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Summary. We propose a new method for estimating parameters in models that are defined
by a system of non-linear differential equations. Such equations represent changes in system
outputs by linking the behaviour of derivatives of a process to the behaviour of the process
itself. Current methods for estimating parameters in differential equations from noisy data are
computationally intensive and often poorly suited to the realization of statistical objectives such
as inference and interval estimation. The paper describes a new method that uses noisy mea-
surements on a subset of variables to estimate the parameters defining a system of non-linear
differential equations. The approach is based on a modification of data smoothing methods
along with a generalization of profiled estimation. We derive estimates and confidence inter-
vals, and show that these have low bias and good coverage properties respectively for data that
are simulated from models in chemical engineering and neurobiology. The performance of the
method is demonstrated by using real world data from chemistry and from the progress of the
autoimmune disease lupus.
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1. Challenges in dynamic systems estimation

1.1. Basic properties of dynamic systems
We have in mind a process that transforms a set of m input functions u.t/ into a set of d output
functions x.t/. Dynamic systems model output change directly by linking the output derivatives
ẋ.t/ to x.t/ itself, as well as to inputs u:

ẋ.t/= f.x, u, t|θ/, t ∈ [0, T ]: .1/

Vector θ contains any parameters defining the system whose values are not known from exper-
imental data, theoretical considerations or other sources of information. Systems involving
derivatives of x of order n > 1 are reducible to expression (1) by defining new variables, x1 =x

and x2 = ẋ1, . . . , xn = ẋn−1: Further generalizations of expression (1) are also candidates for the
approach that is developed in this paper but will not be considered. Dependences of f on t
other than through x and u arise when, for example, certain quantities defining the system are
themselves time varying.

Differential equations as a rule do not define their solutions uniquely, but rather as a manifold
of solutions of typical dimension d. For example, d2x=dt2 =−ω2 x.t/, reduced to ẋ1 = x2 and
ẋ2 = −ω2x1, implies solutions of the form x1.t/ = c1sin.ωt/ + c2 cos.ωt/, where coefficients c1
and c2 are arbitrary; and at least d = 2 observations are required to identify the solution that
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best fits the data. Initial value problems supply x.0/, whereas boundary value problems require
d values selected from x(0) and x.T/.

However, we assume more generally that only a subset I of the d output variables x may
be measured at time points tij, i∈I ⊂{1, . . . , d}, j =1, . . . , Ni, and that yij is a corresponding
measurement that is subject to measurement error eij = yij − xi.tij/. We may call such a situ-
ation a distributed partial data problem. If either there are no observations at 0 and T , or the
observations that are supplied are subject to measurement error, then initial or boundary val-
ues may be considered as parameters that must be included in an augmented parameter vector
θÅ = .x.0/′, θ′/′.

Solutions of the ordinary differential equation (ODE) system (1) given initial values x.0/ exist
and are unique over a neighbourhood of .0, x.0// if f is continuously differentiable or, more
generally, Lipschitz continuous with respect to x. However, most ODE systems are not solvable
analytically, which typically increases the computational burden of data fitting methodology
such as non-linear regression. Exceptions are linear systems with constant coefficients, where
the machinery of the Laplace transform and transform functions plays a role, and a statistical
treatment of these is available in Bates and Watts (1988) and Seber and Wild (1989). Discrete
versions of linear constant coefficient systems, i.e. stationary systems of difference equations
for equally spaced time points, are also well treated in the classical time series autoregressive
integrated moving average and state space literature, and will not be considered further in this
paper.

The insolvability of most ODEs has meant that statistical science has had comparatively little
effect on the fitting of dynamic systems to data. Current methods for estimating ODEs from
noisy data, which are reviewed below, are often slow, uncertain to provide satisfactory results
and do not lend themselves well to follow-up analyses such as interval estimation and inference.
Moreover, when only a subset of variables in a system is actually measured, the remainder are
effectively functional latent variables, a feature that adds further challenges to data analysis. For
example, in systems describing chemical reactions, the concentrations of only some reactants
are easily measurable and inference may be based on measurements of external quantities such
as the temperature of the system.

This paper describes an extension of data smoothing methods along with a generalization
of profiled estimation to estimate the parameters θ defining a system of non-linear differen-
tial equations. High dimensional basis function expansions are used to represent the outputs
x, and our approach depends critically on considering the coefficients of these expansions as
nuisance parameters. This leads to the notion of a parameter cascade, and the effect of nuisance
parameters on the estimation of structural parameters is controlled through a multicriterion
optimization process rather than the more usual marginalization procedure.

1.2. Two test bed problems
1.2.1. FitzHugh–Nagumo equations
The FitzHugh–Nagumo equations were developed by FitzHugh (1961) and Nagumo et al.
(1962) as simplifications of the Hodgkin and Huxley (1952) model of the behaviour of spike
potentials in the giant axon of squid neurons:

V̇ = c

(
V − V 3

3
+R

)
,

Ṙ=−1
c

.V −a+bR/: .2/
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Fig. 1. Limiting behaviour of (a) voltage V and (b) recovery R variables defined by the FitzHugh–Nagumo
equations (2) with parameter values a D0:2, b D0:2 and c D3:0 and initial conditions .V0,R0/D .�1, 1/

The system describes the reciprocal dependences of the voltage V across an axon membrane
and a recovery variable R summarizing outward currents. Although not intended to provide a
close fit to neural spike potential data, solutions to the FitzHugh–Nagumo ODEs do exhibit
features that are common to elements of biological neural networks (Wilson, 1999).

The parameters are θ={a, b, c}, to which we shall assign values .0:2, 0:2, 3/ respectively. The
R-equation is the simple constant coefficient linear system Ṙ =−.b=c/R with linear inputs V
and a. However, the V -equation is non-linear; when V > 0 is small, V̇ ≈ cV and consequently
exhibits nearly exponential increase but, as V passes ±√

3, the influence of −V 3=3 takes over
and turns V back towards 0. Consequently, solutions corresponding to a range of initial val-
ues quickly settle down to alternate between the smooth evolution and the sharp changes in
direction that are shown in Fig. 1.

A concern in dynamic systems modelling is the possibly complex nature of the fit surface. The
existence of many local minima has been commented on in Esposito and Floudas (2000), and
some computationally demanding algorithms, such as simulated annealing, have been proposed
to overcome this problem. For example, Jaeger et al. (2004) reported using weeks of compu-
tation to compute a point estimate. Fig. 2 displays the integrated squared difference between
the paths in Fig. 1 and those resulting from varying only the parameters a and b. The features
of this surface include ‘ripples’ due to changes in the shape and period of the limit cycle and
breaks due to bifurcations, or sharp changes in behaviour.

1.2.2. Tank reactor equations
The chemical engineering concept of a continuously stirred tank reactor (CSTR) consists of
a tank surrounded by a cooling jacket containing an impeller which stirs its contents. A fluid
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Fig. 2. Response surface for solutions of the FitzHugh–Nagumo equations (2) as parameters a and b are
varied: surface values give the integrated squared difference between solutions at parameters a D 0:2 and
b D 0:2 with solutions at the values of a and b given on the x - and y -axes respectively; c D 3 and initial
conditions V .0/D�1 and R(0) are held constant

containing a reagent with concentration Cin enters the tank at a flow rate Fin and temperature
Tin. A reaction produces a product that leaves the tank with concentration C and temperature
T. A coolant in the cooling jacket has temperature Tco and flow rate Fco.

The differential equations that are used to model a CSTR, simplified by setting the volume
of the tank to 1, are

Ċ =−βCC.T , Fin/C +FinCin,

Ṫ =−βTT .Fco, Fin/T +βTC.T , Fin/C +FinTin +α.Fco/Tco: .3/

The input variables play two roles in the right-hand sides of these equations: through added
terms such as FinCin and FinTin, and via the weight functions βCC, βTC, βTT and α that multiply
the output variables and Tco. These time-varying multipliers depend on four system parameters
as follows:

βCC.T , Fin/= κ exp{−104τ .1=T −1=Tref /}+Fin,

βTT .Fco, Fin/= α.Fco/+Fin,

βTC.T , Fin/= 130βCC.T , Fin/,

α.Fco/= aFb+1
co

Fco +aFb
co=2

, .4/

where Tref is a fixed reference temperature within the range of the observed temperatures, and
in this case was 350 K. These functions are defined by two pairs of parameters: .τ , κ/ defining
coefficient βCC and .a, b/ defining coefficient α. The factor 104 in βCC rescales τ so that all four
parameters are within [0.4,1.8]. These parameters are gathered in the vector θ in system (1) and
determine the rate of the chemical reactions that are involved, or the reaction kinetics.
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Fig. 3. The five inputs to the chemical reactor modelled by equations (3) and (4): flow rate F .t/, input concen-
trations C0.t/, input temperature T0.t/, coolant temperature Tco.t/ and coolant flow F0.t/ (Tco.t/ was set at
two base-line levels, cool (– – –) and hot ( ))

The plant engineer needs to understand the dynamics of the two output variables C and
T as determined by the five inputs Cin, Fin, Tin, Tco and Fco. A typical experiment designed to
reveal these dynamics is illustrated in Fig. 3, where we see each input variable stepped up from a
base-line level, stepped down, and then returned to base-line. Two base-line levels are presented
for the most critical input, the coolant temperature Tco.

