
STAT 830

Bayesian Point Estimation

In this section I will focus on the problem of estimation of a 1 dimen-
sional parameter, θ. Earlier we discussed comparing estimators in terms of
Mean Squared Error. In the language of decision theory Mean Squared Error
corresponds to using

L(d, θ) = (d− θ)2

which is called squared error loss. The multivariate version would be

L(d, θ) = ||d− θ||2

or possibly the more general formula

L(d, θ) = (d− θ)TQ(d− θ)

for some positive definite symmetric matrix Q. The risk function of a pro-
cedure (estimator) θ̂ is

Rθ̂(θ) = Eθ[(θ̂ − θ)2].

Now consider prior with density π(θ). The Bayes risk of θ̂ is

rπ =

∫
Rθ̂(θ)π(θ)dθ

=

∫ ∫
(θ̂(x)− θ)2f(x; θ)π(θ)dxdθ

For a Bayesian the problem is then to choose θ̂ to minimize rπ? This problem
will turn out to be analogous to the calculations I made when I minimized
β+λα in hypothesis testing. First recognize that f(x; θ)π(θ) is really a joint
density ∫ ∫

f(x; θ)π(θ)dxdθ = 1

For this joint density: conditional density of X given θ is just the model
f(x; θ). This justifies the standard notation f(x|θ) for f(; θ)¿ Now I will
compute rπ a different way by factoring the joint density a different way:

f(x|θ)π(θ) = π(θ|x)f(x)
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where now f(x) is the marginal density of x and π(θ|x) denotes the condi-
tional density of θ given X. We call π(θ|x) the posterior density of θ given
the data X = x. This posterior density may be found via Bayes’ theorem
(which is why this is Bayesian statistics):

π(θ|x) =
f(x|θ)π(θ)∫
f(x|φ)π(φ)dφ

With this notation we can write

rπ(θ̂) =

∫ [∫
(θ̂(x)− θ)2π(θ|x)dθ

]
f(x)dx

[REMEMBER the meta-theorem: when you see a double integral it is al-
ways written in the wrong order. Change the order of integration to learn
something useful.] Notice that by writing the integral in this order you see
that you can choose θ̂(x) separately for each x to minimize the quantity in
square brackets (as in the NP lemma).

The quantity in square brackets is a quadratic function of θ̂(x); it is
minimized by

θ̂(x) =

∫
θπ(θ|x)dθ

which is
E(θ|X)

and is called the posterior expected mean of θ.

Example: estimating normal mean µ.
Imagine, for example that µ is the true speed of sound.
I think this is around 330 metres per second and am pretty sure that I am

within 30 metres per second of the truth with that guess. I might summarize
my opinion by saying that I think µ has a normal distribution with mean
ν =330 and standard deviation τ = 10. That is, I take a prior density π for
µ to be N(ν, τ 2).

Before I make any measurements my best guess of µ minimizes∫
(µ̂− µ)2

1

τ
√

2π
exp{−(µ− ν)2/(2τ 2)}dµ

This quantity is minimized by the prior mean of µ, namely,

µ̂ = Eπ(µ) =

∫
µπ(µ)dµ = ν .
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Now collect 25 measurements of the speed of sound. Assume: the relation-
ship between the measurements and µ is that the measurements are unbiased
and that the standard deviation of the measurement errors is σ = 15 which
I assume that we know. So model is: given µ, X1, . . . , Xn are iid N(µ, σ2)
variables.

The joint density of the data and µ is then

(2π)−n/1σ−n exp{−
∑

(Xi − µ)2/(2σ2)} × (2π)−1/2τ−1 exp{−(µ− ν)2/τ 2}.

Thus (X1, . . . , Xn, µ) ∼MVN . Conditional distribution of θ givenX1, . . . , Xn

is normal. We can now use standard MVN formulas to calculate conditional
means and variances.

Alternatively: the exponent in joint density has the form

−1

2

[
µ2/γ2 − 2µψ/γ2

]
plus terms not involving µ where

1

γ2
=

(
n

σ2
+

1

τ 2

)
and

ψ

γ2
=

∑
Xi

σ2
+

ν

τ 2

So: the conditional distribution of µ given the data is N(ψ, γ2). In other
words the posterior mean of µ is

n
σ2 X̄ + 1

τ2
ν

n
σ2 + 1

τ2

which is a weighted average of the prior mean ν and the sample mean X̄.
Notice: the weight on the data is large when n is large or σ is small

(precise measurements) and small when τ is small (precise prior opinion).

