Power and Sample Size Calculations

- So far: our theory has been used to compute P-values or fix critical points to get desired α levels.
- We have assumed that all our null hypotheses are True.
- I now discuss power or Type II error rates of our tests.
- **Definition:** The power function of a test procedure in a model with parameters θ is $P_\theta(\text{Reject})$.

Richard Lockhart
STAT 350: Power and Sample Size
Consider a \(t \)-test of \(\beta_k = 0 \).

Test statistic is
\[
\frac{\hat{\beta}_k}{\sqrt{\text{MSE}(X^T X)^{-1}}_{kk}}
\]

Can be rewritten as the ratio
\[
\frac{\hat{\beta}_k / \left[\sigma \sqrt{(X^T X)^{-1}}_{kk} \right]}{\sqrt{\frac{\text{SSE}/\sigma^2}{(n - p)}}}
\]
When null hypothesis that $\beta_k = 0$ is true numerator is standard normal, the denominator is the square root of a chi-square divided by its degrees of freedom and the numerator and denominator are independent.

When, in fact β_k is not 0 the numerator is still normal and still has variance 1 but its mean is

$$\delta = \frac{\beta_k}{\sigma \sqrt{(X^T X)^{-1}_{kk}}}.$$

So define **non-central** t distribution as distribution of

$$\frac{\mathcal{N}(\delta, 1)}{\sqrt{\chi^2 / \nu}}$$

where the numerator and denominator are independent.

The quantity δ is the **noncentrality parameter**.

Table B.5 on page 1327 gives the probability that the absolute value of a non-central t exceeds a given level.
If we take the level to be the critical point for a \(t \) test at some level \(\alpha \) then the probability we look up is the corresponding power,

That is, the probability of rejection.

Notice power depends on two unknown quantities, \(\beta_k \) and \(\sigma \) and on 1 quantity which is sometimes under the experimenter’s control (in a designed experiment) and sometimes not (as in an observational study.)

Same idea applies to any linear statistic of the form \(a^T \hat{\beta} \)

Get a non-central \(t \) distribution on the alternative.

So, for example, if testing \(a^T \beta = a_0 \) but in fact \(a^T \beta = a_1 \) the non-centrality parameter is

\[
\delta = \frac{a_1 - a_0}{\sigma \sqrt{a^T (X^T X)^{-1} a}}.
\]
Sample Size determination

- Before an experiment is run.
- Sometimes experiment is costly.
- So try to work out whether or not it is worth doing.
- Only do experiment if probabilities of Type I and II errors both reasonably low.
- Simplest case arises when you prespecify a level, say $\alpha = 0.05$ and an acceptable probability of Type II error, β say 0.10.
Then you need to specify

- The ratio β/σ: comes from physically motivated understanding of what value of β would be important to detect and from understanding of reasonable values for σ.
- How the design matrix would depend on the sample size.
- Easiest: fix some small set of say j values x_1, \ldots, x_j; then use each member of that set say m times so that the aggregate sample size is mj.
- This gives a non-centrality parameter of the form

$$\frac{\beta}{\sigma} \times \frac{\sqrt{m}}{\sqrt{(X^T X)_{kk}^{-1}}}$$

- The value $n = mj$ influences both the row in table B.5 which should be used and the value of δ.
- If the solution is large, however, then all the rows in B.5 at the bottom of the table are very similar so that effectively only δ depends on n; we can then solve for n.

Richard Lockhart

STAT 350: Power and Sample Size
Power for \(F \) tests

- Simplest example: regression through origin (no intercept).
- Model
 \[
 Y_i = \beta_1 X_{i,1} + \cdots + \beta_p X_{i,p} + \epsilon_i
 \]
- Test \(\beta_1 = \cdots = \beta_p = 0 \)
- \(F \) statistic
 \[
 F = \frac{MSR}{MSE} = \frac{\hat{Y}^T \hat{Y}}{\hat{\epsilon}^T \hat{\epsilon}} = \frac{Y^T HY}{Y^T (I - H) Y / (n - p)}.
 \]

Suppose now that the null hypothesis is false.

- Substitute \(Y = X \beta + \epsilon \) in \(F \).
- Use \(HX = X \) (and so \((I - H)X = 0 \)).
- Denominator is
 \[
 \frac{\epsilon^T (I - H) \epsilon}{n - p}
 \]
So: even when the null hypothesis is false the denominator divided by σ^2 has the distribution of a χ^2 on $n - p$ degrees of freedom divided by its degrees of freedom.

FACT: Numerator and denominator are independent of each other even when the null hypothesis is false.

Numerator is

$$\frac{(\epsilon + X\beta)^T H (\epsilon + X\beta)}{p}$$

Divide by σ^2 and rewrite this as

$$W^T HW / p$$

$W = (\epsilon + X\beta) / \sigma$ has a multivariate normal distribution with mean $X\beta / \sigma = \mu / \sigma$ and variance the identity matrix.
FACT: If W is a $MVN(\tau, I)$ random vector and Q is idempotent with rank p then $W^T Q W$ has a **non-central** χ^2 distribution with non-centrality parameter

$$\delta^2 = E(W^T Q W) - p = \tau^T Q \tau$$

and p degrees of freedom.

