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SUMMARY

Clinical trials often include interim analyses that compare treatment groups with respect
to the mean function of a response process. Sometimes it is unclear how the mean functions
of the groups might differ, and thus one cannot confidently prespecify a simple metric
upon which a stopping rule or repeated confidence interval can be based. This motivated
us to extend the repeated confidence intervals approach for a finite-dimensional parameter
(Jennison & Turnbull, 1989) to the use of repeated confidence bands for the mean function
of a response process. Formal tests of hypotheses are easily constructed from the repeated
confidence bands. We also describe how inferences for the mean function can be adaptively
restricted to different subsets of its domain at different interim analyses. An example is
given involving an AIDS clinical trial.

Some key words: Clinical trial; Group sequential analysis; Mean function; Nonparametric inference.

1. INTRODUCTION

Preplanned interim analyses of clinical trials are commonly used to monitor patient
safety and the evolving efficacy of treatment groups (Jennison & Turnbull, 1990;
Whitehead, 1997). Usually, the interim analyses are guided by prespecified termination
criteria, or stopping rules, that specify both the metric on which the relative efficacy of
the groups is measured and how the overall type I error rate will be spent during the
multiple examinations of the data (Pocock, 1977; O’Brien & Fleming, 1979; Lan &
DeMets, 1983). In some circumstances, however, relatively little may be known about the
nature and magnitude of the expected treatment effect or the clinical significance of certain
types of differences in the outcome measure. This is common in AIDs studies; for instance.
In such settings, a repeated confidence intervals approach (Jennison & Turnbull, 1989) is
attractive but this requires the metric of interest to be expressed as a finite-dimensional
parameter. When the response is a stochastic process, such as repeated measures of a
biological marker or a failure time process, there may be little confidence in the type
of magnitude of treatment differences that will occur and hence no obvious metric for
comparing groups.

Motivated by these considerations, we extend the repeated confidence intervals
approach for a finite-dimensional parameter to the use of repeated confidence bands for
the mean function of a general response process. Special cases include outcomes such as
repeated measures of a laboratory marker, failure time endpoints and recurrent event
data. Assuming that there is an estimator of the mean function that, when standardised,
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is asymptotically Gaussian, we develop a general procedure for the construction of
repeated confidence bands. This allows us to learn about the mean function of a specific
treatment group or the difference between two groups at each interim analysis. Also,
should the trial be terminated, a valid confidence band is provided for use in the interpret-
ation of the study results. The same techniques can also be used to carry out formal
hypothesis tests. A unique feature of the approach is that inferences for the mean function
can be adaptively restricted to different subsets of its domain at each interim analysis.

In § 2 we give a general definition of repeated confidence bands, describe three settings
in which the techniques can be applied, and present the construction of a specific set of
repeated confidence bands. In § 3 we discuss the use of different subsets of the domain of
the mean function at different interim analyses. We consider the formation of hypothesis
tests from repeated confidence bands in § 4. Section 5 gives an illustrative example based
on a recent AIDS trial, and § 6 comments on some related issues.

2. SETTING AND CONSTRUCTION OF REPEATED CONFIDENCE BANDS
2-1. Definitions and assumptions

Consider a clinical trial that begins at calendar time 0 and that enrols and follows n
subjects over time. Let X;(s) denote the value of the response process at time s for subject
i, where s denotes time measured from entry into the trial. Denote the common mean
function by u(.); that is u(s) = E{X;(s)} for s€[0, S]. Throughout we use ¢ to denote
calendar or external time and s to denote study or internal time. Suppose K analyses of
the trial are conducted at prespecified calendar times T3, ..., Ty, where 0< T; < ... < Tx.
Let 5, denote the available information from the trial up to calendar time 7. For example,
if a; is the calendar time of entry for subject i, #, might include the values of X;(s) that
are observed for s < T, — a; for those subjects who are enrolled by time T;.