The behaviours of output variables C and T under the two experimental regimes, given val-
ues 0.833, 0.461, 1.678 and 0.5 for parameters τ , κ, a and b respectively, are shown in Fig. 4.
When the reactor runs in the cool mode, where the base-line coolant temperature is 335 K,
the two outputs respond smoothly to the step changes in all inputs. However, an increase in
base-line coolant temperature by 30 K generates oscillations that come close to instability when
the coolant temperature decreases, something that is undesirable in an actual industrial process.
These perturbations are due to the double effect of a decrease in output temperature, which
increases the size of both βCC and βTC. Increasing βTC raises the forcing term in the T -equation,
thus increasing temperature. Increasing βCC makes concentration more responsive to changes
in temperature but decreases the size of the response. This push–pull process has a resonant
frequency that depends on the kinetic constants and, when the ambient operating temperature
reaches a certain level, the resonance appears. For coolant temperatures that are either above
or below this critical zone, the oscillations disappear.

The CSTR equations present two challenges that are not an issue for the FitzHugh–Nagumo
equations. The step changes in inputs induce corresponding discontinuities in the output deriva-
tives that complicate the estimation of solutions by numerical methods. Moreover, the engineer
must estimate the reaction kinetics parameters to estimate the cooling temperature range to
avoid, but a key question is whether all four parameters are actually estimable given a particular
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Fig. 4. The two outputs, for each of base-line coolant temperatures Tco of 335 K (– – –) and 365 K ( ),
from the chemical reactor modelled by the two equations (3): concentration C(t ) and temperature T (t )
(the input functions are shown in Fig. 3; , times at which an input variable Tco.t/ was stepped down and
then up)

data configuration. Step changes in inputs and near overparameterization are common prob-
lems in dynamic systems modelling.

1.3. Review of current ordinary differential equation parameter estimation strategies
Procedures for estimating the parameters defining an ODE from noisy data tend to fall into
three broad classes: linearization, discretization methods for initial value problems and basis
function expansion or collocation methods for boundary and distributed data problems. Lin-
earization involves replacing non-linear structures by first-order Taylor series expansions and
tends only to be useful over short time intervals combined with rather mild non-linearities,
and will not be considered further. There is a large literature on numerical methods for solving
constrained optimization problems, under which parameter estimation usually falls; see Biegler
and Grossman (2004) for an excellent overview.

1.3.1. Data fitting by numerical approximation of an initial value problem
The numerical methods that are most often used to approximate solutions of ODEs over a
range [t0, t1] use fixed initial values x0 = x.t0/ and adaptive discretization techniques (Biegler
et al., 1986). The data fitting process, which is often referred to by text-books as the non-linear
least squares (NLS) method, works as follows. A numerical method such as the Runge–Kutta
algorithm is used to approximate the solution given a trial set of parameter values and initial
conditions, a procedure which is referred to by engineers as simulation. The fit value is input
into an optimization algorithm that updates parameter estimates. If the initial conditions x.0/

are unavailable, they must be appended to the parameters θ as quantities with respect to which
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the fit is optimized. The optimization process can proceed without using gradients, or these may
also be approximated by solving the sensitivity differential equations

d
dt

(
dx
dθ

)
= @f

@θ
+ @f

@x
dx
dθ

, with
dx
dθ

∣∣∣∣
t=0

=0: .5/

In the event that x.0/=x0 must also be estimated, the corresponding sensitivity equations are

d
dt

(
dx
dx0

)
= @f

@x
dx
dx0

, with
dx
dx0

∣∣∣∣
t=0

= I: .6/

Systems for which solutions beginning at varying initial values tend to converge to a common
trajectory are called stiff and require special methods that make use of the Jacobian @f=@x.

The NLS procedure has many problems. It is computationally intensive since a numerical
approximation to a possibly complex process is required for each update of parameters and
initial conditions. The inaccuracy of the numerical approximation can be a problem, especially
for stiff systems or for discontinuous inputs such as step functions or functions concentrating
their masses at discrete points. The size of the parameter set may be increased by the set of initial
conditions that are needed to solve the system, and the data may not provide much information
for estimating them. NLS also produces only point estimates of parameters and, where interval
estimation is needed, much more computation can be required. As a consequence of all this,
Marlin (2000) warned process control engineers to expect an error level of the order of 25% in
parameter estimates.

A Bayesian approach which may escape minor ripples in the optimization surface is outlined
in Gelman et al. (1996). This model uses a likelihood centred on the numerical solution to the
differential equation x̂.tj|θ̂/, such as yj ∼N{x̂.tj|θ/, σ2}. Since x̂.tj|θ/ has no closed form solu-
tion, the posterior density for θ |y has no closed form and inference must be based on simulation
from a Metropolis–Hastings algorithm or other sampler. At each iteration of the sampler, θ is
proposed and the numerical approximation x̂.tj|θ/ is used to compute the likelihood. Parallels
between this approach and NLS mean that they share many of the same optimization problems.
To fix this, the Bayesian model often requires strong finitely bounded priors. Extensions to this
method are outlined in Campbell (2007).

1.3.2. Collocation methods or basis function expansions
Our own approach belongs in the family of collocation methods that express the approximation
x̂i of xi in terms of a basis function expansion

x̂i.t/=
Ki∑
k

cik φik.t/= c′
i φi.t/, .7/

where the number Ki of basis functions in vector φi is chosen to ensure enough flexibility to
capture the variation in the approximated function xi and its derivatives. Typically, this will
require substantially more flexibility than is required to fit the data, since x̂i and dx̂=dt must also
satisfy the differential equation to an extent that is considered acceptable. Although the original
collocation methods used polynomial bases, spline basis systems are now preferred because they
allow control over the smoothness of the solution at specific values of t, including discontinu-
ities in dx̂=dt or higher order derivatives that are associated with step and point changes in the
inputs u. Using a spline basis to approximate an initial value problem is equivalent to the use
of an implicit Runge–Kutta method for stepping points located at the knots defining the basis
(Deuflhard and Bornemann, 2000). For solving boundary value problems, collocation tries to
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satisfy system (1) at a discrete set of points, resulting in a large sparse system of non-linear
equations which must then be solved numerically.

Collocation with spline bases was applied to dynamic data fitting problems by Varah (1982),
who suggested a two-stage procedure in which each xi is first estimated by data smoothing
methods without considering expression (1), followed by the minimization of a least squares
measure of the fit of dx̂=dt to f.x̂, u, t|θ/ with respect to θ. The method is attractive when f is
nearly linear in θ, but non-linear in x. Varah’s approach worked well for the simple equations
that were considered, but considerable care was required in the smoothing step to ensure a
satisfactory estimate of ẋ, and the technique also required that all variables in the system be
measured.

Ramsay and Silverman (2005) and Poyton et al. (2006) took Varah’s method further by iter-
ating the two steps, and replacing the previous iteration’s roughness penalty by a penalty on
‖dx̂=dt −f.x̂, u, t|θ/‖ using the last minimizing value of θ. They found that this process, iterated
principal differential analysis, converged quickly to estimates of both x and θ that had substan-
tially improved bias and precision. However, iterated principal differential analysis is a joint
estimation procedure in the sense that it optimizes a single roughness-penalized fitting criterion
with respect to both c and θ, an aspect that will be discussed further in the next section.

Several procedures have attempted to solve the parameter estimation problem at the same
time as computing a numerical solution to expression (1). Tjoa and Biegler (1991) proposed to
combine a numerical solution of the collocation equations with an optimization over parameters
to obtain a single constrained optimization problem; see also Arora and Biegler (2004). Similar
ideas can be found in Bock (1983), where the multiple shooting method was proposed that breaks
the time domain into a series of smaller intervals, over each of which system (1) is solved.

1.4. Overview of the paper
Our approach to fitting differential equation models is developed in Section 2, where we develop
the concepts of estimating functions and a generalization of profiled estimation. Section 3 tests
the method on simulated data for the FitzHugh–Nagumo and CSTR equations, and Section 4
estimates differential equation models for data drawn from chemical engineering and medicine.
Generalizations of the method are discussed in Section 5.

2. Generalized profiling estimation procedure

We first give an overview of our estimation strategy and then provide further details below. As
we noted above, our method is a variant of the collocation method and, as such, represents
each variable in terms of a basis function expansion (7). Let c indicate the composite vector
of length K =Σi∈I Ki that results from concatenating the cis. Let Φi be the Ni ×Ki matrix of
values φk.tij/, and let Φ be the N = Σi∈I Ni × K supermatrix that is constructed by placing
the matrices Φi along the diagonals and 0s elsewhere. According to this notation, we have the
composite basis expansion x̂ =Φc:

2.1. Overview of the estimation procedure
Defining x̂ as a set of basis function expansions implies that there are two classes of parameters
to estimate: the parameters θ defining the equation, such as the four reaction kinetics param-
eters in the CSTR equations, and the coefficients in ci defining each basis function expansion.
The equation parameters are structural in the sense of being of primary interest, as are the error
distribution parameters in σi, i∈I. But the coefficients ci are considered as nuisance parame-
ters that are essential for fitting the data, but usually not of direct concern. The sizes of these
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vectors are apt to vary with the length of the observation interval, density of observation and
other aspects of the structure of the data; and the number of these nuisance parameters can be
orders of magnitude larger than the number of structural parameters, with a ratio of about 200
applying in the CSTR and FitzHugh–Nagumo problems.