This is the same distribution as that of

$$(Z_1 + \delta)^2 + Z_2^2 + \cdots + Z_p^2$$

where the Z_i are iid standard normals. An ordinary χ^2 variable is called **central** and has $\delta = 0$.

FACT: If U and V are independent χ^2 variables with degrees of freedom ν_1 and ν_2, V is central and U is non-central with non-centrality parameter δ^2 then

$$\frac{U/\nu_1}{V/\nu_2}$$

is said to have a **non-central** F distribution with non-centrality parameter δ^2 and degrees of freedom ν_1 and ν_2.
Power Calculations

- Table B 11 gives powers of F tests for various small numerator degrees of freedom and a range of denominator degrees of freedom.
- Must use $\alpha = 0.05$ or $\alpha = 0.01$.
- In table ϕ is our $\delta/\sqrt{p+1}$ (that is, the square root of what I called the non-centrality parameter divided by the square root of 1 more than the numerator degrees of freedom.)
Sample size calculations

- Sometimes done with charts and sometimes with tables; see table B 12.
- This table depends on a quantity

\[
\frac{\Delta}{\sigma} = \sqrt{\frac{(p + 1)\delta^2}{n}}
\]

To use the table you specify

- \(\alpha\) (one of 0.2, 0.1, 0.05 or 0.01)
- Power \((= 1 - \beta\) in notation of table)– must be one of 0.7, 0.8, 0.9 or 0.95
- Non-centrality per data point, \(\frac{\delta^2}{n}\).

Then you look up \(n\).

- Realistic specification of \(\frac{\delta^2}{n}\) difficult in practice.
Example: POWER of t test: plaster example

- Consider fitting the model

\[Y_i = \beta_0 + \beta_1 S_i + \beta_2 F_i + \beta_3 F_i^2 + \epsilon_i \]

- Compute power of t test of $\beta_3 = 0$ for the alternative $\beta_3 = -0.004$.
- This is roughly the fitted value.
- In practice, however, this value needs to be specified before collecting data so you just have to guess or use experience with previous related data sets or work out a value which would make a difference big enough to matter compared to the straight line.)
- Need to assume a value for σ.
- I take 2.5 – a nice round number near the fitted value.
- Again, in practice, you will have to make this number up in some reasonable way.
Finally $a^t = (0, 0, 0, 1)$ and $a^T(X^TX)^{-1}a$ has to be computed.

For the design actually used this is 6.4×10^{-7}. Now δ is 2.

The power of a two-sided t test at level 0.05 and with $18 - 4 = 14$ degrees of freedom is 0.46 (from table B 5 page 1327).

Take notice that you need to specify α, β_3/σ (or even β_3 and σ) and the design!
Now for the same assumed values of the parameters how many replicates of the basic design (using 9 combinations of sand and fibre contents) would I need to get a power of 0.95?

The matrix X^TX for m replicates of the design actually used is m times the same matrix for 1 replicate.

This means that $a^T(X^TX)^{-1}a$ will be $1/m$ times the same quantity for 1 replicate.

Thus the value of δ for m replicates will be \sqrt{m} times the value for our design, which was 2.

With m replicates the degrees of freedom for the t-test will be $18m - 4$.
We now need to find a value of \(m \) so that in the row in Table B 5 across from \(18m - 4 \) degrees of freedom and the column corresponding to

\[
\delta = 2\sqrt{m}
\]

we find 0.95.

To simplify we try just assuming that the solution \(m \) is quite large and use the last line of the table.

We get \(\delta \) between 3 and 4 – say about 3.75.

Now set \(2\sqrt{m} = 3.7 \) and solve to find \(m = 3.42 \) which would have to be rounded to 4 meaning a total sample size of \(4 \times 18 = 72 \).

For this value of \(m \) the non-centrality parameter is actually 4 (not the target of 3.75 because of rounding) and the power is 0.98.

Notice that for this value of \(m \) the degrees of freedom for error is 66 which is so far down the table that the powers are not much different from the \(\infty \) line.
POWER of F test: SAND and FIBRE example

- Now consider the power of the test that all the higher order terms are 0 in the model

$$Y_i = \beta_0 + \beta_1 S_i + \beta_2 F_i + \beta_3 F_i^2 + \beta_4 S_i^2 + \beta_5 S_i F_i + \epsilon_i$$

that is the power of the F test of $\beta_3 = \beta_4 = \beta_5 = 0$.

- Need to specify the non-centrality parameter for this F test.