Suppose that B, = B,(+#,) is a random subset of the space #[0, S] of all functions
defined on [0, S]. Then {B,:k=1,..., K} is called a set of level 1 — « repeated confidence
bands for the mean function u(.) on [0, ST if

pr{u(.)eB, for I<k<K}>1—a. (2:1)

This definition of repeated confidence bands is a natural generalisation of the notion of
repeated confidence intervals for a finite-dimensional parameter (Jennison & Turnbull,
1989). We define the spending function for {B,:k=1,..., K} by {ny, ..., ng), where, for
k=1,...,K,

pr{u(.)e B, for 1 <I<k—1; u(.) ¢ By} =m,.

Note that Y5_, 7, < . There are some applications where the interest at the kth analysis
is on values of u(.) in a subset of [0, ST, & say. As we show later, these situations are
accommodated in the above definition by defining B, to be noninformative about u(s)
for s ¢ 6.

We shall assume that there is an estimator of the mean function, fi,(s; t), say, based on
the information available at external time t, such that, as n — oo, the K-dimensional process
n* {fi,(s) — u(sy1} converges weakly to a K-dimensional zero-mean Gaussian process %(s)
forse & = [0, ], where fi,(s) = (,(s; Ty), . . ., fiu(s; T¢)) and T denotes the K-dimensional
vector of ones. The set & denotes the values s for which fi,(.) weakly converges, and, as
the following examples illustrate, will usually depend on the underlying process governing
the values of s for which X;(s) is observable. Without loss of generality, we take & =[0, S]
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except for Example 1 below. We denote the covariance function for %(s) by the K x K
matrix function cov(s, u) with (I, m) element being the function

COV(Ss u)lm =Cov {gl(s)s e(gm(u)}a
where %(s) is the Ith component of %(s).

2-2. Examples

Example 1: Repeated measures responses. Suppose that X, ..., X, are independent and
identically distributed, and X;(s;) is the value of a measured outcome for subject i at study
time s;, for j=1,...,J. For example, in an AIDS trial, X;(s;) might denote a measure of
viral burden observed at study month s;. Here u(s;) denotes the mean viral load at s;. A
natural commonly used nonparametric estimator of u(s;) based on information available
at external time ¢ is given by

i=10i(s;5 D Xi(s;)
1=10:(s;5 1) ’

where 0;(s; t) is an indicator of whether or not X;(s) is observed at time ¢ and is assumed
to be independent of the response process. That is, the estimator of u(s;) at time ¢ is simply
the average of the observed values of X;(s;) at time t. For completeness, fi,(s;; t) can be
defined arbitrarily when ).7_ ; d;(s;; t) =0. The set & consists of those s; for which X;(s) is
observed with positive probability. When t and n are large enough, the estimator in (2-2)
is well defined and unbiased for s € £, and under mild conditions the vector-valued process
n*{fi,(s) — u(sy1} converges to a K-dimensional zero-mean Gaussian process for s € &.
Proofs of this and the weak convergence results noted in the following two examples are
available upon request from the authors.

For the special case where the observed values of X;(s) are caused entirely by staggered
entry of subjects into the trial, d,(s; t) = I(s <t — a;), where g, is the entry time of subject i.
Here the (I, m) element of the asymptotic covariance function of the vector process
n#{fi,(s) — u(sy1} can be shown to equal

fin(sj3 1) = (22)

cov {X;(s), X, ()}
H(max {(T, — s), (T,, — u)})
for s,ue& and ,m=1,..., K, where H(.) is the cumulative distribution function of a;.

In general, the covariance function cov(s, u) is estimated consistently by the moment
estimator

cov(s, U), =

nXi=16:(s; T)oi(u; T,,)
i=10i(s; 7;)2;; 195w T,)

When cov {X,(s), X;(u)} is unknown, it may be replaced at the kth analysis by a consistent
estimator, such as

cOV(S, ), = cov{Xi(s), X1 (u)}.