Improper priors: When the density does not integrate to 1 we can still
follow the machinery of Bayes’ formula to derive a posterior.

Example: N(µ, σ2); consider prior density

π(µ) ≡ 1.
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This “density” integrates to ∞; using Bayes’ theorem to compute the poste-
rior would give

π(µ|X) =
(2π)−n/2σ−n exp{−

∑
(Xi − µ)2/(2σ2)}∫

(2π)−n/2σ−n exp{−
∑

(Xi − ξ)2/(2σ2)}dξ

It is easy to see that this cancels to the limit of the case previously done
when τ →∞ giving a N(X̄, σ2/n) density. That is, the Bayes estimate of µ
for this improper prior is X̄.

Admissibility: Bayes procedures corresponding to proper priors are admis-
sible. It follows that for each w ∈ (0, 1) and each real ν the estimate

wX̄ + (1− w)ν

is admissible. That this is also true for w = 1, that is, that X̄ is admissible
is much harder to prove.
Minimax estimation: The risk function of X̄ is simply σ2/n. That is, the
risk function is constant since it does not depend on µ. Were X̄ Bayes for
a proper prior this would prove that X̄ is minimax. In fact this is also true
but hard to prove.
Example: Given p, X has a Binomial(n, p) distribution.

Give p a Beta(α, β) prior density

π(p) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1

The joint “density” of X and p is(
n

X

)
pX(1− p)n−X Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1 ;

posterior density of p given X is of the form

cpX+α−1(1− p)n−X+β−1

for a suitable normalizing constant c.
This is Beta(X + α, n−X + β) density. Mean of Beta(α, β) distribution

is α/(α + β).
So Bayes estimate of p is

X + α

n+ α + β
= wp̂+ (1− w)

α

α + β
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where p̂ = X/n is the usual mle.
Notice: again weighted average of prior mean and mle.
Notice: prior is proper for α > 0 and β > 0.
To get w = 1 take α = β = 0; use improper prior

1

p(1− p)

Again: each wp̂+ (1− w)po is admissible for w ∈ (0, 1).
Again: it is true that p̂ is admissible but our theorem is not adequate to

prove this fact.
The risk function of wp̂+ (1− w)p0 is

R(p) = E[(wp̂+ (1− w)p0 − p)2]

which is

w2Var(p̂) + (wp+ (1− w)p− p)2 = w2p(1− p)/n+ (1− w)2(p− p0)2.

Risk function constant if coefficients of p2 and p in risk are 0.
Coefficient of p2 is

−w2/n+ (1− w)2

so w = n1/2/(1 + n1/2).
Coefficient of p is then

w2/n− 2p0(1− w)2

which vanishes if 2p0 = 1 or p0 = 1/2.
Working backwards: to get these values for w and p0 require α = β.

Moreover
w2/(1− w)2 = n

gives
n/(α + β) =

√
n

or α = β =
√
n/2. Minimax estimate of p is

√
n

1 +
√
n
p̂+

1

1 +
√
n

1

2

Example: X1, . . . , Xn iid MVN(µ,Σ) with Σ known.
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Take improper prior for µ which is constant.
Posterior of µ given X is then MVN(X̄,Σ/n).
Multivariate estimation: common to extend the notion of squared error

loss by defining

L(θ̂, θ) =
∑

(θ̂i − θi)2 = (θ̂ − θ)t(θ̂ − θ) .

For this loss risk is sum of MSEs of individual components.
Bayes estimate is again posterior mean. Thus X̄ is Bayes for an improper

prior in this problem.
It turns out that X̄ is minimax; its risk function is the constant trace(Σ)/n.
If the dimension p of θ is 1 or 2 then X̄ is also admissible but if p ≥ 3

then it is inadmissible.
Fact first demonstrated by James and Stein who produced an estimate

which is better, in terms of this risk function, for every µ.
So-called James Stein estimator is essentially never used.
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