Identifiability, Invertibility

Defn: If \(\{\epsilon_t\} \) is a white noise series and \(\mu \) and \(b_0, \ldots, b_p \) are constants then

\[
X_t = \mu + b_0\epsilon_t + b_1\epsilon_{t-1} + \cdots + b_p\epsilon_{t-p}
\]

is a moving average of order \(p \); write \(MA(p) \).

Q: From observations on \(X \) can we estimate the \(b \)'s and \(\sigma^2 = \text{Var}(\epsilon_t) \) accurately? NO.

Defn: Model for data \(X \) is family \(\{P_\theta; \theta \in \Theta\} \) of possible distributions for \(X \).

Defn: Model is **identifiable** if \(\theta_1 \neq \theta_2 \) implies \(P_{\theta_1} \neq P_{\theta_2} \); different \(\theta \)'s give different distributions for data.

Unidentifiable model: there are different values of \(\theta \) which make exactly the same predictions about the data.

So: data do not distinguish between these \(\theta \) values.
Example: Suppose ϵ is an iid $N(0, \sigma^2)$ series and that $X_t = b_0\epsilon_t + b_1\epsilon_{t-1}$. Then the series X has mean 0 and covariance

$$C_X(h) = \begin{cases}
(b_0^2 + b_1^2)\sigma^2 & h = 0 \\
b_0b_1\sigma^2 & h = 1 \\
0 & \text{otherwise}
\end{cases}$$

Fact: normal distribution is specified by its mean and its variance.

Consequence: two mean 0 normal time series with the same covariance function have the same distribution.

Observe: if you multiply the ϵ’s by a and divide both b_0 and b_1 by a then the covariance function of X is unchanged.

Thus: cannot hope to estimate all three parameters, b_0, b_1 and σ.

Arbitrary choice: $b_0 = 1$
Are parameters b_1 and σ identifiable?

We try to solve the equations
\[C(0) = (1 + b^2)\sigma^2 \]
and
\[C(1) = b\sigma^2 \]
to see if the solution is unique. Divide the two equations to see
\[\frac{C(1)}{C(0)} = \frac{b}{1 + b^2} \]
or
\[b^2 - \frac{C(0)}{C(1)}b + 1 = 0 \]
which has the solutions
\[\frac{C(0)}{C(1)} \pm \sqrt{\left(\frac{C(0)}{C(1)}\right)^2 - 4} \]
You should notice two things:

1. If
 \[\left| \frac{C(0)}{C(1)} \right| < 2 \]
 there are no solutions.

 Since \(C(0) = \sqrt{\text{Var}(X_t)\text{Var}(X_{t+1})} \) we see \(C(1)/C(0) \) is the correlation between \(X_t \) and \(X_{t+1} \).

 So: have proved that for an \(MA(1) \) process this correlation cannot be more than \(1/2 \) in absolute value.

2. If
 \[\left| \frac{C(0)}{C(1)} \right| > 2 \]
 there are two solutions.
Note: two solutions multiply together to give the constant term 1 in the quadratic equation.

If two roots are distinct it follows that one of them is larger than 1 and the other smaller in absolute value.

Let b and b^* denote the two roots.

Let $\alpha = C(1)/b$ and $\alpha^* = C(1)/b^*$.

Let ϵ_t be iid $N(0, \alpha)$ and ϵ^*_t be iid $N(0, \alpha^*)$. Then

$$X_t \equiv \epsilon_t + b\epsilon_{t-1}$$

and

$$X^*_t \equiv \epsilon^*_t + b^*\epsilon^*_{t-1}$$

have identical means and covariance functions. Observing X_t you cannot distinguish the first of these models from the second. We will fit $MA(1)$ models by requiring our estimated b to have $|\hat{b}| \leq 1$.

38
Reason: manipulate model equation for X as for autoregressive process:

$$
\epsilon_t = X_t - b\epsilon_{t-1}
= X_t - b(X_{t-1} - b\epsilon_{t-2})
\vdots
= \sum_{0}^{\infty}(-b)^j X_{t-j}
$$

This manipulation makes sense if $|b| < 1$. If so then we can rearrange the equation to get

$$
X_t = \epsilon_t - \sum_{1}^{\infty}(-b)^j X_{t-j}
$$

which is an autoregressive process.
If, on the other hand, $|b| > 1$ then we can write

$$X_t = \frac{1}{b} b \epsilon_t + b \epsilon_{t-1}$$

Let $\epsilon_t^* = b \epsilon_t$; ϵ^* is also white noise. We find

$$\epsilon_{t-1}^* = X_t - \frac{1}{b} \epsilon_t^*$$

$$= X_t - \frac{1}{b} (X_{t+1} - \frac{1}{b} \epsilon_{t+1}^*)$$

$$\vdots$$

$$= \sum_0^\infty (-\frac{1}{b})^j X_{t+j}$$

which means

$$X_t = \epsilon_{t-1}^* - \sum_1^\infty (-\frac{1}{b})^j X_{t+j}$$

This represents the current value as depending on the future which seems physically far less natural than the other choice.
Defn: An $MA(p)$ process is invertible if it can be written in the form

$$X_t = \sum_{j=1}^{\infty} a_j X_{t-j} + \epsilon_t$$

Defn: A process X is an autoregression of order p (written $AR(p)$) if

$$X_t = \sum_{j=1}^{p} a_j X_{t-j} + \epsilon_t$$

(so an invertible MA is an infinite order autoregression).