1=10i(8; T)0y(u; T{Xi(s) — fiu(s; Ti)} {Xi(w) — (s T)}
'il=1 0:(s; Te)o;(u; Ty)

Cols, ; i) =

or
'i‘=1 0:(s; Tp)d;(u; Tp) X;(s)X;(u)
?=1 0:(s; T)o:(u; Ty)

Culs, s Tp) = — [ (s; T)fin(u; Ty).
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Example 2: Recurrent events. Suppose that X;, ..., X, are independent and identically
distributed, and let X;(s) denote the number of occurrences of some recurrent event by
internal time s, so that u(s) is the expected number of events by internal time s. For
example, X;(s) may denote the number of asthma attacks in child i by time s. Suppose
further that at calendar time ¢t we observe X;(s) for 0 < s < s;(t), where s;(t) is independent
of X;(.). Then, with J;(s; t) = I{s < 5;(t)}, a natural nonparametric estimator of u(.) is given
by

o [P 0w TS 6(u; 1) > 0} '
fin(s; 1) = i; L o) dX;(u). (2:3)

When the observation process d;(s; t) arises from staggered entry, (2:3) is used by Cook
and Lawless (1996). This statistic also arises as the Nelson—Aalen estimator (Fleming &
Harrington, 1991, p. 121) of the cumulative intensity function when the response is a
Poisson process with mean function y(.), for here the cumulative intensity at time s equals
the expected number of events by s.

Under some mild conditions, the vector process n? {fi,(s) — u(s)1} converges weakly to
a K-dimensional, zero-mean Gaussian process with covariance function cov(s, u) that is
consistently estimated by

it [ [ ST i)
V= ), )y T o T oy T, OV 1O A0

The covariance function cov{dX,(s), dX;(u)} in the formula above may be replaced with
a consistent estimator.

Example 3: Survival data. A special case of Example 2 is where the response is the time
until an event, such as death or clinical progression of a disease. Let X;(s) indicate whether
or not subject i has reached the event by internal time s, so that 1 — u(s) is the probability
of survival to time s. Given the right-censored observations as in Example 2, the Kaplan—
Meier estimator (Kaplan & Meier, 1958) of the survival function using data up to external
time t can be expressed as

fa(s; ) =1— ] (2:4)

u<s

[1 - T=10:(u; t) dX;(u) :l
;=1 0;(u; ){1 — X;(w )} |
and the vector process n?{fi,(s) — u(s)I} converges weakly to a zero-mean Gaussian pro-

cess. When the interval of observation arises from staggered entry with no other censoring,
0;(s; t) = I(s <t — a;) and the covariance function of the Gaussian process has (I, m) element

[m{s’"} var {x, )
b H@max{T, T,) — ol — u@)

cov(s, W = {1 — pu(s); {1 — u(w)} dv,

where x,(s) ds = dX,(s) and H(.) is the cumulative distribution of the g;. Note that u(s) =
1 —exp{—A(s)}, where A(s) is the cumulative hazard function of the survival time. An
alternative estimator for u(.) at the external time ¢t is thus

fi(s; ) =1—exp{—A,(s; 1)}, se[0,8], (2:5)

where A,(.; t) is the usual Nelson—Aalen estimator of A based on information collected
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up to time t:
- no s 0;(u; t)
A, (s; )= J P =
) ;;1 0 Zj=l 0;(u; t){1 — X;(u")}

Estimators (2-4) and (2-5), when standardised, have the same limiting distribution.

dX, ).

2-3. Construction of repeated confidence bands
In this section we present the construction of a specific set of repeated confidence bands

for the setting where each B, is intended to be informative about u(s) for all se [0, S].
For k=1,...,K, define

Su(s; T) = {n/var(s; T} {f,(s; Te) — uls)}, (2:6)

where var(s; T,) = cov(s, ), denotes the asymptotic variance of n* {fi,(s; T;) — u(s)}. Under
the assumptions in § 2-1 about the asymptotic behaviour of fi,(s; t), the vector process
with kth component S,(.; T;) converges weakly to a Gaussian process. A set of level 1 —a
repeated confidence bands for u(.) can be constructed as

B, = {v(.):for all se [0, 5],

v(s) e [ﬁn(s; T) — ¢ {—Var(: 71)}?’ (s To) + ¢k {—Var(: 71)}_}} (27)

for k=1,..., K, where the constants ¢, satisfy
pr{ sup [S,(s; T)I<c, 1<I<k—1; sup [S,(s; To)| > ck} =M. (2:8)
s€[0,S] s€[0,S]

Bands with different shapes can be formed by allowing ¢, to depend on s. In the following
we proceed as if the covariance function were known. In practice, it will usually be
unknown and replaced with a consistent estimator.

