STAT 830
Convergence in Distribution

Richard Lockhart
Simon Fraser University

STAT 830 — Fall 2011
Purposes of These Notes

- Define convergence in distribution
- State central limit theorem
- Discuss Edgeworth expansions
- Discuss extensions of the central limit theorem
- Discuss Slutsky’s theorem and the δ method.
Undergraduate version of central limit theorem:

Theorem

If X_1, \ldots, X_n are iid from a population with mean μ and standard deviation σ then $n^{1/2}(\bar{X} - \mu)/\sigma$ has approximately a normal distribution.

- Also Binomial(n, p) random variable has approximately a $N(np, np(1 - p))$ distribution.
- Precise meaning of statements like “X and Y have approximately the same distribution”?
Towards precision

- Desired meaning: X and Y have nearly the same cdf.
- But care needed.
- **Q1:** If n is a large number is the $N(0, 1/n)$ distribution close to the distribution of $X \equiv 0$?
- **Q2:** Is $N(0, 1/n)$ close to the $N(1/n, 1/n)$ distribution?
- **Q3:** Is $N(0, 1/n)$ close to $N(1/\sqrt{n}, 1/n)$ distribution?
- **Q4:** If $X_n \equiv 2^{-n}$ is the distribution of X_n close to that of $X \equiv 0$?
Some numerical examples?

- Answers depend on how close close needs to be so it’s a matter of definition.
- In practice the usual sort of approximation we want to make is to say that some random variable X, say, has nearly some continuous distribution, like $N(0, 1)$.
- So: want to know probabilities like $P(X > x)$ are nearly $P(N(0, 1) > x)$.
- Real difficulty: case of discrete random variables or infinite dimensions: not done in this course.
- Mathematicians’ meaning of close: Either they can provide an upper bound on the distance between the two things or they are talking about taking a limit.
- In this course we take limits.
The definition

- **Def’n**: A sequence of random variables X_n converges in distribution to a random variable X if

$$E(g(X_n)) \to E(g(X))$$

for every bounded continuous function g.

Theorem

The following are equivalent:

1. X_n converges in distribution to X.
2. $P(X_n \leq x) \to P(X \leq x)$ for each x such that $P(X = x) = 0$.
3. The limit of the characteristic functions of X_n is the characteristic function of X: for every real t

$$E(e^{itX_n}) \to E(e^{itX}).$$

These are all implied by $M_{X_n}(t) \to M_X(t) < \infty$ for all $|t| \leq \epsilon$ for some positive ϵ.

Richard Lockhart (Simon Fraser University) STAT 830 Convergence in Distribution STAT 830 — Fall 2011 6 / 31
Answering the questions

- $X_n \sim N(0, 1/n)$ and $X = 0$. Then

$$P(X_n \leq x) \rightarrow \begin{cases}
1 & x > 0 \\
0 & x < 0 \\
1/2 & x = 0
\end{cases}$$

Now the limit is the cdf of $X = 0$ except for $x = 0$ and the cdf of X is not continuous at $x = 0$ so yes, X_n converges to X in distribution.

- I asked if $X_n \sim N(1/n, 1/n)$ had a distribution close to that of $Y_n \sim N(0, 1/n)$.

- The definition I gave really requires me to answer by finding a limit X and proving that both X_n and Y_n converge to X in distribution.

- Take $X = 0$. Then

$$E(e^{tX_n}) = e^{t/n + t^2/(2n)} \rightarrow 1 = E(e^{tX})$$

and

$$E(e^{tY_n}) = e^{t^2/(2n)} \rightarrow 1$$

so that both X_n and Y_n have the same limit in distribution.
First graph

N(0,1/n) vs X=0; n=10000

N(0,1/n) vs X=0; n=10000
Second graph

N(1/n,1/n) vs N(0,1/n); n=10000

N(0,1/n)
N(1/n,1/n)

N(1/n,1/n) vs N(0,1/n); n=10000

N(0,1/n)
N(1/n,1/n)
Scaling matters

- Multiply both X_n and Y_n by $n^{1/2}$ and let $X \sim N(0, 1)$. Then $\sqrt{n}X_n \sim N(n^{-1/2}, 1)$ and $\sqrt{n}Y_n \sim N(0, 1)$.

- Use characteristic functions to prove that both $\sqrt{n}X_n$ and $\sqrt{n}Y_n$ converge to $N(0, 1)$ in distribution.

- If you now let $X_n \sim N(n^{-1/2}, 1/n)$ and $Y_n \sim N(0, 1/n)$ then again both X_n and Y_n converge to 0 in distribution.

