STAT 830

Bayesian Point Estimation

In this section I will focus on the problem of estimation of a 1 dimen-
sional parameter, #. Earlier we discussed comparing estimators in terms of
Mean Squared Error. In the language of decision theory Mean Squared Error
corresponds to using

L(d,0) = (d — 0)?
which is called squared error loss. The multivariate version would be
L(d,0) =||d - 0]|*
or possibly the more general formula
L(d,0) = (d—6)"Q(d — 0)

for some positive definite symmetric matrix Q. The risk function of a pro-
cedure (estimator) 6 is

Ry(6) = Eol(6— 0)%).
Now consider prior with density 7(6). The Bayes risk of 6 is

-

R;(0)m(6)do
[ [ - 021w 0yn(0)azas

For a Bayesian the problem is then to choose 6 to minimize 7,7 This problem
will turn out to be analogous to the calculations I made when I minimized
B+ Aa in hypothesis testing. First recognize that f(z;6)7(0) is really a joint

density
/ / f(x; 0)m(0)dzdd = 1

For this joint density: conditional density of X given € is just the model
f(z;0). This justifies the standard notation f(z|0) for f(;6); Now I will
compute r, a different way by factoring the joint density a different way:

f(@]0)m(0) = m(0]x)f(x)
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where now f(x) is the marginal density of x and 7(|z) denotes the condi-
tional density of 6 given X. We call 7(f|x) the posterior density of 6 given
the data X = x. This posterior density may be found via Bayes’ theorem
(which is why this is Bayesian statistics):

 Haloyn(o)
"01) = e o)

With this notation we can write

TW((‘)):/[/(é(m)—@)%r(ﬂx)d& flx)dx

[REMEMBER, the meta-theorem: when you see a double integral it is al-
ways written in the wrong order. Change the order of integration to learn
something useful.] Notice that by writing the integral in this order you see
that you can choose é(:c) separately for each x to minimize the quantity in
square brackets (as in the NP lemma).

The quantity in square brackets is a quadratic function of é(x), it is
minimized by

i) = /07r(0\x)d9

which is
E(0]1X)

and is called the posterior expected mean of 6.

Example: estimating normal mean p.

Imagine, for example that p is the true speed of sound.

I think this is around 330 metres per second and am pretty sure that I am
within 30 metres per second of the truth with that guess. I might summarize
my opinion by saying that I think g has a normal distribution with mean
v =330 and standard deviation 7 = 10. That is, I take a prior density 7 for
u to be N(v,72).

Before I make any measurements my best guess of ¢ minimizes

[ = exp{=(u = )27

T

This quantity is minimized by the prior mean of yu, namely,
fiL = Er(p) = /M(u)du =v.

2



Now collect 25 measurements of the speed of sound. Assume: the relation-
ship between the measurements and p is that the measurements are unbiased
and that the standard deviation of the measurement errors is ¢ = 15 which
I assume that we know. So model is: given u, Xi,..., X, are iid N(u,o0?)
variables.

The joint density of the data and p is then

(2m) Mo exp{= ) (Xi — 1)?/(20%)} x (2m) P exp{—(u — v)?/77}.

Thus (X3,..., X, 1) ~ MV N. Conditional distribution of 6 given X1, ..., X,
is normal. We can now use standard MVN formulas to calculate conditional
means and variances.

Alternatively: the exponent in joint density has the form

—% (12 /7 = 2p /7]

plus terms not involving u where

1 n 1
2 \2te

’QD ZXZ v
=
So: the conditional distribution of u given the data is N(¢,¥?). In other

words the posterior mean of i is

and

which is a weighted average of the prior mean v and the sample mean X.
Notice: the weight on the data is large when n is large or o is small
(precise measurements) and small when 7 is small (precise prior opinion).

Improper priors: When the density does not integrate to 1 we can still
follow the machinery of Bayes’ formula to derive a posterior.

Example: N(u,0?); consider prior density



This “density” integrates to co; using Bayes’ theorem to compute the poste-
rior would give

(2m) "2 " exp{— 3 (Xi — p)*/(20°)}
J@m) 2o exp{—32(X; — €)?/(20%) }d¢
It is easy to see that this cancels to the limit of the case previously done
when 7 — oo giving a N(X,0?/n) density. That is, the Bayes estimate of 1
for this improper prior is X.

m(plX) =

Admissibility: Bayes procedures corresponding to proper priors are admis-
sible. It follows that for each w € (0,1) and each real v the estimate

wX + (1 —w)v

is admissible. That this is also true for w = 1, that is, that X is admissible
is much harder to prove.
Minimax estimation: The risk function of X is simply o2/n. That is, the
risk function is constant since it does not depend on . Were X Bayes for
a proper prior this would prove that X is minimax. In fact this is also true
but hard to prove.
Example: Given p, X has a Binomial(n, p) distribution.

Give p a Beta(a, #) prior density

o o+ 8) .
™) = Fayr(p)?

The joint “density” of X and p is

o x nxDla+p) o ~1.
(5 )7 pr Eo et s

posterior density of p given X is of the form

(1-p)!

X+a—1(1 \n—X+p-1

cp p)

for a suitable normalizing constant c.
This is Beta(X + a,n — X + ) density. Mean of Beta(«, ) distribution
is a/(a+ 5).
So Bayes estimate of p is
X+a o
—_—— =W
n+a+p




where p = X/n is the usual mle.
Notice: again weighted average of prior mean and mle.
Notice: prior is proper for a > 0 and g > 0.
To get w = 1 take o = 8 = 0; use improper prior

1
p(1—p)
Again: each wp + (1 — w)p, is admissible for w € (0,1).
Again: it is true that p is admissible but our theorem is not adequate to

prove this fact.
The risk function of wp + (1 — w)py is

R(p) = E[(wp+ (1 —w)py — p)?]
which is
w?Var(p) + (wp + (1 — w)p — p)* = w’p(1 — p)/n+ (1 —w)*(p — po)*.

Risk function constant if coefficients of p? and p in risk are 0.
Coefficient of p? is
—w?/n + (1 —w)?
sow =n'?/(1+nl/?).
Coefficient of p is then

w?fn = 2po(1 - w)?

which vanishes if 2py = 1 or py = 1/2.
Working backwards: to get these values for w and py require o = f.
Moreover
w?/(1—w)?=n

gives
n/(a+B) =+vn

or a = § =+/n/2. Minimax estimate of p is

Vn - 1 1
1+l 1+ n2

Example: Xi,..., X, iid MV N(u,Y) with 3 known.
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Take improper prior for g which is constant.

Posterior of y given X is then MV N (X, X/n).

Multivariate estimation: common to extend the notion of squared error
loss by defining

For this loss risk is sum of MSEs of individual components.

Bayes estimate is again posterior mean. Thus X is Bayes for an improper
prior in this problem.

It turns out that X is minimax; its risk function is the constant trace(X) /n.

If the dimension p of # is 1 or 2 then X is also admissible but if p>3
then it is inadmissible.

Fact first demonstrated by James and Stein who produced an estimate
which is better, in terms of this risk function, for every pu.

So-called James Stein estimator is essentially never used.



