets is a quadratic function of $\hat{\theta}(x)$; it is minimized by

$$
\hat{\theta}(x)=\int \theta \pi(\theta \mid x) d \theta
$$

which is

$$
E(\theta \mid X)
$$

and is called the posterior expected mean of θ.
Example: estimating normal mean μ.
Imagine, for example that μ is the true speed of sound.
I think this is around 330 metres per second and am pretty sure that I am within 30 metres per second of the truth with that guess. I might summarize my opinion by saying that I think μ has a normal distribution with mean $\nu=330$ and standard deviation $\tau=10$. That is, I take a prior density π for μ to be $N\left(\nu, \tau^{2}\right)$.

Before I make any measurements my best guess of μ minimizes

$$
\int(\hat{\mu}-\mu)^{2} \frac{1}{\tau \sqrt{2 \pi}} \exp \left\{-(\mu-\nu)^{2} /\left(2 \tau^{2}\right)\right\} d \mu
$$

This quantity is minimized by the prior mean of μ, namely,

$$
\hat{\mu}=E_{\pi}(\mu)=\int \mu \pi(\mu) d \mu=\nu
$$

Now collect 25 measurements of the speed of sound. Assume: the relationship between the measurements and μ is that the measurements are unbiased and that the standard deviation of the measurement errors is $\sigma=15$ which I assume that we know. So model is: given $\mu, X_{1}, \ldots, X_{n}$ are iid $N\left(\mu, \sigma^{2}\right)$ variables.

The joint density of the data and μ is then

$$
(2 \pi)^{-n / 1} \sigma^{-n} \exp \left\{-\sum\left(X_{i}-\mu\right)^{2} /\left(2 \sigma^{2}\right)\right\} \times(2 \pi)^{-1 / 2} \tau^{-1} \exp \left\{-(\mu-\nu)^{2} / \tau^{2}\right\}
$$

Thus $\left(X_{1}, \ldots, X_{n}, \mu\right) \sim M V N$. Conditional distribution of θ given X_{1}, \ldots, X_{n} is normal. We can now use standard MVN formulas to calculate conditional means and variances.

Alternatively: the exponent in joint density has the form

$$
-\frac{1}{2}\left[\mu^{2} / \gamma^{2}-2 \mu \psi / \gamma^{2}\right]
$$

plus terms not involving μ where

$$
\frac{1}{\gamma^{2}}=\left(\frac{n}{\sigma^{2}}+\frac{1}{\tau^{2}}\right)
$$

and

$$
\frac{\psi}{\gamma^{2}}=\frac{\sum X_{i}}{\sigma^{2}}+\frac{\nu}{\tau^{2}}
$$

So: the conditional distribution of μ given the data is $N\left(\psi, \gamma^{2}\right)$. In other words the posterior mean of μ is

$$
\frac{\frac{n}{\sigma^{2}} \bar{X}+\frac{1}{\tau^{2}} \nu}{\frac{n}{\sigma^{2}}+\frac{1}{\tau^{2}}}
$$

which is a weighted average of the prior mean ν and the sample mean \bar{X}.
Notice: the weight on the data is large when n is large or σ is small (precise measurements) and small when τ is small (precise prior opinion).

Improper priors: When the density does not integrate to 1 we can still follow the machinery of Bayes' formula to derive a posterior.
Example: $N\left(\mu, \sigma^{2}\right)$; consider prior density

$$
\pi(\mu) \equiv 1
$$

This "density" integrates to ∞; using Bayes' theorem to compute the posterior would give

$$
\pi(\mu \mid X)=\frac{(2 \pi)^{-n / 2} \sigma^{-n} \exp \left\{-\sum\left(X_{i}-\mu\right)^{2} /\left(2 \sigma^{2}\right)\right\}}{\int(2 \pi)^{-n / 2} \sigma^{-n} \exp \left\{-\sum\left(X_{i}-\xi\right)^{2} /\left(2 \sigma^{2}\right)\right\} d \xi}
$$

It is easy to see that this cancels to the limit of the case previously done when $\tau \rightarrow \infty$ giving a $N\left(\bar{X}, \sigma^{2} / n\right)$ density. That is, the Bayes estimate of μ for this improper prior is \bar{X}.