- If you multiply X_n and Y_n in the previous point by $n^{1/2}$ then $n^{1/2}X_n \sim N(1, 1)$ and $n^{1/2}Y_n \sim N(0, 1)$ so that $n^{1/2}X_n$ and $n^{1/2}Y_n$ are not close together in distribution.

- You can check that $2^{-n} \to 0$ in distribution.
Third graph

$N(1/\sqrt{n}, 1/n)$ vs $N(0, 1/n)$; $n=10000$

$N(0, 1/n)$
$N(1/\sqrt{n}, 1/n)$

$N(1/\sqrt{n}, 1/n)$ vs $N(0, 1/n)$; $n=10000$

$N(0, 1/n)$
$N(1/\sqrt{n}, 1/n)$
To derive approximate distributions:

- Show sequence of rvs X_n converges to some X.
- The limit distribution (i.e. dstbn of X) should be non-trivial, like say $N(0, 1)$.
- Don’t say: X_n is approximately $N(1/n, 1/n)$.
- Do say: $n^{1/2}(X_n − 1/n)$ converges to $N(0, 1)$ in distribution.
The Central Limit Theorem

Theorem

If X_1, X_2, \cdots are iid with mean 0 and variance 1 then $n^{1/2} \bar{X}$ converges in distribution to $N(0, 1)$. That is,

$$P(n^{1/2} \bar{X} \leq x) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} \, dy.$$
Proof of CLT

- As before

\[E(e^{itn^{1/2}\bar{X}}) \to e^{-t^2/2}. \]

This is the characteristic function of \(N(0, 1) \) so we are done by our theorem.

- This is the worst sort of mathematics – much beloved of statisticians – reduce proof of one theorem to proof of much harder theorem.

- Then let someone else prove that.
Edgeworth expansions

In fact if $\gamma = E(X^3)$ then

$$\phi(t) \approx 1 - t^2/2 - i\gamma t^3/6 + \cdots$$

keeping one more term.

Then

$$\log(\phi(t)) = \log(1 + u)$$

where

$$u = -t^2/2 - i\gamma t^3/6 + \cdots.$$

Use $\log(1 + u) = u - u^2/2 + \cdots$ to get

$$\log(\phi(t)) \approx [-t^2/2 - i\gamma t^3/6 + \cdots] - [\cdots]^2/2 + \cdots$$

which rearranged is

$$\log(\phi(t)) \approx -t^2/2 - i\gamma t^3/6 + \cdots.$$
Edgeworth Expansions

- Now apply this calculation to

\[\log(\phi_T(t)) \approx -t^2/2 - iE(T^3)t^3/6 + \cdots. \]

- Remember \(E(T^3) = \gamma/\sqrt{n} \) and exponentiate to get

\[\phi_T(t) \approx e^{-t^2/2} \exp\left\{ -i\gamma t^3/(6\sqrt{n}) + \cdots \right\}. \]

- You can do a Taylor expansion of the second exponential around 0 because of the square root of \(n \) and get

\[\phi_T(t) \approx e^{-t^2/2}(1 - i\gamma t^3/(6\sqrt{n})) \]

nearing higher order terms.

- This approximation to the characteristic function of \(T \) can be inverted to get an **Edgeworth** approximation to the density (or distribution) of \(T \) which looks like

\[f_T(x) \approx \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \left[1 - \gamma(x^3 - 3x)/(6\sqrt{n}) + \cdots \right]. \]
Remarks

- The error using the central limit theorem to approximate a density or a probability is proportional to $n^{-1/2}$.
- This is improved to n^{-1} for symmetric densities for which $\gamma = 0$.
- These expansions are asymptotic.
- This means that the series indicated by \cdots usually does not converge.
- When $n = 25$ it may help to take the second term but get worse if you include the third or fourth or more.
- You can integrate the expansion above for the density to get an approximation for the cdf.
Multivariate convergence in distribution

- **Def’n:** $X_n \in R^p$ converges in distribution to $X \in R^p$ if

 $$E(g(X_n)) \rightarrow E(g(X))$$

 for each bounded continuous real valued function g on R^p.

- This is equivalent to either of
 - **Cramér Wold Device:** $a^t X_n$ converges in distribution to $a^t X$ for each $a \in R^p$. or
 - **Convergence of characteristic functions:**

 $$E(e^{ia^t X_n}) \rightarrow E(e^{ia^t X})$$

 for each $a \in R^p$.

Richard Lockhart (Simon Fraser University) STAT 830 — Fall 2011 18 / 31
Extensions of the CLT

1. Y_1, Y_2, \cdots iid in R^p, mean μ, variance covariance Σ then $n^{1/2}(\bar{Y} - \mu)$ converges in distribution to $MVN(0, \Sigma)$.