In our profiling procedure, the nuisance parameter estimates are defined to be implicit func-
tions ĉi.θ, σ;λ/ of the structural parameters, in the sense that, each time θ and σ are changed,
an inner fitting criterion J.ĉ|θ, σ, λ/ is reoptimized with respect to ĉ alone. The estimating func-
tion ĉi.θ, σ;λ/ is regularized by incorporating a penalty term in J that controls the size of the
extent that x̂ = ĉ′φ fails to satisfy the differential equation exactly, in a manner that is specified
below. The amount of regularization is controlled by smoothing parameters in vector λ. This
process of eliminating the direct effect of nuisance parameters on the fit of the model to the
data resembles the common practice of eliminating random-effect parameters in mixed effect
models by marginalizing over c with respect to a prior density.

A data fitting criterion H.θ, σ|λ/ is then optimized with respect to the structural parameters
alone. The dependence of H on .θ, σ/ is twofold: directly, and implicitly through the involve-
ment of ĉi.θ, σ;λ/ in defining the fit x̂i. Because ĉi.θ, σ;λ/ is already regularized, criterion H
does not require further regularization and is a straightforward measure of fit such as error sum
of squares, log-likelihood or some other measure that is appropriate given the distribution of
the errors eij.

For the examples in this paper, λ has been adjusted manually by using some numerical and
visual heuristics. However, we also envisage that λ may be estimated automatically through
the use of a measure F.λ/ of model complexity or mean-squared error, such as the generalized
cross-validation criterion that is often used in least squares spline smoothing. In this event, the
vector λ defines a third level of parameters and leads us to define a parameter cascade in which
structural parameter estimates are in turn defined to be functions θ̂.λ/ and σ̂.λ/ of regular-
ization or complexity parameters, and nuisance parameters now also become functions of λ
via their dependence on structural parameters. We have applied this notion to semiparametric
regression in Cao and Ramsay (2006) where the estimation procedure is a multicriterion optimi-
zation problem, and we can refer to J , H and F as inner, middle and outer criteria respectively.
Van Keilegom and Carroll (2006) used a similar approach, also in semiparametric regression.

We motivate this approach as follows. Fixing complexity parameters λ for the purposes of
discussion, we appreciate here, as in random-effects modelling and non-parametric regression,
that it would be unwise to employ joint estimation using a fixed data fitting criterion H with
respect to all of θ, σ and c since the overwhelmingly larger number of nuisance parameters would
tend to lead to overfitting the data and consequently unacceptable bias and sampling variance
in θ̂ and σ̂. By assessing smoothness of the fit x̂ to the data in terms of departure from satisfying
expression (1), we are, in effect, bringing additional ‘data’ into the fitting process in the form of
the roughness penalty in much the same way that a Bayesian brings prior information to param-
eter estimation in the form of the logarithm of a prior density. However, the Bayesian strategy
suffers from the problem that the integration in the marginalization process is seldom available
analytically, thus leading to computationally intensive Markov chain Monte Carlo technol-
ogy. We show here that our parameter cascade approach leads to analytic derivatives that are
required for efficient optimization, and also for linear approximation to interval estimates.

2.2. Data fitting criterion
Let ei indicate the vector of errors that is associated with observed variable i∈I, and let gi.ei|σi/

indicate the joint density of these errors conditional on a parameter vector σi. In practice it is
usual to assume independently distributed Gaussian errors with mean 0 and standard deviation
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σi. However, autocorrelation structure and non-stationary variance are often evident in the data
and, when these features are also modelled, these parameters are also incorporated into error
distribution parameters σi. Let σ indicate the concatenation of the σi-vectors. Although our
notation is consistent with assuming that errors are independent across variables, intervariable
error dependences, also, can be accommodated by the approach that is developed in this paper.
In general, the data fitting criterion can be taken to be the negative log-likelihood

H.θ, σ|λ/=−∑
i∈I

ln{g.ei|σi, θ, λ/} .8/

where

eij =yij − ĉi.σi, θ;λ/′ φ.tij/:

The output variables xi will as a rule have different units; the concentration of the output
in the CSTR equations is a percentage, whereas temperature is in kelvins. Consequently, fit
measures such as error sum of squares must be multiplied by a normalizing weight wi that,
ideally, should be 1=σ2

i , so that the normalized error sums of squares are of roughly comparable
sizes. However, given enough data per variable, it can suffice to use data-defined values, such as
the squared reciprocals of initial values wi = xi.0/ or the variance taken over values x̂i.tij/ for
some trial or initial estimate of a solution of the equation. Letting yi indicate the data that are
available for variable i consisting of observations at time points ti, and x̂i.ti/ indicate the vector
of fitted values corresponding to yi, the composite error sum-of-squares criterion is

H.θ|λ/=∑
i∈I

wi‖yi − x̂i.ti/‖2, .9/

where the norm may allow for features like autocorrelation and heteroscedasticity.

2.3. Assessing fidelity to the equations
We may express each equation in system (1) as the differential operator equation

Li,θ.xi/= ẋi −fi.x, u, t|θ/=0: .10/

The extent to which an actual function x̂i satisfies the ODE system can then be assessed by

PENi.x̂/=
∫

Li,θ{x̂i.t/}2 dt .11/

where the integration is over an interval which contains the times of measurement. The nor-
malization constant wi may be required here, also, to allow for different units of measurement.
Other norms are also possible, and total variation, defined as

PENi.x̂/=
∫

|Li,θ{x̂i.t/}|dt, .12/

has turned out to be an important alternative in situations where there are sharp breaks in the
function being estimated, such as in image analysis (Koenker and Mizera, 2002). A composite
fidelity-to-equation measure is

PEN.x̂|Lθ, λ/=
n∑
i

λi PENi.x̂/ .13/

where Lθ denotes the vector containing the d differential operators Li,θ. In this case the sum-
mation will be over all d variables in the equation. The multipliers λi � 0 permit us to weight
fidelities differently, and also to control the relative emphasis on fitting the data and solving the
equation for each variable.
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2.4. Estimating ĉ(θ;λ)
Finally, the data fitting and equation fidelity criteria are combined into the penalized log-like-
lihood criterion

J.c|θ, σ, λ/=−∑
i∈I

ln{g.ei|σi, θ, λ/}+PEN.x̂|λ/, .14/

or the least squares criterion

J.c|θ, σ, λ/=∑
i∈I

wi‖yi − x̂i.ti/‖2 +PENi.x̂|λ/: .15/

In general the minimization of J will require numerical optimization, but in the least squares
case and linear ODEs it is possible to express ĉ.θ;λ/ analytically (Ramsay and Silverman, 2005).

2.5. Optimizing with respect to θ
In this and the remainder of the section, we simplify the notation considerably by dropping the
dependence of criterion H on σ and λ, and regarding the latter as a fixed parameter. These
results can easily be extended to obtain the results for the joint estimation of system parameters
θ and error distribution parameters σ where required. It is assumed that H is twice continuously
differentiable with respect to both θ and c, and that the second partial derivative or Hessian
matrices @2H=@θ2 and @2H=@ĉ2 are positive definite over a non-empty neighbourhood N of y
in data space.

The gradient or total derivative with respect to θ is

dH

dθ
= @H

@θ
+ @H

@ĉ
dĉ
dθ

: .16/

Since ĉ.θ/ is not available explicitly, we apply the implicit function theorem to obtain

dĉ
dθ

=−
(

@2J

@ĉ2

)−1 @2J

@ĉ @θ
,

dH

dθ
= @H

@θ
− @H

@ĉ

(
@2J

@ĉ2

)−1 @2J

@ĉ @θ
:

.17/

The matrices that are used in these equations and those below have complex expressions in terms
of the basis functions in Φ and the functions f on the right-hand side of the differential equation.
Appendix A provides explicit expressions for them for the case of least squares estimation.

2.6. Approximating the sampling variation of θ̂ and ĉ
Let Σ be the variance–covariance matrix for y. Making explicit the dependence of H on the data
y by using the notation H.θ|y/, the estimate θ̂.y/ of θ is the solution of the stationary equation
@H.θ, |y/=@θ=0. Here and below, all partial derivatives as well as total derivatives are assumed
to be evaluated at θ̂ and ĉ.θ̂/, which are in turn evaluated at y.

The usual δ-method that is employed in non-linear least squares produces a variance estimate
of the form

varGN{θ̂.y/}≈σ2
{(

dx̂
dθ

)′(dx̂
dθ

)}−1

.18/

by making use of the approximation

d2H

dθ2 ≈
(

dx̂
dθ

)′(dx̂
dθ

)
:
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We shall instead provide an exact estimation of the Hessian above and employ it with a pseudo-
δ-method. Although this implies considerably more computation, our experiments in Section
3.1 suggest that this method provides more accurate results than the usual δ-method estimate.