We see that S¥(s)=(S,(s; T1),...,S,(s; T;)) has a limiting zero-mean multivariate
Gaussian process, denoted by ¢&.(s). The (I, m) element of the covariance matrix

cov{&i(s), &)} is
cov(s, w),/{var(s; T,) var(u; T,)}* (Lm=1,...,k).

In theory, we can thus choose the ¢, to approximate (2-8) based on the asymptotic
Gaussian distribution of the S¥(.). However, the computations are generally difficult
except in special cases, such as Example 1, where &,(.) is multivariate normal.

A simple approach for computing the ¢, is obtained by extending an idea used in Lin,
Wei & Ying (1993). Consider the setting of Example 1, and define

§ L & [8us TX() — fals; T
8.(s; T) = {njvar(s; Tk)}iz[ (5 Tt (;)(S. uTk ()s B
i= j=19j\5

i=1

]zi, sed,  (29)

where Z,, ..., Z, are independent random variables from the standard normal distri-
bution, and are independent of X;(.) and d;(.), fori=1, ..., n. It is shown in the Appendix
that S®(s)=(S,(s; Th), . .., S,(s; T,)), conditional on {X;,-8;}, has the same limiting distri-
bution as S®(s). Since realisations from the conditional distribution of §®(s) can be
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computer generated, these can be used to approximate the critical values c,. Specifically,
given ¢y, ..., Cx—1, We choose ¢, as follows.

ALGORITHM

Step (a). Generate M, sets of independent realisations of (Z4, ..., Z,) and, for each set,
compute §¥(.), denoted by (S,(.; T)™, ..., S,(;; T)™Y, for m=1,..., M,.

Step (b). Define L,(T})™ = sup,c(o.51|S(s; T,)™| for =1, ..., k, and select ¢, so that a
proportion m, of the M, realisations satisfy L,(T,)™ < ¢, for 1 <I<k—1 and L,(T)™ > ¢.

The same type of algorithm can be used for other estimators. For example, in Example 2,
we consider the vector process with kth component

~ o | [P 60w Th) .

S.(s; T) = {n/var(s; T,)}* igl [L md{Xi(u)—#n(u; Tk)}] Z;, (210)
where var(s; t) is the asymptotic variance function of the Gaussian process associated with
(2-3). Then the Algorithm may be employed to compute the c,. Similarly, in the setting
of Example 3, we employ the Algorithm by using

0:(u; Ti){1 — Xi(u™)}
=10;(w; Te){1 — X;(u™)}

where var*(s; t) is the asymptotic variance in n*{A,(s; t) — A(s)} with A,(s; ¢) defined fol-
lowing equation (2-5). Here we have used the fact that the process with kth component
given by (2+6) has the same limiting distribution as the process with kth component
{njvar*(s; T)}*{Au(s; T) — A(s)}-

More generally, suppose that for k=1,..., K we have an estimator of u(.) such that
the function in (2-6) can be expressed as, or is asymptotically equivalent to,

S, To) = {njvar*(s; T} 3, [ J s 5 dXi(u)} zZ, (211
i=1 L Jo &j

(nvar(s T S Yuls: Tl ),
i=1

where the Y,; are independent, given the observation processes. Then it can be shown that
this process has the same limiting distribution as

Su(s; T) = {n/var(s; T Y, Yuls; Tl ) Z; (2112)
i=1
conditional on {X;, J;}, where the Z; are independent standard normal random variables,
and thus the latter process can be used in an algorithm similar to the above algorithm to
approximate the c,.