Admissibility: Bayes procedures corresponding to proper priors are admissible. It follows that for each $w \in(0,1)$ and each real ν the estimate

$$
w \bar{X}+(1-w) \nu
$$

is admissible. That this is also true for $w=1$, that is, that \bar{X} is admissible is much harder to prove.
Minimax estimation: The risk function of \bar{X} is simply σ^{2} / n. That is, the risk function is constant since it does not depend on μ. Were \bar{X} Bayes for a proper prior this would prove that \bar{X} is minimax. In fact this is also true but hard to prove.
Example: Given p, X has a $\operatorname{Binomial}(n, p)$ distribution.
Give p a $\operatorname{Beta}(\alpha, \beta)$ prior density

$$
\pi(p)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1}
$$

The joint "density" of X and p is

$$
\binom{n}{X} p^{X}(1-p)^{n-X} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1} ;
$$

posterior density of p given X is of the form

$$
c p^{X+\alpha-1}(1-p)^{n-X+\beta-1}
$$

for a suitable normalizing constant c.
This is $\operatorname{Beta}(X+\alpha, n-X+\beta)$ density. Mean of $\operatorname{Beta}(\alpha, \beta)$ distribution is $\alpha /(\alpha+\beta)$.

So Bayes estimate of p is

$$
\frac{X+\alpha}{n+\alpha+\beta}=w \hat{p}+(1-w) \frac{\alpha}{\alpha+\beta}
$$

where $\hat{p}=X / n$ is the usual mle.
Notice: again weighted average of prior mean and mle.
Notice: prior is proper for $\alpha>0$ and $\beta>0$.
To get $w=1$ take $\alpha=\beta=0$; use improper prior

$$
\frac{1}{p(1-p)}
$$

Again: each $w \hat{p}+(1-w) p_{o}$ is admissible for $w \in(0,1)$.
Again: it is true that \hat{p} is admissible but our theorem is not adequate to prove this fact.

The risk function of $w \hat{p}+(1-w) p_{0}$ is

$$
R(p)=E\left[\left(w \hat{p}+(1-w) p_{0}-p\right)^{2}\right]
$$

which is

$$
w^{2} \operatorname{Var}(\hat{p})+(w p+(1-w) p-p)^{2}=w^{2} p(1-p) / n+(1-w)^{2}\left(p-p_{0}\right)^{2}
$$

Risk function constant if coefficients of p^{2} and p in risk are 0 .
Coefficient of p^{2} is

$$
-w^{2} / n+(1-w)^{2}
$$

so $w=n^{1 / 2} /\left(1+n^{1 / 2}\right)$.
Coefficient of p is then

$$
w^{2} / n-2 p_{0}(1-w)^{2}
$$

which vanishes if $2 p_{0}=1$ or $p_{0}=1 / 2$.
Working backwards: to get these values for w and p_{0} require $\alpha=\beta$. Moreover

$$
w^{2} /(1-w)^{2}=n
$$

gives

$$
n /(\alpha+\beta)=\sqrt{n}
$$

or $\alpha=\beta=\sqrt{n} / 2$. Minimax estimate of p is

$$
\frac{\sqrt{n}}{1+\sqrt{n}} \hat{p}+\frac{1}{1+\sqrt{n}} \frac{1}{2}
$$

Example: X_{1}, \ldots, X_{n} iid $\operatorname{MVN}(\mu, \Sigma)$ with Σ known.

Take improper prior for μ which is constant.
Posterior of μ given X is then $M V N(\bar{X}, \Sigma / n)$.
Multivariate estimation: common to extend the notion of squared error loss by defining

$$
L(\hat{\theta}, \theta)=\sum\left(\hat{\theta}_{i}-\theta_{i}\right)^{2}=(\hat{\theta}-\theta)^{t}(\hat{\theta}-\theta) .
$$

For this loss risk is sum of MSEs of individual components.
Bayes estimate is again posterior mean. Thus \bar{X} is Bayes for an improper prior in this problem.

It turns out that \bar{X} is minimax; its risk function is the constant $\operatorname{trace}(\Sigma) / n$.
If the dimension p of θ is 1 or 2 then \bar{X} is also admissible but if $p \geq 3$ then it is inadmissible.

Fact first demonstrated by James and Stein who produced an estimate which is better, in terms of this risk function, for every μ.

So-called James Stein estimator is essentially never used.

