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Abstract

Orthogonal arrays are frequently used in industrial experi-
ments for quality and productivity improvement. Due to run-
size constraints and level combinations, an orthogonal array
may not exist, in which case a nearly-orthogonal array can be
used. Orthogonal and nearly-orthogonal arrays can be diffi-
cult to find. This poster will introduce a new algorithm for
the construction of orthogonal arrays and nearly-orthogonal
arrays with desirable statistical properties, and compare the
new algorithm to a pre-existing algorithm.

Introduction

Experimenters are often interested in studying a num-
ber of factors in a small number of runs. One way to do so
is through the use of orthogonal and nearly-orthogonal arrays.

For a general factorial design, we consider the standard
normal regression model for a design d,

Y = X0α0 + X1α1 + · · · + Xmαm + ǫ.

•Y is the vector of observations.

•αj the vector of j-factor interactions.

•Xj the matrix of coefficients for αj (column i corresponds
to the coefficient for the ith effect).

• ǫ iid N(0, σ2).

How do we measure ’near’ orthogonality?

A number of different approaches have been taken.

Xu and Wu [2] defined Aj(d) as a measure of the alias-
ing between the j-factor interactions and the general mean.
For Xj = [x
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•Aj measures aliasing between j-factor interactions and
mean.

•Generalized minimum aberration sequentially minimizes
(A1, A2, A3, . . .).

•A2 = 0 if the design is an orthogonal array.

•An A2-optimal design will minimize A2 - our measure of
near-orthogonality.

For designs with balanced columns, two equivalent measures
of A2 for a design d are ave(χ2(d)) and J2(d).

Define

χ2
kl(d) =

sk−1
∑

a=0

sl−1
∑
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[nkl(a, b) − N/(sksl)]
2
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,

where column l has sl levels, and nkl(a, b) is the number of
times the level combination (a, b) occurs in columns k and l,
Ye and Sudjianto [3] use

ave(χ2(d)) =
∑

1≤k<l≤m

χ2
kl(d)/[m(m − 1)/2]. (1)

Define

δi,j(d) =
n

∑

k=1

wkδ(xik, xjk), 1 ≤ i, j ≤ N,

where δ(a, b) = 1 if a = b, 0 otherwise, wk is the weight of
the column, and δi,j(d) is a measure of the similarity between
these rows. Then

J2(d) =
∑

1≤i<j≤N

[δi,j(d)]2 (2)

ave(χ2(d)) is a summation over all columns while J2(d) is a
summation over all rows.

Balanced designs - minimizing (1) or (2) minimizes A2.

Algorithms

Xu’s algorithm [1]

• Sequentially add columns to a design.

•Adds a random balanced column.

•Look at all possible switches in new column, make best one.

•Try adding new column R times - choose best.

•Uses J2 criterion.

•Call R the number of restarts.

The New Algorithm

• Sequentially adds columns as well.

•New column created one element(row) at a time.

•Uses the χ2 criterion.

•Can ensure balance is maintained.

Define
d
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the first h rows, where x
(h)
lb∗ = (x1l, · · · , x(h−1)l, b

∗)′.

i.e. b∗ is in row h of column l.

Denote χ
2(hb∗)
l as the criterion evaluated with d

(h)
lb∗ for b∗ = 1, . . . , sl:

χ
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kl = χ
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Considering all columns in the design,
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The algorithm proceeds as follows:

1. Specify an initial design d with columns (0, · · · , 0, 1, · · · , 1, · · · , s1 −
1, · · · , s1 − 1) and (0, · · · , s2 − 1, 0, · · · , s2 − 1, · · · , 0, · · · , s2 − 1).