Defn: The backshift operator transforms a time series into another time series by shifting it back one time unit; if X is a time series then BX is the time series with

$$(BX)_t = X_{t-1}.$$

The identity operator I satisfies $IX = X$. We use B^j for $j = 1, 2, \ldots$ to denote B composed with itself j times so that

$$(B^jX)_t = X_{t-j}$$

For $j = 0$ this gives $B^0 = I$.
Now use B to develop a formal method for studying the existence of a given $AR(p)$ and the invertibility of a given $MA(p)$.

An $AR(1)$ process satisfies

$$(I - a_1 B)X = \epsilon$$

Think of $I - a_1 B$ as infinite dimensional matrix; get formal identity

$$X = (I - a_1 B)^{-1} \epsilon$$

So how will we define this inverse of an infinite matrix? We use the idea of a geometric series expansion.

If b is a real number then

$$(1 - ab)^{-1} = \frac{1}{1 - ab} = \sum_{j=0}^{\infty} (ab)^j$$

so we hope that $(I - a_1 B)^{-1}$ can be defined by

$$(I - a_1 B)^{-1} = \sum_{j=0}^{\infty} a_1^j B^j$$
This would mean

\[X = \sum_{j=0}^{\infty} a_j B^j \epsilon \]

or looking at the formula for a particular \(t \) and remembering the meaning of \(B^j \) we get

\[X_t = \sum_{j=0}^{\infty} a_j \epsilon_{t-j} \]

This is the formula I had in lecture 2.

Now consider a general \(AR(p) \) process:

\[(I - \sum_{j=1}^{p} a_j B^j)X = \epsilon \]

We will factor the operator applied to \(x \). Let

\[\phi(x) = 1 - \sum_{j=1}^{p} a_j x^j \]

Then \(\phi \) is degree \(p \) polynomial so it has (theorem of C. F. Gauss) \(p \) roots \(1/b_1, \ldots, 1/b_p \).

(No one of the roots is 0 because the constant term in \(\phi \) is 1.) This means we can factor \(\phi \) as

\[\phi(x) = \prod_{j=1}^{p} (1 - bjx) \]
Now back to the definition of X:

$$\prod_{1}^{p}(I - b_j B)X = \epsilon$$

can be solved by inverting each term in the product (in any order — the terms in the product commute) to get

$$X = \prod_{1}^{p}(I - b_j B)^{-1}\epsilon$$

The inverse of $I - b_1 B$ will exist if the sum

$$\sum_{k=0}^{\infty} b_j^k B^k$$

converges; this requires $|b_j| < 1$. Thus a stationary $AR(p)$ solution of the equations exists if every root of the characteristic polynomial ϕ is larger than 1 in absolute value (actually the roots can be complex and I mean larger than 1 in modulus).
Summary

• An $MA(q)$ process $X_t = \epsilon_t - \sum_{j=1}^{q} b_j \epsilon_{t-j}$ is invertible iff all roots of characteristic polynomial $\psi(x) = 1 - \sum_{j=1}^{q} b_j x^j$ lie outside unit circle in complex plain.

• For given covariance function of an $MA(q)$ process there is only one set of coefficients b_1, \ldots, b_q for which the process is invertible.

• An $AR(p)$ process $X_t - \sum_{j=1}^{p} a_j X_{t-j} = \epsilon_t$ is asymptotically stationary iff all roots of characteristic polynomial $\phi(x) = 1 - \sum_{j=1}^{p} a_j x^j$ lie outside unit circle in complex plain.

 (Asymptotically stationary means: make $X_{-1}, X_{-2}, \ldots, X_{-p}$ anything; use equation defining $AR(p)$ to define rest of X values; then as $t \to \infty$ the process gets closer to being stationary.

 Asymptotic stationarity is equivalent to existence of an exactly stationary solution of equations.)
Defn: A process X is an $ARMA(p, q)$ (mixed autoregressive of order p and moving average of order q) if it satisfies

$$\phi(B)X = \psi(B)\epsilon$$

where ϵ is white noise and

$$\phi(B) = I - \sum_{1}^{p} a_j B^j$$

and

$$\psi(B) = I - \sum_{1}^{q} b_j B^j$$

The ideas we used above can be stretched to show that the process X is identifiable and causal (can be written as an infinite order autoregression on the past) if the roots of $\psi(x)$ lie outside the unit circle. A stationary solution, which can be written as an infinite order causal (no future ϵs in the average) moving average, exists if all the roots of $\phi(x)$ lie outside the unit circle.