The choice of My, ..., Mg will depend in part on the number of interim analyses and
the spending function. For a specific k, a simple guideline is to monitor the resulting value
of ¢, periodically as the number of simulations increases and stop when these values
stabilise.

3. VARYING THE DOMAIN OF INFERENCE

A unique feature of repeated inferences about a function, as opposed to a scalar para-
meter, is that inferences for u(.) can be restricted to different subsets of its domain at each
interim analysis. In general, &, can be adaptively selected based on 5, _; and 2,, where
9, denotes any information up to time 7; that is independent of the response process,
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such as the set of the enrolment times of subjects who enter the study by time T;. As we
shall see, this adds to the flexibility of the repeated confidence bands approach and has
practical implications for efficiency.

One reason for varying the domain of interest at different interim analyses is that there
may be insufficient information for a precise estimate of u(s) at certain study times. For
example, when the observed data are wholly a result of the staggered entry of subjects
into the trial very few of the subjects may have completed the period of observation at
the time of the first several interim analyses.

Another reason is a result of lack of knowledge about the outcome. For example, in an
AIDS trial that partly motivated our interest in this problem, treatment efficacy is based
on monthly observations of the patients’ viral loads. The types of difference between
treatment groups that might justify early termination of a trial were not known in advance,
yet it was clear to the investigators that, if the trial were not terminated early, the primary
basis for comparing the treatment groups at the time of the final analysis should be u(S),
the mean response at the largest observation time. In such a situation we might want to
construct repeated confidence bands of u(.) over its entire domain during the first K — 1
interim analyses but then only for u(S) at the final analysis. That is, if &, denotes the
domain of u(.) of interest in the kth of the K analyses, we might choose &, =[0, S] for
k < K and &x = {S}. More generally, the domain &, could be chosen adaptively based on
some rule and the information (5#_;, 2;).

Apart from more naturally focusing attention on subsets of [0, S] of interest, repeated
confidence bands based on varying domains can have good efficiency properties. For
example, if a conservative spending function is used, the resulting confidence interval for
u(S) at the time of the final analysis in the example above will be similar in width to the
nominal confidence interval that disregards the multiple previous examinations of the data.

To construct repeated confidence bands with varying domains, suppose that &, is chosen
based on some function of #;_; and 2,, that is &, = &,(#-1, 2), for k=1,...,K. By
‘u(.) € B, in the following we mean that u(s) € B,(s) for s € &, where

By(s)={v(s):v(.)e B,= £[0, S]}.

Note that B, is informative for u(s) only when s € &,. That is, we can view By(s) as (— oo, o0)
for s ¢ &,. Then, if we choose B, to be a random subset of [0, S] such that

Ty

priu(.) ¢ Blu()e B, 1<I<k—1; 6} = ; (31)

1_Z1<z<k—1nz

with ¥ <;<om =0, {B,:k=1,...,K} is a set of level 1 —« repeated confidence bands.
This follows by mathematical induction since, first,

pr{u(.)e By} =1—E[pr{u(.) ¢ B;|6}]=1—m;
and, secondly, provided pr{u(.)e B,, 1<I<k—1}=1—-Y ¢, <j—1m for k=2,
pr{u(.)e B, 1<I<k—1; u(.) ¢ By}
=pr{u(.)eB,;, 1<I<k—1}
x E[pr{u(.)¢ Bilu(.) € B, 1<I<k—1; &} p()e B, 1<I<k—1]

=(1‘ ) 7’1>><( - >XE[llﬂ(-)EBz,1<l<k—1]=nk,

1<I<k—1 1—21<z<k—1”1

from which (2:1) follows.
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A specific confidence band B, with adaptive domain can be computed similarly to (2:7)
as

B,= {v(.):v(s) e [ﬁ,.(s; T)—c, {@} s T +c4 {@H for s (s’}

where ¢, is chosen to satisfy (3-1). As in § 2-3, bands with different shapes can be obtained
by allowing ¢, to depend on s. As we will illustrate later, the same type of algorithm
described in § 23 can be used for constructing repeated confidence bands with varying
domains, provided that ¢, is chosen to reflect the rule used for selecting &, and that (3-1)
is satisfied.