2. For l = 3, . . . , n, do the following:

i. Randomize the rows of d. Let h = 1.

ii. Let d
(h)
lb∗ be the first h rows, where x

(h)
lb∗ = (x1l, · · · , x(h−1)l, b

∗)′.

iii. For b∗ = 0, · · · , sl − 1, calculate χ
2(hb∗)
l . Use the best b∗ such that

nkl(a, b∗) ≤ N/(sksl) for k = 1, · · · , l − 1. If no such choice exists,
take the best b∗ with nkl(a, b∗) > N/(sksl). In the case of equally
good choices, take the largest or randomly choose between them.

iv. Repeat Steps ii.-iii. for h = 1, · · · , N .

v. If χ2(d) = 0 go to vii.

vi. Repeat i. - v. R times and choose the best c which minimizes χ2(d+).

vii. Add column c as the lth column of d.

3. Return the final N × n design d.

Figure 1: Illustration of new algorithm.

• Want to make best choice for each row.

• Not using all possible switches - saves time.

• Can keep track if expected value is exceeded.

• χ2 is influenced by number of columns - J2 not.

• Xu’s algorithm also adapted for χ2 - changes speed?

Results and Conclusions

Orthogonal Arrays: A simulation study was performed
on mixed-level orthogonal arrays with small runs using various
number of restarts. Table 1 compares the algorithms in terms
of best expected time to find an OA (# time OA found / total
time spent).

Table 1. Best expected time (in secs) to OA for each algorithm.
OA New Xu-χ2 Xu-J2 Best Algorithm

OA(20, 219) 0.01773 0.01335 0.01149 0.01149 Xu-J2

OA(16, 215) 0.00217 0.00162 0.00115 0.00115 Xu-J2

OA(16, 8128) 0.00037 0.00079 0.00086 0.00037 New
OA(16, 45) 0.00210 0.02012 0.03428 0.00210 New

OA(18, 6136) 0.01359 0.02925 0.04579 0.01359 New
OA(20, 5128) 0.02391 0.02064 0.02689 0.02064 Xu-χ2

OA(24, 223) 0.19994 0.10361 0.09150 0.09150 Xu-J2

OA(24, 41220) 0.08880 0.05605 0.05414 0.05414 Xu-J2

OA(24, 31216) 1.98565 0.72308 0.73488 0.72308 Xu-χ2

OA(24, 121212) 0.00325 0.01045 0.01193 0.00325 New
OA(24, 4131213) 0.88230 0.42285 0.48003 0.42285 Xu-χ2

OA(25, 56) 0.01844 0.12614 0.33263 0.01844 New
OA(27, 9139) 0.02161 0.02726 0.05068 0.02161 New
OA(27, 313) 129.03000 23.34500 41.72750 23.34500 Xu-χ2

OA(28, 227) 56.31000 5.93750 6.52250 5.93750 Xu-χ2

OA(32, 161216) 0.02403 0.10725 0.12935 0.02403 New
OA(32, 8142218) 0.49383 0.15462 0.23916 0.15462 Xu-χ2

OA(40, 201220) 0.26325 1.15383 1.62917 0.26325 New

Nearly-Orthogonal Arrays: To consider NOAs, looked
at A2 for best designs found with the new algorithm with
300, 500, and 1000 restarts and compare this to those found
by Xu[1].

•Designs found comparable to Xu’s in terms of A2.

•Order to add columns has impact:

–NOA(12, 2732) finds A2 = 0.861.

–NOA(12, 3227) finds A2 = 0.792.

•Usually best to start with higher-level columns.

•Most designs found within seconds.

Recommendations: The new algorithm tends to work
better when the number of factors is small relative to the run
size - in these situations, Xu’s algorithm with the χ2 criterion
shows an improvement as well. Although Xu’s algorithm
performs good with 50-100 restarts compared to 500-1000 for
the new, a restart with the new algorithm is much faster.

Conclusion: The new algorithm performs well overall
in constructing both orthogonal and nearly-orthogonal ar-
rays. There is no clear winner between the new algorithm
and Xu’s algorithm - sometimes we see an improvement,
sometimes not. A thorough discussion is avaiable [4].
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