By applying the implicit function theorem to @H=@θ as a function of y, we may say that for
any y in N there is a value θ̂.y/ satisfying @H=@θ=0: By taking the y-derivative of this relation,
we obtain

d
dy

(
dH

dθ

∣∣∣∣
θ̂.y/

)
= d2H

dθ dy

∣∣∣∣
θ̂.y/

+ d2H

dθ2

∣∣∣∣
θ̂.y/

dθ̂

dy
=0, .19/

where

d2H

dθ2 = @2H

@θ2 + @2H

@θ @ĉ
@ĉ
@θ

+
(

@ĉ
@θ

)′ @2H

@ĉ @θ
+
(

@ĉ
@θ

)′ @2H

@ĉ2

@ĉ
@θ

+ @H

@ĉ
@2ĉ

@θ2 .20/

and

d2H

dθ dy
= @2H

@θ @y
+ @2H

@ĉ @y
@ĉ
@θ

+ @2H

@θ @ĉ
@ĉ
@y

+
(

@ĉ
@θ

)′ @2H

@ĉ2

@ĉ
@y

+ @H

@ĉ
@2ĉ

@θ @y
: .21/

Formulae (20) and (21) involve the terms @ĉ=@y, @2ĉ=@θ2 and @2ĉ=@θ @y, which can also be
derived by the implicit function theorem and are given in Appendix A. Solving equation (19),
we obtain the first derivative of θ̂ with respect to y:

dθ̂

dy
=−

(
@2H

@θ2

∣∣∣∣
θ̂.y/

)−1(
@2H

@θ @y

∣∣∣∣
θ̂.y/

)
: .22/

Let μ=E.y/; the first-order Taylor series expansion for dθ̂=dy is

dθ̂

dy
≈ dθ̂

dμ
+ d2θ̂

d2μ
.y −μ/: .23/

When d2θ̂=d2μ is uniformly bounded, we can take the expectation on both sides of approx-
imation (23) and derive E.dθ̂=dμ/ ≈ E.dθ̂=dy/. We can also approximate θ̂.y/ by using the
first-order Taylor series expansion:

θ̂.y/≈ θ̂.μ/+ dθ̂

dμ
.y −μ/,

from which we derive

var{θ̂.y/}≈
(

dθ̂

dμ

)
Σ

(
dθ̂

dμ

)′
≈
(

dθ̂

dy

)
Σ

(
dθ̂

dy

)′
, .24/

since

E

(
dθ̂

dμ

)
≈E

(
dθ̂

dy

)
:

Similarly, the sampling variance of ĉ{θ̂.y/} is estimated by

var[ĉ{θ̂.y/}]=
(

dĉ
dy

)
Σ
(

dĉ
dy

)′
, .25/
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where
dĉ
dy

= dĉ

dθ̂

dθ̂

dy
+ @ĉ

@y
:

2.7. Numerical integration in the inner optimization
The integrals in PENi will normally require approximation by the linear functional

PENi.x̂/≈
Q∑
q

vq[Li{x̂i.tq/}]2 .26/

where Q, the evaluation points tq and the weights vq are chosen to yield a reasonable approxi-
mation to the integrals that are involved.

Let ξl indicate a knot location or a break point, and recall that there will be multiple knots at
such a location to deal with step function inputs that will imply discontinuous derivatives. We
divide each interval [ξl, ξl+1] into four equal-sized intervals, and using Simpson’s rule weights
[1, 4, 2, 4, 1].ξl+1 − ξl/=5. The total set of these quadrature points and weights along with basis
function values may be saved at the beginning of the computation to save time. If a B-spline
basis is used, improvements in speed of computation may be achieved by using sparse matrix
methods.

Efficiency in the inner optimization is essential since this will be invoked far more often than
the outer optimization. In the case of least squares fitting, the minimization of equation (14)
can be expressed as a large non-linear least squares approximation problem by observing that
we can express the numerical quadrature approximation to Σi λi PENi.x̂/ as∑

i

∑
q

[.λivq/1=2 Li{x̂i.tq/}]2:

These squared residuals can then be appended to those in H , and Gauss–Newton minimization
can then be used.

2.8. Choosing the amount of smoothing
We now consider two rationales for choosing λ, corresponding to the need for robustness with
respect to poor initial parameter values or model misspecification. Although λ was chosen man-
ually for our examples, this choice can be automated under either paradigm, and we suggest
some ways of doing so.

2.8.1. Robustness with respect to initial parameter values
Fig. 2 shows the severe non-convexity of least squares fitting criteria for θ when using an
exact solution of the FitzHugh–Nagumo ODE, implying a small neighbourhood of the optimal
parameter values from which convergence is assured using the Gauss–Newton method. How-
ever, Fig. 5, displaying the much more regular surface corresponding to λ = 105, suggests a
much wider region of convergence; and our experience for other problems confirms this robust-
ness with respect to poor initialization of parameters for smaller λ-values. Because the criterion
H.θ, σ|λ/ is increasing in each λi, it underestimates the response surface for exact solutions to
the differential equation. Moreover, results in Appendix A imply that ‖dc=dθ‖ increases in λ,
implying that relaxing the differential equation model regularizes the search for θ.

However, as λ becomes smaller, the estimates that are obtained for θ become both more
biased and more variable. Theorem 2, in contrast, demonstrates that, ignoring error due to
equation (7), parameter estimates must approximate those that would have been obtained from
a straightforward maximum likelihood fit as λ increases. This suggests the following algorithm.
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Fig. 5. Squared discrepancy between exact solutions to the FitzHugh–Nagumo equations and a model-
based smooth that minimizes equation (14) with λ D 105: values of the surface are calculated by using the
same data as in Fig. 2

(a) Choose initial value λ0 so that H.θ|σ, λ0/ dominates PEN.x̂|Lθ, λ0/.
(b) Increase λi iteratively, and estimate θi, initializing the Gauss–Newton algorithm with

parameter estimates θi−1. We typically choose λi = 10i−k where k represents a starting
value.

(c) Stop when λ0 becomes so large that the collocation approximation (7) starts to distort
the estimate of x.

To assess when λ has become too large:

(a) calculate solutions x̃.t/ to system (1) with the current estimate of θ and x0;
(b) smooth x̃.t/, the solution at the observation times, by using the model-based criterion

(14) to obtain an estimate x̃Å;
(c) stop when ‖x̃ − x̃Å‖ begins to increase after attaining a minimum.

We have observed that there is usually a large range of λ-values that provide stable and accurate
estimates for θ.

For the simulated examples in Section 3 and for the nylon production data, we chose λ suffi-
ciently large to guarantee that we could reproduce solutions to systems (1) to a visually high
degree of accuracy without suffering distortion from the use of a basis expansion.

2.8.2. Robustness with respect to model misspecification
For the lupus data in Section 4.2, the ODE model provides only a partially adequate fit to the
data, and consequently the optimal value of λ is not infinite. In such situations, a practical
method of choosing λ is by visual inspection of the fit to the observed data, aided by examining
the corresponding ODE solution at the estimated parameters. Initial conditions x.0/ may be
taken from the smooth x̂.0/ or may be separately optimized.



Parameter Estimation for Differential Equations 755

When the objective is filtering the data, a generalized cross-validation type of approach may
be appropriate. The estimation of x̂ given λ is in general a non-linear problem, so standard
cross-validation measures are not available. Instead, the following generalized cross-validation
like criterion has been adapted from Wahba (1990):

F.λ/=

∑
I

‖yi − x̂i.ti/‖2

[∑
I

{
Ni −

∑
j

dx̂i.tij/=dyij

}]2 , .27/

where the derivatives in the denominator are exactly the diagonal elements of the smoothing
matrix in a linear smoothing problem. For the profiling procedure that was outlined above we
have

dx̂i.tij/

dyij
= @x̂i.tij/

@c
dc

dyij

where dx̂i.tij/=dc is simply the value of the basis expansion (7) at tij and dc=dy has been cal-
culated in equation (25). Note that this explicitly takes the dependence of ŷ on θ̂ into account.
This construction is offered as speculation; it is well known that the first-order approximation
that is used in F.λ/ can be biased (Friedman and Silverman, 1989). Furthermore, F.λ/ is only
indirectly related to θ, and our experience suggests that, for misspecified models, estimators
that are based on cross-validation tend to select λ at values that produce good estimates of x,
but which are smaller than optimal for estimating θ.

2.9. Parameter estimate behaviour as λ→∞
In this section, we consider the behaviour of our parameter estimate as λ becomes large. This
analysis takes an idealized form in the sense that we assume that this optimization may be
done globally and that the function being estimated can be expressed exactly and without the
approximation error that would come from a basis expansion. We show that, as λ becomes large,
the estimates that are defined through our profiling procedure converge to the estimates that
we would obtain if we estimated θ by minimizing the negative log-likelihood over both θ and
the initial conditions x̂0. In other words, we treat x̂0 as nuisance parameters and estimate θ by
profiling. When f is Lipschitz continuous in x̂ and continuous in θ, the likelihood is continuous
in θ and the usual consistency theorems (e.g. Cox and Hinkley (1974)) hold and, in particular,
the estimate θ̂ is asymptotically unbiased.

For the purposes of this section, we shall make a few simplifying conventions. Firstly, we
shall take

l.x/=−∑
i∈I

ln{g.ei|σi, θ, λ/}:

Secondly, we shall represent

PEN.x|θ/=
n∑

i=1
ciwi

∫
{ẋi.t/−fi.x, u, t|θ/}2 dt

where the ci are taken to be constants and the λi that are used in the definition (13) are given
by λci for some λ.

We shall also assume that solutions to the data fitting problem exist and are well defined, and
that there are objects x that satisfy PEN.x|θ/= 0. Such objects are guaranteed to exist locally
whenever f is locally Lipschitz continuous, i.e. there is a time interval [t0, t0 + h] on which x
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exists. On this interval x is uniquely determined by x.t0/; see Deuflhard and Bornemann (2000).
Existence on the interval of the experiment is more difficult to show in general.