2. Lyapunov CLT: for each $n \ X_{n1}, \ldots, X_{nn}$ independent rvs with

$$\begin{align*}
E(X_{ni}) &= 0 \\
\text{Var}(\sum_i X_{ni}) &= 1 \\
\sum E(|X_{ni}|^3) &\to 0
\end{align*}$$

then $\sum X_{ni}$ converges to $N(0, 1)$.

3. Lindeberg CLT: 1st two conds of Lyapunov and

$$\sum E(X_{ni}^2 1(|X_{ni}| > \epsilon)) \to 0$$

each $\epsilon > 0$. Then $\sum X_{ni}$ converges in distribution to $N(0, 1)$. (Lyapunov’s condition implies Lindeberg’s.)

5. Not sums: Slutsky’s theorem, δ method.
Slutsky’s Theorem

Theorem

If X_n converges in distribution to X and Y_n converges in distribution (or in probability) to c, a constant, then $X_n + Y_n$ converges in distribution to $X + c$. More generally, if $f(x, y)$ is continuous then $f(X_n, Y_n) \Rightarrow f(X, c)$.

Warning: the hypothesis that the limit of Y_n be constant is essential.
Theorem

Suppose:

- Sequence Y_n of rvs converges to some y, a constant.
- $X_n = a_n(Y_n - y)$ then X_n converges in distribution to some random variable X.
- f is differentiable ftn on range of Y_n.

Then $a_n(f(Y_n) - f(y))$ converges in distribution to $f'(y)X$.

If $X_n \in R^p$ and $f : R^p \mapsto R^q$ then f' is $q \times p$ matrix of first derivatives of components of f.

Richard Lockhart (Simon Fraser University) STAT 830 — Fall 2011 21 / 31
Example

- Suppose X_1, \ldots, X_n are a sample from a population with mean μ, variance σ^2, and third and fourth central moments μ_3 and μ_4.
- Then
 $$n^{1/2}(s^2 - \sigma^2) \Rightarrow N(0, \mu_4 - \sigma^4)$$
 where \Rightarrow is notation for convergence in distribution.
- For simplicity I define $s^2 = \bar{X}^2 - \bar{X}^2$.
How to apply δ method

1. Write statistic as a function of averages:
 - Define
 \[W_i = \begin{bmatrix} X_i^2 \\ X_i \end{bmatrix}. \]
 - See that
 \[\bar{W}_n = \begin{bmatrix} \bar{X}^2 \\ \bar{X} \end{bmatrix} \]
 - Define
 \[f(x_1, x_2) = x_1 - x_2^2 \]
 - See that $s^2 = f(\bar{W}_n)$.

2. Compute mean of your averages:
 \[\mu_W \equiv E(\bar{W}_n) = \begin{bmatrix} E(X_i^2) \\ E(X_i) \end{bmatrix} = \begin{bmatrix} \mu^2 + \sigma^2 \\ \mu \end{bmatrix}. \]

3. In δ method theorem take $Y_n = \bar{W}_n$ and $y = E(Y_n)$.

Richard Lockhart (Simon Fraser University) STAT 830 — Fall 2011 23 / 31
Delta Method Continues

7. Take \(a_n = n^{1/2} \).

8. Use central limit theorem:

\[n^{1/2}(Y_n - y) \Rightarrow MVN(0, \Sigma) \]

where \(\Sigma = \text{Var}(W_i) \).

9. To compute \(\Sigma \) take expected value of

\[(W - \mu_W)(W - \mu_W)^t \]

There are 4 entries in this matrix. Top left entry is

\[(X^2 - \mu^2 - \sigma^2)^2 \]

This has expectation:

\[E \left\{ (X^2 - \mu^2 - \sigma^2)^2 \right\} = E(X^4) - (\mu^2 + \sigma^2)^2. \]
Delta Method Continues

- Using binomial expansion:

 \[E(X^4) = E\{(X - \mu + \mu)^4\} = \mu_4 + 4\mu \mu_3 + 6\mu^2\sigma^2 + 4\mu^3 E(X - \mu) + \mu^4. \]

- So \(\Sigma_{11} = \mu_4 - \sigma^4 + 4\mu \mu_3 + 4\mu^2 \sigma^2. \)

- Top right entry is expectation of

 \((X^2 - \mu^2 - \sigma^2)(X - \mu) \)

 which is

 \[E(X^3) - \mu E(X^2) \]

- Similar to 4th moment get

 \(\mu_3 + 2\mu \sigma^2 \)

- Lower right entry is \(\sigma^2. \)