4. TESTS DERIVED FROM REPEATED CONFIDENCE BANDS

As in other inference problems, there is a duality between confidence regions and tests
of hypotheses in the current setting that can be used to construct formal hypothesis tests
from a set of repeated confidence bands. To illustrate, let u(.) denote the mean function
for the difference in the response processes of two treatment groups, so that the hypothesis
that the mean functions for the two groups are identical is given by

Hy:u(s)=0, se[0,S].

Suppose that By, ..., Bg is a set of level 1 — a repeated confidence bands with domains
6, =...=6Ex=[0,8]. Then, if we define a rejection region at the kth interim analysis by
any outcome in which B, does not wholly contain the zero function, it follows that, under
H,, the probability of rejecting H,, for the first time at the kth analysis is =, and hence
that the overall probability of rejecting H, at some analysis is at most «. Furthermore,
the results of a test can be summarised by a significance level, provided an ordering of
the sample space is specified in advance (Whitehead, 1997, Ch. 5).

The approach with varying domains introduced in § 3 can also be used in the test
setting. To illustrate, consider the example in §3 where &,=[0,S] for k<K and
6x = {S}. Here the resulting test rejects H,, if B, does not wholly contain the zero function
from O to S at the kth interim analysis or if the final confidence interval for u(S) does not
contain zero. Note that the test at the kth interim analysis considers evidence for alterna-
tives to u(s) for all s e [0, S], whereas at the final analysis the resulting test is sensitive
only to alternatives to H, in which u(S)= 0. Thus, while this repeated testing procedure
has the desired level, it may be insensitive to many types of departure from H,,.

The &, can also be chosen adaptively based on a rule or procedure when constructing
a hypothesis test. At first glance this may seem inappropriate because & is selected in the
light of the data available at calendar time T,_;. However, the choice of the boundary
values ¢ in the construction of B, depends on the rule of selecting &), and the argument
in § 3 shows that the resulting testing procedure will have level a.

5. EXAMPLE

To illustrate the approach discussed in this paper, we reanalyse the results of a recent
clinical trial comparing the drugs Azt and ddI for people infected with Hiv. For purposes
of illustration, we only consider the AzT and low dose ddI arms used in the trial. For a
detailed discussion of the study, see Kahn et al. (1992). The primary efficacy endpoint
was AIDS-free survival; that is, time until the development of AIDs or death, whichever
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occurred first. A total of 602 patients were randomised to the AzT and low-dose ddI arms
between October 1989 and April 1991, and follow-up ended in November 1991. By the
end of the study, 125 of the 304 subjects assigned to AZT and 94 of the 298 assigned to
ddI were observed to develop AIDs or die. With Y; denoting the AIDs-free survival time
of subject i, we let X;(s)=I(Y;>s), so that u(.) is the survival function of Y;, which we
denote by u,(.) for the Azt group and by u,(.) for the ddI group.

We reconstruct the results of this trial based on conducting two interim analyses and
a final analysis at T; = 50, T, =70 and T; = 110 weeks after the trial began. These times
correspond approximately to the times of the actual interim and final analyses conducted
during the study. We take o = 0-05 and a conservative O’Brien—Fleming type of spending
function with 7; =0-001, n, = 0-016 and =5 = 0-034.

Repeated confidence bands for the survival function of each treatment group, together
with the estimated values of p,(.) and p,(.) obtained from the Kaplan—Meier estimator
(Kaplan & Meier, 1958), are shown in Fig. 1 at the three analyses, where we have taken
&, =1[0,50], & =1[0,70] and & =[0, 110]. The bands were obtained by evaluating (2-4)
using (2:7), with ¢, determined by the algorithm described in § 2-3 with M,, M,, M5 =
4000. By their construction, the three bands for a treatment group simultaneously include
the true mean function with probability at least 95%, and thus each individual band
does also.