Finally, we shall need to make some assumptions about the spline smooths minimizing

l.x/+λPEN.x|θ/:

Specifically, we shall assume that the minimizers of these are well defined and bounded uni-
formly over λ. Guarantees on boundedness may be given whenever x · f.x, u, t|θ/ < 0 for ‖x‖
greater than some K (see Hooker (2007)). This condition is also sufficient for the global unique-
ness of solutions to system (1). It is true for reasonable parameter values in all systems that are
presented in this paper. More general characteristics of functions f for which these properties
hold are a matter of continued research.

Solutions of interest lie in the Hilbert space H = .W1/n; the direct sum of n copies of W1

where W1 is the Sobolev space of functions on the time observation interval [t1, t2] whose first
derivatives are square integrable. The analysis will examine both inner and outer optimization
problems as λ→∞. For the inner optimization, we can show the following theorem.

Theorem 1. Let λk →∞ and assume that

xk =arg min
x∈.W1/n

{l.x/}+λk PEN.x|θ/

is well defined and uniformly bounded over λ. Then xk converges to xÅ with PEN.xÅ|θ/=0.

Further, when PEN.x|θ/ is given by equation (13), xÅ is the solution of the differential equa-
tions (1) that is obtained by minimizing squared error over the choice of initial conditions. The
proof of this, and of the theorem below, is given in Hooker (2007).

Turning to the estimation of θ, we obtain the following theorem.

Theorem 2. Let X ⊂ .W1/n and Θ⊂Rp be bounded. Assume that, for λ>K,

xθ,λ =arg min
x∈X

{l.x/}+λPEN.x|θ/

is well defined for each θ. Define xÅ
θ to be such that

l.xÅ
θ /= min

x:P.x|θ/=0
{l.x/}

and let

θ.λ/=arg min
θ∈Θ

{l.xθ,λ/}

and
θÅ =arg min

θ∈Θ
{l.xÅ

θ /}

also be well defined. Then

lim
λ→∞

{θ.λ/}=θÅ:

The conditions that are listed in this theorem are natural, in the sense that we merely require that
the smoothing, parameter estimation and NLS optimization problems have unique solutions.
However, verifying that this is so, even for the NLS problem, many not be straightforward for
any given f. We note a substantial literature on system identifiability: e.g. Denis-Vidal et al.
(2003). We conjecture that it will hold for any f such that the parameter estimation problem is
well defined for exact solutions to systems (1).
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Taken together, these theorems state that, as λ is increased, the solutions that are obtained
from this scheme tend to those that would be obtained by estimating the parameters directly
while profiling out the initial conditions. In particular, the path of parameter values as λ
changes is continuous, motivating a successive approximation scheme. This analysis also
highlights the distinction between these methods and traditional smoothing; our penalties
are highly informative and it is, in fact, the data which play the minor role in finding a
solution.

3. Simulated data examples

3.1. Fitting the FitzHugh–Nagumo equations
We set up simulated data for V alone by adding Gaussian error with standard deviation 0.5
to the solution for parameters {a, b, c}={0:2, 0:2, 3} and initial conditions {V , R}={−1, 1} at
times 0:0, 0:05, . . . , 20:0. Collocation fit x̂ was a third-order B-spline with knots at each data
point.

Fig. 6 gives quartiles of the parameter estimates for 60 simulations as λ is varied from 10−2

to 105. There is large bias for small values of λ, where smoothing is emphasized and θ has little
effect on ĉ, but, as λ increases, parameter estimates become nearly unbiased. Table 1 provides
bias and variance estimates from 500 simulations at λ= 104, along with our estimate (24) and
the Gauss–Newton standard error (18). We obtain good coverage properties for our estimates
of variance whereas the Gauss–Newton estimates are somewhat less accurate. We note, how-
ever, that computing expression (24) increased computational effort by a factor of about 10 for
this simulation. As a practical matter, using approximation (18) may be considered sufficient if
expression (24) becomes too costly.

Fig. 6. 25%, 50% and 75% quantiles of parameter estimates for the FitzHugh–Nagumo equations as λ is
varied: , true parameter values; �, a; C, b; �, c
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Table 1. Summary statistics for parameter estimates for 500 simu-
lated samples of data generated from the FitzHugh–Nagumo equa-
tions

a b c

True value 0.2000 0.2000 3.0000
Mean value 0.2005 0.1984 2.9949
Bias standard error 0.0007 0.0029 0.0012
Actual standard deviation 0.0149 0.0643 0.0264
Estimate (24) standard deviation 0.0143 0.0684 0.0278
Estimate (18) standard deviation 0.0167 0.0595 0.0334

3.2. Fitting the tank reactor equations
Data for concentration C and temperature T were simulated by adding zero-mean Gaussian
noise with standard deviations 0.0223 and 0.79 respectively to the values for the cool mode
experimental condition that is shown in Fig. 4. These error levels were about 20% of the varia-
tion of the respective outputs over the experimental conditions, an error level which is considered
to be typical for many chemical engineering processes. We estimated only the parameters κ, τ
and a, keeping b fixed at 0.5 because we had determined that the accurate estimation of all four
parameters is impossible within the data design that was described above. Since the data are
generated here from functions satisfying the differential equation system, we can expect the fit
to improve with increasingly larger values for smoothing parameters λC and λT . Results are
reported here for 100 and 10 respectively, which are sufficiently large that further increases were
found to yield negligible improvement in parameter estimates.

We found, in applying the NLS method that was described in Section 1.3.1, that the approx-
imation to T.t/ at the times of input step changes by using the Runge–Kutta algorithm were
inaccurate and unstable with respect to small changes in parameters. As a consequence, the esti-
mation of the gradient of fit (9) by differencing was so unstable that gradient-free optimization
was impossible. When we estimated the gradient by solving the sensitivity equations (5) and (6),
we could only achieve optimization when starting values for parameters and initial values were
much closer to the optimal values than could be realized in practice. By contrast, our approach
could converge reliably from random starting values far removed from the optimal estimates.

Table 2 displays bias and sampling precision results for parameter estimates by our param-
eter cascade method for 1000 simulated samples for each of two measurement regimes: both
variables measured, and only temperature measured. The first two rows of Table 2 compare the
true parameter values with the mean estimates, and the last two rows compare the biases of the
estimates with the standard errors of the mean estimates. We see that the estimation biases can
be considered negligible for both measurement situations. The third and fourth rows compare
the actual standard deviations of the parameter estimates with the values estimated with the
Gauss–Newton method in approximation (18), and the two values seem sufficiently close for all
three parameters to permit us to trust the Gauss–Newton estimates in this case. As we might
expect, the main effect of having only temperature measurements is to increase the sampling
error in the parameter estimates.

When the equations were solved by using the parameters estimated from measurements on
both variables, the maximum absolute discrepancies between the fitted and true curves were
0.11% and 0.03% respectively and, when these parameter estimates were used for the hot mode
of operation, the discrepancies became 1.72% and 0.05% respectively. Finally, when the param-
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Table 2. Summary statistics for parameter estimates for 1000 simulated samples†

Results for C- and T-data Results for only T-data

κ τ a κ τ a

True value 0.4610 0.8330 1.6780 0.4610 0.8330 1.6780
Mean value 0.4610 0.8349 1.6745 0.4613 0.8328 1.6795
Bias standard error 0.0002 0.0004 0.0012 0.0005 0.0005 0.0024
Acutual standard deviation 0.0034 0.0057 0.0188 0.0084 0.0085 0.0377
Estimate (18) standard deviation 0.0035 0.0056 0.0190 0.0088 0.0090 0.0386

†The results are for measurements on both concentration and temperature, and also for temper-
ature measurements only. The estimate of the standard deviation of parameter values is by the
δ-method that is usual in NLS analyses.

eters were estimated from only the temperature data, the concentration and temperature dis-
crepancies in cool mode became 0.10% and 0.04% respectively, so using only the quickly and
cheaply attainable temperature measurements is sufficient for identifying this system in either
mode of operation.

4. Two real data examples

4.1. Modelling nylon production
If water W in the form of steam is bubbled through molten nylon L under high temperatures,
W will split L into amine A and carboxyl C groups. To produce nylon, in contrast, A and C
are mixed together under high temperatures, and their reaction produces L and W , water then
escaping as steam. These competing reactions are depicted symbolically by A+C�L+W . The
reaction dynamic equations are

− L̇= Ȧ= Ċ =−kp ×10−3.CA−LW=Ka/,

Ẇ =kp ×10−3.CA−LW=Ka/−km.W −Weq/ .28/

where

Ka =
(

1+ g

1000
Weq

)
CT Ka0 exp

{
−ΔH

R

(
1
T

− 1
T0

)}

and R = 8:3145 × 10−3, CT = 20:97 exp.−9:624 + 3613=T/ and a reference temperature T0 =
549:15 K was chosen to be in the middle of the range of experimentally manipulated tempera-
tures. Rate parameter km =24:3 was estimated in previous studies. Owing to the reaction mass
balance, if A, C and W are known then L can be algebraically removed from the equations, so
we shall estimate only those three components.