- So

 \[\Sigma = \begin{bmatrix} \mu_4 - \sigma^4 + 4\mu \mu_3 + 4\mu^2 \sigma^2 & \mu_3 + 2\mu \sigma^2 \\ \mu_3 + 2\mu \sigma^2 & \sigma^2 \end{bmatrix} \]
Delta Method Continues

- Compute derivative (gradient) of f: has components $(1, -2x_2)$. Evaluate at $y = (\mu^2 + \sigma^2, \mu)$ to get
 \[a^t = (1, -2\mu). \]

- This leads to
 \[n^{1/2}(s^2 - \sigma^2) \approx n^{1/2}[1, -2\mu] \left[\frac{\bar{X}^2 - (\mu^2 + \sigma^2)}{\bar{X} - \mu} \right] \]

 which converges in distribution to
 \[(1, -2\mu) \text{MVN}(0, \Sigma). \]

- This rv is $N(0, a^t \Sigma a) = N(0, \mu_4 - \sigma^4)$.
Alternative approach

- Suppose c is constant. Define $X_i^* = X_i - c$.
- Sample variance of X_i^* is same as sample variance of X_i.
- All central moments of X_i^* same as for X_i so no loss in $\mu = 0$.
- In this case:

$$a^t = (1, 0) \quad \Sigma = \begin{bmatrix} \mu_4 - \sigma^4 & \mu_3 \\ \mu_3 & \sigma^2 \end{bmatrix}.$$

- Notice that

$$a^t \Sigma = [\mu_4 - \sigma^4, \mu_3] \quad a^t \Sigma a = \mu_4 - \sigma^4.$$
Special Case: \(N(\mu, \sigma^2) \)

- Then \(\mu_3 = 0 \) and \(\mu_4 = 3\sigma^4 \).
- Our calculation has
 \[
 n^{1/2}(s^2 - \sigma^2) \Rightarrow N(0, 2\sigma^4)
 \]
- You can divide through by \(\sigma^2 \) and get
 \[
 n^{1/2}(s^2/\sigma^2 - 1) \Rightarrow N(0, 2)
 \]
- In fact \(ns^2/\sigma^2 \) has \(\chi^2_{n-1} \) distribution so usual CLT shows
 \[
 (n - 1)^{-1/2}[ns^2/\sigma^2 - (n - 1)] \Rightarrow N(0, 2)
 \]
 (using mean of \(\chi^2_1 \) is 1 and variance is 2).
- Factor out \(n \) to get
 \[
 \sqrt{n/(n-1)} n^{1/2}(s^2/\sigma^2 - 1) + (n - 1)^{-1/2} \Rightarrow N(0, 2)
 \]
 which is \(\delta \) method calculation except for some constants.
- Difference is unimportant: Slutsky’s theorem.
Example – median

- Many, many statistics which are not explicitly functions of averages can be studied using averages.
- Later we will analyze MLEs and estimating equations this way.
- Here is an example which is less obvious.
- Suppose X_1, \ldots, X_n are iid cdf F, density f, median m.
- We study \hat{m}, the sample median.
- If $n = 2k - 1$ is odd then \hat{m} is the kth largest.
- If $n = 2k$ then there are many potential choices for \hat{m} between the kth and $k + 1$th largest.
- I do the case of kth largest.
- The event $\hat{m} \leq x$ is the same as the event that the number of $X_i \leq x$ is at least k.
- That is

$$P(\hat{m} \leq x) = P\left(\sum_{i} 1(X_i \leq x) \geq k\right)$$
The median

So

\[P(\hat{m} \leq x) = P\left(\sum_i 1(X_i \leq x) \geq k\right) \]

\[= P\left(\sqrt{n}(\hat{F}_n(x) - F(x)) \geq \sqrt{n}\left(\frac{k}{n} - F(x)\right)\right). \]

From Central Limit theorem this is approximately

\[1 - \Phi\left(\frac{\sqrt{n}\left(\frac{k}{n} - F(x)\right)}{\sqrt{F(x)(1 - F(x))}}\right). \]

Notice \(k/n \to 1/2. \)
Median

- If we put $x = m + y/\sqrt{n}$ (where m is true median) we find
 $$F(x) \rightarrow F(m) = 1/2.$$

- Also $\sqrt{n}(F(x) - 1/2) \rightarrow f(m)$ where f is density of F (if f exists).
- So
 $$P(\sqrt{n}(\hat{m} - m) \leq y) \rightarrow 1 - \Phi(-2f(m)y)$$

- That is,
 $$\sqrt{n}(\hat{m} - 1/2) \rightarrow N(0, 1/(4f^2(m))).$$