Next consider the difference between the survival functions of the ddI and AzT groups,
which we denote by p,(.) = us(.) — uy(.). Figure 2 gives the estimates of u,(.) and corre-
sponding repeated confidence bands based on domains & =[0,40], & =[0,60] and
&5 = {60}. We choose the first two domains because there was not much information
collected beyond study times 40 and 60 at the two interim reviews. At the time of the first
interim analysis, the point estimate of u,(.) is generally positive, indicating a larger survival
probability in the ddI group. However, the confidence band is quite wide, indicating that
it is plausible that either group may be superior. At the time of the second interim analysis,
the estimate of p,(s) continues to increase with s, and the lower bound of the confidence
band approaches 0. This suggests that it is unlikely that AiDs-free survival is superior in
the AZT group. At the time of the final analysis, Fig. 2(c) shows that the confidence interval
for the difference between the probabilities of an AIDs-free survival beyond 60 weeks is
[0-033,0-311] and thus only includes values for which ddI has superior A1Ds-free survival
probability. Also, each of the previous repeated confidence bands in this example will be
level 95%. Thus, in addition to providing a confidence interval for u,(60), the confidence
band for u,(s), for 0 <s <60, at the time of the second interim analysis is still a level
95% band.

One consequence of using a conservative spending function is that the confidence band
at the final analysis will be similar to that of a nominal confidence band that does not
account for the interim analyses. In this example, the nominal confidence interval for
Ua(60) is [0-056,0-2887] and thus is only slightly narrower than that obtained from the
repeated confidence bands approach.

The same procedures used to construct the confidence band for p,(.) can also be used
to test the hypothesis Hy: pa(s) =0, for 0 < s < 60. Since the repeated confidence bands at
the time of the first and second interim analyses wholly contain the zero function, H,
would not have been rejected at these analyses. However, H, would be rejected at final
analysis since the confidence interval excludes zero. Although the final analysis provided
evidence favouring ddI over Azt for values of s prior to week 60, it is clear that the test
might have had little power to detect early and transient differences between the treatment
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Fig. 1: Example. Repeated confidence bands at calendar times Ty = 50, T, = 70 and T; = 110 for AZT group,
(a)—(c), and for ddI group, (d)—(f). Solid line represents Kaplan—Meier estimate and dotted lines represent
upper and lower limits of bands.
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Fig. 2: Example. Repeated confidence bands for difference between ddl and AZT groups at calendar times

T,=50in (a), T, =70 in (b) and T; =110 in (c), using domains [0, 40], [0, 60] and {60}, respectively. Solid

line represents Kaplan—Meier estimate, dotted lines at T; and T, represent upper and lower limits of bands,

and vertical dotted line at T represents confidence interval for difference at s = 60. Horizontal dashed line
represents the hypothesis of treatment group equality.
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groups because of the domain used in this example. Indeed, for small trials or trials with
very conservative spending functions, the widths of the confidence bands for early interim
analyses may be so wide as to be of little value.

6. DiscussioN

A useful extension of the approach is to consider situations where the response is vector
valued. This would be applicable, for example, where there are multiple types of response
and a joint confidence region is desired, or where there are more than two treatment
groups and some may be dropped during the course of a trial. The proposed methods
can be extended in a natural way for vector responses; further details are available from
the authors upon request.

In many applications, the error probabilities 7, are pre-determined. However, since the
critical values ¢, used to construct the bands B, are defined sequentially with pre-deter-
mined domains, the 7, can be chosen adaptively based on (#; _,, 2,) with no real modifi-
cation to the Algorithm. A formal proof and related results are available upon request.
Another way of adding flexibility to the proposed approach is to allow the interim analysis
times to be determined adaptively, such as is done by Slud & Wei (1982) and Lan &
DeMets (1983) for inferences about a scalar parameter. The same procedures proposed
in this paper could be used when T, = T,(#, 1, 2;), provided that n*{fi,(s) — u(s)1} could
be shown to converge to a Gaussian process.