In an experiment that was described in Zheng et al. (2005), a mixture of steam and an inert
gas was bubbled into molten nylon to maintain a constant W , causing A, C, L and W to move
towards equilibrium concentrations. Within each of six experimental runs the steam pressure
was stepped down from its initial level at times τi1, i= 1, . . . , 6, and then returned to its initial
pressure at times τi2. The temperature Ti and concentration difference Ai.t/−Ci.t/ varied over
runs but were constant within a run. Samples of the molten mixture were extracted at irregularly
spaced intervals, and the A and C concentrations were measured. The goal was to estimate the
rate parameters θ= [kp, g, Ka0, ΔH ]. Fig. 7 shows the data for the runs aligned by experiment



760 J. O. Ramsay, G. Hooker, D. Campbell and J. Cao

Fig. 7. Nylon components A, C and W along with the solution to the differential equations using initial values
estimated by the smooth for each of six experiments (j, times of step change in input pressures; horizontal
axes indicate time in hours; vertical axes indicated concentrations in moles): (a) T D 557 K; (b) T D 557 K;
(c) T D557 K; (d) T D554 K; (e) T D544 K; (f) T D536 K

within columns. Since concentrations of A and C are expected to differ only by a vertical shift,
their plots within an experimental run are shifted versions of the same vertical spread.

The profile estimation process was run initially with λ= 10−4. On convergence of θ̂, λ was
increased by a factor of 10 and the estimation process rerun using the most recent estimates as
the latest set of initial parameter guesses, increasing λ up to 103. Beginning with such a small
value of λ made the results robust to the choice of initial parameter guesses. Further details
concerning the data analysis are available in Campbell (2007).

The parameter estimates along with 95% limits were kp = 20:59 ± 3:26, g = 26:86 ± 6:82,
Ka0 = 50:22 ± 6:34 and ΔH = −36:46 ± 7:57: The solutions to the differential equations by
using the final parameter estimates for θ̂ and the initial system states estimated by the data
smooth are shown in Fig. 7.

4.2. Modelling flare dynamics in lupus
Lupus is a disease which is characterized by sudden flares of symptoms caused by the body’s
immune system attacking various organs. The name derives from a rash on the face and chest
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Fig. 8. Symptom level s(t ) for a patient suffering from lupus as assessed by the SLEDAI scale: j, changes
in SLEDAI score corresponding to a flare; , other changes in SLEDAI score

that is characteristic, but the most serious effects tend to be in the kidneys. The resulting nephri-
tis and other symptoms can require immediate treatment, usually with the drug Prednisone, a
corticosteroid that itself has serious long-term side-effects such as osteoporosis.

Various scales have been developed to measure the severity of symptoms, and Fig. 8 shows the
course of one of the more popular measures, the systemic lupus erythematosus disease activity
index (SLEDAI) scale, for a patient who experienced 48 flares over about 19 years before expir-
ing. A definition of a flare event is commonly agreed to be a change in a scale value of at least
3 with a terminal value of at least 8, and Fig. 8 shows flare events as bold lines.

Because of the rapid onset of symptoms, and because the resulting treatment programme
usually involves a SLEDAI assessment and a substantial increase in Prednisone dose, we can
pin down the time of a flare with confidence. Thus, the set of flare times combined with the
accompanying SLEDAI score constitute a marked point process. Our goal here is to illustrate
a simple model for flare dynamics, or the time course of symptoms over the period of onset
and the period of recovery. We hope that this model will also show how these short-term flare
dynamics interact with longer-term trends in symptom severity.

We postulated that the immune system goes on the attack for a fixed period of δ years,
after which it returns to normal function because of treatment or normal recovery. For pur-
poses of this illustration, we took δ = 0:02 years, or about 2 weeks, and represented the time
course of attacks as a box function u.t/ that is 0 during normal functioning and 1 during a
flare.

This first-order linear differential equation was proposed for symptom severity s.t/ at time t:

ṡ.t/=−β.t/ s.t/+α.t/ u.t/ .29/



762 J. O. Ramsay, G. Hooker, D. Campbell and J. Cao

and has the solution

s.t/=C s0.t/+ s0.t/

∫ t

0
α.z/u.z/=s0.z/ dz

where

s0.t/= exp
{

−
∫ t

0
β.z/ dz

}
:

Function α.t/ tracks the long-term trend in the severity of the disease over the 19 years,
and we represented this as a linear combination of eight cubic B-spline basis functions defi-
ned by equally spaced knots, with about 3 years between knots. We expected that a flare plays
itself out over a much shorter time interval, so α.t/ cannot capture any aspect of flare dynamics.

The flare dynamics depend directly on weight function β.t/. At the point where an attack
begins, a flare increases in intensity with a slope that is proportional to β and rises to a new level
in roughly 4=β.t/ time units if β.t/ is approximately constant. Likewise, when an attack ceases,
s.t/ decays exponentially to 0 with rate β.t/.

It seemed reasonable to propose that β.t/ is affected by an attack as well as s.t/. This is because
β.t/ reflects to some extent the health of the individual in the sense that responding to an attack
in various ways requires the body’s resources, and these are normally at their optimum level just
before an attack. The response drains these resources, and thus the attack is likely to reduce

Fig. 9. (a) Effect of an attack of lupus on the weight function β.t/ in differential equation (29) and (b) time
course of the symptom severity function s(t )
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β.t/. Consequently, we proposed a second equation to model this mechanism:

β̇.t/=−γ β.t/+θ{1−u.t/}: .30/

This model suggests that an attack results in an exponential decay in β with rate γ, and that the
cessation of the attack results in β.t/ returning to its normal level in about 4=γ time units. This
normal level is defined by the gain K =θ=γ: However, if γ is large, the model behaves like

β̇.t/=θ{1−u.t/}, .31/

which is to say that β.t/ increases and decreases linearly.
Fig. 9(a) shows how β.t/ responds to an attack indicated by the box function u.t/ when

γ = θ = 4, corresponding to a time to reach a new level of about 1 time unit. The initial value
β.0/= 0 in this plot. Fig. 9(b) shows that the increase in symptoms is nearly linear during the
period of attack but that, when the attack ceases, the symptom level declines exponentially and
takes around 3 time units to return to 0.

When we estimated this model with smoothing parameter value λ=1, we obtained the results
that are shown in Fig. 10. We found that parameter γ was indeed so high that the fitted symptom
rise was effectively linear, so we deleted γ and used the simpler equation (31). This left only
the constant θ to estimate for β.t/, which now controls the rate of decrease of symptoms after
an attack ceases. This was estimated to be 1.54, corresponding to a recovery period of about
4=1:54=2:6 years. Fig. 10 shows the variation in α.t/ as a broken curve, indicating the long-term
change in the intensity of the symptoms, which are especially severe around years 6 and 11, and
in the patient’s last 3 years.

The fitted function s.t/ is shown as a full curve and was defined by positioning three knots at
each of the flare onset and offset times to accommodate the sudden break in ṡ.t/, and a single

Fig. 10. SLEDAI scores (�), smoothing functions s(t ) (∧), solution to the differential equation ( ) and
smooth trend α.t/ (– – – )
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knot midway between two flare times. Order 4 B-splines were used, and this corresponded to
290 knot values and 292 basis functions in the expansion ŝ.t/ = c′ φ.t/: We see that the fitted
function seems to do a reasonable job of tracking the SLEDAI scores, in both the period during
and following an attack and also in terms of its long-term trend.

The model also defines the differential equation (29), and the solution to this equation is
shown as a broken line. The discrepancy between the fit that is defined by the equation and the
smoothing function s.t/ is important in years 8–11, where the equation solution overestimates
the symptom level. In this region, new flares come too fast for recovery and thus build on each
other. Nevertheless, the fit to the 208 SLEDAI scores that is achieved by an investment of nine
structural parameters seems impressive for both the smoothing function s.t/ and the equation
solution, taking into consideration that the SLEDAI score is a rather imprecise measure. More-
over, the model goes a long way to modelling the within-flare dynamics, the general trend in the
data and the interaction between flare dynamics and trend.

5. Generalizations and further problems

5.1. More general equations
We have discussed the methods that were presented here with respect to systems of ODEs.
However, these methods can be applied to the following situations in a direct manner:

(a) differential algebraic equations, in which some components of x are specified directly
rather than on the derivative scale,

xi.t/=fi.x, u, t|θ/; .32/

such systems are common in chemical engineering (see Biegler et al. (1986) for a classical
example);

(b) lagged equations,

ẋ.t/= f{x.t −δ1/, u.t −δ2/, t|θ},

where δ1 and δ2 are vectors of time lags for state and forcing functions respectively;
(c) partial differential equations in which a system x.s, t/ is described over spatial variables

s as well as time t,

@x
@t

= f
(

x,
@x
@s

, u, t|θ
)

:

Both lagged and partial differential equations require the specification of an infinite dimen-
sional boundary condition, rather than a finite set of initial conditions.

5.2. Stochastic differential equations
Criterion (14) may be interpreted as the log-likelihood for an observation from the stochastic
differential equation

ẋ.t/= f.x, u, t|θ/+λ
dW.t/

dt

where W.t/ is d-dimensional Brownian motion. Thus for a fixed λ, interpreted as the ratio of
the variance of the Brownian motion to that of the observational error, the procedure may be
thought of as profiling an estimate of the realized Brownian motion. This approach has been
used for the problem of data assimilation in Apte et al. (2007), where they use criteria that are
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closely related to our own equation (14). This notion is appealing and suggests the use of alter-
native smoothing penalties based on the likelihood of other stochastic processes. The flares in
the lupus data, for example, could be considered to be triggered by events in a Poisson process,
and we expect this to be a fruitful area of future research. However, this interpretation relies on
the representation of dW.t/=dt in terms of the discrepancy ẋ.t/− f.x, u, t|θ/ where x is given by
a basis expansion (7). For non-linear f the approximation properties of this discrepancy are not
clear. Moreover, frequently a lack of fit in non-linear dynamics is due more to misspecification
of the system under consideration than to stochastic inputs, and we are correspondingly wary
of this interpretation.