- In general the noncentrality parameter for a F test based on ν_1 numerator degrees of freedom is given by

$$E(\text{Extra SS})/\sigma^2 - \nu_1.$$

- This quantity needs to be worked out algebraically for each separate case, however, some general points can be made.
Write the full model as

\[Y = X_1 \beta_1 + X_2 \beta_2 + \epsilon \]

and the reduced model as

\[Y = X_1 \beta_1 + \epsilon \]

Extra SS is difference between two Error sums of squares.

One is for the full model, assumed correct, so:

\[E(\text{ErrorSS}_\text{FULL}) = \text{ErrorDF}_\text{FULL} \sigma^2 \]

The Error SS for the reduced model is

\[Y^T (I - H_1) Y \]

where \(H_1 = X_1 (X_1^T X_1)^{-1} X_1^T \).
Replace Y by $X_1 \beta_1 + X_2 \beta_2 + \epsilon$ from full model equation; take expected value.

The answer is

$$\sigma^2 \left[(n - p_1) + \beta_2^T X_2^T (I - H_1) X_2 \beta_2\right]$$

where p_1 is the rank of X_1.

This makes the non-centrality parameter

$$\delta^2 = \beta_2^T X_2^T (I - H_1) X_2 \beta_2 / \sigma^2.$$

Interpretation: error sum of squares regressing $X_2 \beta_2$ on X_1.

Richard Lockhart STAT 350: Power and Sample Size
Sand and Fibre details

Assume $\beta_3 = -0.004$, $\beta_4 = -0.005$ and $\beta_5 = 0.001$. The following SAS code computes the required numerator.

```
data plaster;
  infile 'plaster.dat';
  input sand fibre hardness strength;
  newx = -0.004*fibre*fibre -0.005*sand*sand +0.001*sand*fibre;
  proc reg data=plaster;
    model newx = sand fibre ;
  run;
```
Output shows:

- Error sum of squares regressing newx on sand, fibre and an intercept is 31.1875.
- Taking σ^2 to be 7 we get a noncentrality parameter of roughly 4.55.
- Compute $\phi = \sqrt{4.55}/\sqrt{3 + 1} = 1.07$ needed for table B 11.
- For 3 numerator and 18-6=12 denominator degrees of freedom we get a power between 0.27 and 0.56 but close to 0.27.
Sample Size for F test: SAND and FIBRE example

- For same basic problem and parameter values how many times would we need to replicate the design to get a power of 0.95?
- Non-centrality parameter for m replicates is m times that for 1 replicate.
- In terms of the parameter ϕ used in the tables the value is proportional to \sqrt{m}.
- With m replicates have $18m - 6$ denominator degrees of freedom.
- If $18m - 6$ is reasonably large can use ∞ line and see that ϕ_m must be around 2.2 making m roughly 4 ($\phi_m = \sqrt{m}\phi_1 = 1.07\sqrt{m}$).
Using Table B 12 directly

- Table gives values of n/r where n is total sample size, $r - 1$ is df in numerator of F-test, $n - r$ is df for error, non-centrality parameter δ^2 is

$$\left(\frac{\Delta}{\sigma}\right)^2 \frac{n}{2}$$

- If basic design has n_1 data points and p parameters and F test is based on ν_1 degrees of freedom then when you replicate the design m times you get mn_1 total data points, $mn_1 - p$ degrees of freedom for error and ν_1 degrees of freedom for the numerator of the F test.

- To use the table take $r = \nu_1 + 1$.

- Work out Δ/σ. Take value of ncp δ_1^2 for one replicate of basic design. Compute

$$\Delta/\sigma = \sqrt{2}\delta_1$$

- Look up n/r in the table and take that to be m.

Richard Lockhart
STAT 350: Power and Sample Size
Making small mistake unless $p = \nu_1 + 1$ (which is the case for the overall F test in the basic ANOVA table).

The problem is that you will be pretending you have $(m - 1)(\nu_1 + 1)$ degrees of freedome for error instead of $mn_1 - p$. As long as these are both large all is well.

Our example: for power 0.95 and m replicates of 18 point design have $\delta_1^2 = 4.55$ as above.

We have $r = 3 + 1 = 4$.

We get $\Delta/\sigma = \sqrt{2}\sqrt{4.55} = 3.02$.

For a level 0.05 test we then look on page 1342 and get $m = 5$ for a total sample size of 90.
Degrees of freedom for error will really be 84 but table pretends that degrees of freedom for error will be $(5 - 1) \times 4 = 16$.

The latter is pretty small.

The table supposes a smaller number of error df which would decrease the power of a test.

So $m = 5$ is probably an overestimate of the required sample size.

A better answer can be had by looking at replicates of the 9 point design.
For 9 data points nonecentrality parameter would be
\[\delta_1^2 = \frac{4.55}{2} = 2.275. \]

Gives \(\Delta/\sigma = 2.13 \) and \(m \) of 9 or 10.

For \(m = 10 \) would have same design as before.

For \(m = 9 \) we would have only 81 data points.

At this point you go back to Table B 11 to work out the power properly for 81 or 90 data points and see if 81 is enough.