The methods introduced in this paper can also be applied to settings other than those
discussed in § 2, and need not to be restricted to inferences about a mean function. For
example, consider a comparison of two groups with respect to a failure time endpoint
while adjusting for other covariates. Suppose a Cox regression model (Cox, 1972) is used
with a regression coefficient, say f(s), for the treatment group indicator that is time depen-
dent to allow for nonproportional treatment hazard functions. Then, if one can develop
an estimator that, when standardised, has a known asymptotic distribution, the ideas in
§ 22 can be extended to form repeated confidence bands for f(.). This would allow the
treatment groups to be monitored in a more flexible way than if a proportional treatment
hazard ratio were assumed.

The simulation technique introduced at the end of § 2 provides a simple way of approxi-
mating the boundaries ¢, necessary to compute the repeated confidence bands, and can
easily be modified to incorporate varying domains. For example, the values of ¢, used to
construct the confidence bands for u(.) in Fig. 2 were obtained by modifying Step (b) in
the Algorithm so that the supremum in the definition of L,(T;)™ is taken over se &,. A
different modification of the Algorithm is needed when the domains vary and are selected
in an adaptive way. For example, suppose the domain & = {60} in Fig. 2(c) had been
selected based on the rule that the domain for the final analysis would be the singleton
time-point that maximised the standardised difference |S,(.; 7,)| based on information
available at the second interim analysis. Then, in addition to modifying the domain for
which the supremum of L,(T;)™ is taken in Step (b) of the Algorithm, the value of c3
would be selected so that the proportion 7, of the M realisations satisfy L,(T;)™ < ¢, for
I=1,2 and also L,(T;)™ = |S5,(60; T,)™|. This leads to c; = 2-40 as compared to c; = 2-35
when &; = {60} was predetermined.

Finally, more research is needed for the design of trials in which inferences are based
on different subsets of the domain of the mean function at each analysis, especially when
these domains are selected in an adaptive way.
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APPENDIX
Limiting distribution of S¥(s) conditional on {X;, 6,}
Note that, in the setting of Example 1, the conditional covariance function
n iz 0:(s; T)du(u; To){Xi(s) — Aals; T)} {Xi(w) — A (w; T,)}
{var(s; T) var(u; T)} Li_; 6i(s; To) Li=y 6i(u; To)

COV[gn(S; Tl;); gn(u; Tl‘c)l {Xi’ 6l}] =

is asymptotically equivalent to
n27_1 0:(s; T)di(u; T){Xi(s) — uls; T)MHXi(w) — u(w; To)}
{var(s; To) var(u; T} Li_; 0i(s; T)Li=; 6iw; T)
and thus almost surely converges to
cov {X(s), X} E{S(s; T,)o(u; T,)}
{var(s; T;) var(u; Ti)}*G(s; T)G(w; T)’

the asymptotic covariance function of S,(s; T;). Furthermore, conditional on {X;, §;}, S,(s; T;) is a
summation of independent zero-mean normal random variables. It then follows from the Functional
Central Limit Theorem (Pollard, 1990, Ch. 10) that S,(s; T;) converges to a zero-mean Gaussian
process with the covariance function (A-1). That is, conditional on {X;, 6;(.; T;)}, S,(s; T;) has the
same limiting Gaussian process as S,(s; T;) for each k. With a minor modification of this argument,
we can show that Zle 0,8,(s; T,) has the same limiting Gaussian process as Z;;l oS, (s; Th).
Therefore §® and S* have the same limiting Gaussian process in the setting of Example 1.

Similar arguments can be applied to prove that, conditional on {X;, d;}, S,(s; T;) defined by
(2:10) in the setting of Example 2, or (2-11) in the setting of Example 3, or (2-12) for a more general
setting has the same limiting Gaussian process as the corresponding S,(s; Tz).

(A1)
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