5.3. Further statistical problems
Diagnostic tools are needed for differential equation models. Particularly in biological appli-
cations, these models often provide the right qualitative behaviour and may take values that
are orders of magnitude different from the observed data. Diagnostic analyses can estimate
additional components of u that will provide good fits. These may be correlated with observed
values of the system, or external factors, to suggest new model formulae.

Experimental design is a relatively unexplored area of research for non-linear dynamical sys-
tems. Engineers plan experiments in which inputs are varied under various regimes, including
step, ramp, periodic and other perturbations. These inputs are then continuous functions which
join sampling rates for each component and replicated experiments as design variables. See
Bauer et al. (2000) for an approach to these problems.

Finally, there is a large class of theoretical and inferential problems in fitting non-linear differ-
ential equations to data, including inference near bifurcation boundaries, about system stability
and on the relationship between statistical information and chaotic behaviour.

6. Conclusions

Differential equations have a long and illustrious history in mathematical modelling. However,
there has been little development of statistical theory for estimating such models or assessing
their agreement with observational data. Our approach, a variety of collocation methods, com-
bines the concepts of smoothing and estimation, providing a continuum of trade-offs between
fitting the data well and fidelity to the hypothesized differential equations. This has been done
by defining a fit through a penalized spline criterion for each value of θ and then estimating θ
through a profiling scheme in which the fit is regarded as a nuisance parameter.

We have found that this procedure has some important advantages relative to older methods
such as NLS. Parameter estimates can be obtained from data on partially measured systems,
which is a common situation where certain variables are expensive to measure or are intrinsically
latent. Comparisons with other approaches suggest that the bias and sampling variance of these
estimates is at least as good as for other approaches, and rather better relative to methods such
as NLS. The sampling variation in the estimates is easily estimable, and our simulation experi-
ments and experience indicate that there is good agreement between these estimation precision
indicators and the actual estimation accuracies. Our approach also gains from not requiring a
formulation of the dynamic model as an initial value problem in situations where initial values
are not available or not required.

On the computational side, the algorithm is as fast as or faster than NLS and other approaches.
Unlike Bayesian Markov chain Monte Carlo methods, the generalized profiling approach is
relatively straightforward to deploy to a wide range of applications, and software in MAT-
LAB described below merely requires that the user codes the various partial derivatives that are
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involved, and which are detailed in Appendix A. Finally, the method is also robust in the sense
of converging over a wide range of starting parameter values. The possibility of beginning with
smaller values of λ to work with a smooth criterion, and then stepping these values up towards
those defining near approximations to the ODE, further adds to the method’s robustness.

Finally the fitting of a compromise between an actual ODE solution and a simple smooth of
the data adds much flexibility that should prove useful to users wishing to explore variation in
the data that is not representable in the ODE model. By comparing fits with smaller values of λ
with fits that are near or exact ODE solutions, the approach offers a diagnostic capability that
can guide further extensions and elaborations of the model.

6.1. Software
All the results in this paper have been generated in the MATLAB computing language, making
use of functional data analysis software that is intended to complement Ramsay and Silverman
(2005). A set of software routines that may be applied to any differential equation is available
from http://www.functionaldata.org.
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Appendix A: Matrix calculations for profiling

The calculations that are used throughout this paper have been based on matrices defined in terms of
derivatives of F and H with respect to θ and c. In many cases, these matrices are non-trivial to calculate
and expressions for their entries are derived here. For these calculations, we have assumed that the outer
criterion F is a straightforward weighted sum of squared errors and only depends on θ through x.

A.1. Inner optimization
Using a Gauss–Newton method, we require the derivative of the fit at each observation point:

dxi.t/

dci

=φi.t/

where matrix φi is the vector corresponding to the evaluation of all the basis functions that are used to
represent xi evaluated at t. This gradient of xi with respect to cj is zero.

A numerical quadrature rule allows the set of errors to be augmented with the evaluation of the penalty
at the quadrature points and weighted by the quadrature rule:

.λivq/
1=2[ẋi.tq/−fi{x.tq/, u.tq/, tq|θ}]:

Each of these then has derivative with respect to cj :

.λivq/
1=2[ẋi.tq/−fi{x.tq/, u.tq/, tq|θ}] I.i=j/ φ̇i.tq/−

(
n∑

k=1
.λivq/

1=2 dfk

dxj

[D xi.tq/−fi{x.tq/, u.tq/, tq|θ}]
)
φj.tq/

and the augmented errors and gradients can be used in a Gauss–Newton scheme. I.·/ is used as the indicator
function of its argument.
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A.2. Estimating structural parameters
As in the inner optimization, in employing a Gauss–Newton scheme, we merely need to write a gradient
for the pointwise fit with respect to the parameters:

dx.t/

dθ
= dx.t/

dc
dc
dθ

where dx.ti/=dc has already been calculated and

dc
dθ

=−
(

d2H

dc2

)−1 d2H

dc dθ

by the implicit function theorem.
The Hessian matrix d2H=dc2 may be expressed as a block form, the .i, j/th block corresponding to the

cross-derivatives of the coefficients in the ith and jth components of x. This block’s .p, q/th entry is given
by {

ni∑
k=1

φip.t/ φjq.t/+λ

∫
φip.t/ φjq.t/ dt

}
I.i= j/−λi

∫
φ̇ip.t/

dfi

dxj

φjq.t/ dt −λj

∫
φip.t/

dfi

dxj

φ̇jq.t/ dt

+
∫

φip.t/

{
n∑

k=1
λk

[
d2fk

dxi dxj

{fk − ẋk.t/}+ dfk

dxi

dfk

dxj

]}
φjq.t/ dt

with the integrals evaluated by numeric integration. The arguments to fk.x, u, t|θ/ have been dropped in
the interests of notational legibility.

We can similarly express the cross-derivatives d2H=dc dθ as a block vector, the ith block corresponding
to the coefficients in the basis expansion for the ith component of x. The pth entry of this block can now
be expressed as

λi

∫
dfi

dθ
φip.t/ dt −

∫ (
n∑

k=1
λk

[
d2fk

dxi dθ
{fk − ẋk.t/}+ dfk

dxi

dfk

dθ

])
φip.t/ dt:

A.3. Estimating the variance of θ̂
The variance of the parameter estimates is calculated by using

dθ̂

dy
=−

(
d2H

dθ2

)−1 d2H

dθ dy
,

where

d2H

dθ2 = @2H

@θ2 +
(

@ĉ
@θ

)′
@2H

@ĉ @θ
+ @2H

@θ @ĉ
@ĉ
@θ

+
(

@ĉ
@θ

)′
@2H

@ĉ2

@ĉ
@θ

+ @H

@ĉ
@2ĉ

@θ2 , .33/

and

d2H

dθ dy
= @2H

@θ @y
+ @2H

@ĉ @y
@ĉ
@θ

+ @2H

@θ @ĉ
@ĉ
@y

+ @2H

@ĉ2

@ĉ
@y

@ĉ
@θ

+ @H

@ĉ
@2ĉ

@θ @y
: .34/

The formulae (33) and (34) for d2H=dθ2 and d2H=dθ dy involve the terms @ĉ=@y, @2ĉ=@θ2 and @2ĉ=@θ @y.
In what follows, we derive their analytical formulae by the implicit function theorem. We introduce the
following convention, which is called Einstein summation notation. If a Latin index is repeated in a term,
then it is understood as a summation with respect to that index. For instance, instead of the expression
Σi aixi, we merely write aixi.

(a) @ĉ=@y: similar to the deduction for dĉ=dθ, we obtain the formula for @ĉ=@y by applying the implicit
function theorem,

@ĉ
@y

=−
{

@2J.c|θ, y/

@c2

∣∣∣∣
ĉ

}−1{
@2J.c|θ, y/

@c @y

∣∣∣∣
ĉ

}
: .35/
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(b) @c2=@θ @y: by taking the second derivative on both sides of the identity @J.c|θ, y/=@c|ĉ = 0 with
respect to θ and yk, we derive

d2

dθ dyk

{
@J.c|θ, y/

@c

∣∣∣∣
ĉ

}
@3J.c|θ, y/

@c @θ @yk

∣∣∣∣
ĉ
+ @3J.c|θ, y/

@c @θ @ci

∣∣∣∣
ĉ

@ĉi

@yk

+ @3J.c|θ, y/

@c2 @yk

∣∣∣∣
ĉ

@ĉ
@θ

+ @3J.c|θ, y/

@c2 @ci

∣∣∣∣
ĉ

@ĉi

@yk

@ĉ
@θ

+ @2J.c|θ, y/

@c2

∣∣∣∣
ĉ

@2ĉ
@θ @yk

: .36/

Solving for @2ĉ=@θ@yk, we obtain the second derivative of ĉ with respect to θ and yk:

@2ĉ
@θ @yk

=−
{

@2J.c|θ, y/

@c2

∣∣∣∣
ĉ

}−1{
@3J.c|θ, y/

@c @θ @yk

∣∣∣∣
ĉ
+ @3J.c|θ, y/

@c @θ @ci

∣∣∣∣
ĉ

@ĉi

@yk

+ @3J.c|θ, y/

@c2@yk

∣∣∣∣
ĉ

@ĉ
@θ

+ @3J.c|θ, y/

@c2 @ci

∣∣∣∣
ĉ

@ĉi

@yk

@ĉ
@θ

}
: .37/

(c) @2ĉ=@θ2: similar to the deduction of @2ĉ=@θ @yk, the second partial derivative of c with respect to θ
and θj is

@2ĉ
@θ @θj

=−
{

@2J.c|θ, y/

@c2

∣∣∣∣
ĉ

}−1{
@3J.c|θ, y/

@c @θ @θj

∣∣∣∣
ĉ
+ @3J.c|θ, y/

@c @θ @ci

∣∣∣∣
ĉ

@ĉi

@θj

+ @3J.c|θ, y/

@c2 @θj

∣∣∣∣
ĉ

@ĉ
@θ

+ @3J.c|θ, y/

@c2 @ci

∣∣∣∣
ĉ

@ĉi

@θj

@ĉ
@θ

}
:

.38/

When estimating ODEs, we define J.c|θ, y/ as equation (14) and H{θ, ĉ.θ/|y} as equation (8), and
further write the above formulae in terms of the basis functions in φ and the functions f on the right-hand
side of the differential equation. For instance, d2H=dc2 is a block diagonal matrix with the ith block being
wi φi.ti/

Tφi.ti/ and dF=dc is a block vector containing blocks −wi φi.ti/
T{yi −xi.ti/}.

The three-dimensional array @3J=@c @cp @cq can be written in the same block vector form as @2J=@c @θ
with the uth entry of the kth block given by∫ {

n∑
l=1

λl

(
d2fl

dxi dxj

dfl

dxk

+ d2fl

dxi dxk

dfl

dxj

+ d2fl

dxj dxk

dfl

dxi

)}
φip.t/ φjq.t/ φku.t/ dt

+
∫

n∑
l=1

λl

d3fk

dxi dxj dxk

{fl − ẋl.t/}φip.t/ φjq.t/ φku.t/ dt −λi

∫
d2fi

dxj dxk

φ̇ip.t/ φjq.t/ φku.t/ dt

−λj

∫
d2fj

dxi dxk

φip.t/ φ̇jq.t/ φku.t/ dt −λk

∫
d2fk

dxi dxj

φip.t/ φjq.t/ φ̇ku.t/ dt

assuming that cp is a coefficient in the basis representation of xi and cq corresponds to xj . The array
@3J=@c @θi @θj is also expressed in the same block form with entry p in the kth block being∫ {

n∑
l=1

λl

(
d2fl

dθi dθj

dfl

dxk

+ d2fl

dθi dxk

dfl

dθj

+ d2fl

dθj dxk

dfl

dθi

)}
φkp.t/ dt

+
∫

n∑
l=1

λl

d3fk

dxk dθi dθj

{fl − ẋl.t/}φkp.t/ dt −λk

∫
d2fk

dθi dθk

φkp.t/ dt:

The term @3J=@c @cp @θi is in the same block form, with the qth entry of the jth block being∫ {
n∑

l=1
λl

(
d2fl

dθi dxj

dfl

dxk

+ d2fl

dθi dxk

dfl

dxj

+ d2fl

dxj dxk

dfl

dθi

)}
φkp.t/ φjq.t/ dt

+
∫

n∑
l=1

λl

d3fk

dxj dxk dθi

{fl − ẋl.t/}φkp.t/φjq.t/ dt −λj

∫
d2fj

dθi dxk

φ̇jq.t/φkp.t/ dt

−λk

∫
d2fk

dθi dxj

φjq.t/ φ̇kp.t/ dt

where cp corresponds to the basis representation of xk.



Parameter Estimation for Differential Equations 769

Similar calculations give the matrix d2H=dθ dy explicitly as

dĉ
dθ

T( @2H

@ĉ @y
+ @2H

@c2

dĉ
dy

)
− @H

@c

(
@2H

@c2

)−1
(

N∑
p,q=1

dĉT
p

dθ

@3J

@c @cp @cq

dĉq

dy
+

N∑
p=1

@3J

@c @cp @θ

dĉp

dy

)

with dĉ=dy given by

−
(

@2J

@c2

)−1
@2J

@c @y

and @2J=@c @y being block diagonal with the ith block containing wi φi.ti/.
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Discussion on the paper by Ramsay, Hooker, Campbell and Cao

Arne Kovac (University of Bristol)
Estimation of parameters of an ordinary differential equation (ODE) from noisy data is an exciting area
and we have to thank the authors for bringing this challenging problem to our attention. One reason
why I think that this topic is so interesting is that many applications in science and engineering employ
differential equations to model relationships between variables and one of the strengths of this paper is
to share so many examples. Another reason is that it gives rise to a difficult optimization problem where
the target function is usually not convex and can have many local minima. Finally given how natural the
desire is to determine suitable values for the parameters of an ODE it is the more surprising that this topic
is relatively unexplored.

Although the ‘discovery’ of this problem is certainly the highlight of this paper, the particular approach
that is followed by the authors and the use of regularization in this context are another interesting
contribution. Traditionally used to balance smoothness and closeness to data, regularization has recently
also been used to estimate monotone functions (Ramsay, 1998), to obtain simple approximations without
artificial local extrema (Davies and Kovac, 2001) and to select parameters in linear regression (Tibshirani,
1996). In this paper the authors use a new penalty that penalizes departure from solving the ODE to
make an otherwise difficult optimization problem much easier to solve. We have to thank the authors
for not only providing an explicit algorithm but also for making their implementation publicly available.

One of many interesting questions is whether it is possible to assess the goodness of fit. If there were
no noise at all we would just have to solve the ODE for the given set of parameters and to check whether
the solution coincides with the data. With noise present and/or departures from the idealistic model this
is more difficult. A set of parameters may be regarded as a good model if the residuals ri look like noise
and one way of checking this is to look at their sums on different scales and locations,

wj,k = 1√
.k − j +1/

k∑
i=j

ri, 1� j �k �n,

and to verify whether these are all sufficiently small, i.e. |wj,k|<
√{2 log.n/}σ̂ where σ̂ is some estimate

of the noise level. Fig. 11 shows data from the FitzHugh–Nagumo ODE with an approximation from a
slightly different model. Visual inspection shows hardly any lack of approximation; however, some wj,k
exceeded the threshold. In contrast, the corresponding solution for the true value c = 3 would have been
accepted by the multiresolution criterion.

It is not quite clear to me whether we should calculate the residuals with respect to the solution to the
ODE by using the parameter estimates or the aproximations x̂i from the regularization problem. These
functions may considerably differ if λ is small. How do we then interpret the parameter estimates given
that the data do not follow the trajectory of the ODE? Do we estimate parameters at all?

Another challenging problem is how to deal with possible changes over time. Is there one global set
of parameters that provides a good model for all of the data? And, if this is not possible, how would
one estimate the parameters locally? A partial answer may be given again by the multiresolution criterion
that was sketched above. We could try to devise an algorithm that aims to find parameter values such
that as many of the coefficients wj,k as possible are below the threshold. If for any set of parameters coeffi-
cients wj,k exist which exceed the threshold, a local version needs to be determined. Fig. 12 shows another
401 data simulated from the FitzHugh–Nagumo ODE where the parameters changed after the first half,
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Fig. 11. FitzHugh–Nagumo data by using the values from Section 3 and the solution for λD1000 and a DbD
0:2 as in the true model, but c D2:2 instead of 3

Fig. 12. FitzHugh–Nagumo data by using σ D0:4 and the parameters as in Section 3 for the left-hand half,
but using a D0:6 and c D2 in the right-hand half ( , solution for a Db D0:2, c D3 and λD0:01)

but where the solution was calculated globally by using the true parameters from the first half. For V all
wj,k with k �152 were below the threshold and for R even all wj,k with k �174. Thus the multiresolution
criterion clearly indicates that the approximation is adequate for at least the first 150 data points, but that
a different approximation is needed for the second half.

Further questions include statements about rates of convergence, whether there is any use in a local
choice of λ and whether L1-penalties would offer any improvements when the functions have discontinu-
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ities. I am convinced that this paper will stimulate plenty of research and consequently I have great pleasure
in proposing the vote of thanks.

S. Olhede (Imperial College London)
I congratulate the authors on their thought provoking contribution to the estimation of parameters
of ordinary differential equations (ODEs). This is an important and currently much neglected area of
statistics.

The main innovation of this paper is the attempt to combine various measures of misfit into a coherent
likelihood framework, so that the parameters of a system of ODEs, denoted θ, can be estimated. For sim-
plicity I in this discussion take N =mini.Ni/. As the ODEs cannot be solved numerically for each posited
value of θ, the solutions are approximated by using B-spline bases {φik.t/}Ki

k=1 (see Varah (1982)), by

x̂i.t/=
Ki∑

k=1
ĉik.θ, x0/ φik.t/:

I am concerned that the authors do not give an automated criterion for the selection of Ki. Once the
number of measurements increases (Mendes et al. (2003) already have used eight coupled ODEs) choosing
Ki on the basis of a qualitative assessment for each output variable of the data set will become infeasible.

Approximating the true solutions introduces two measures of disparity: the deviation of the B-spline
approximation from the data, eij =yij − x̂i.tij/ (data misfit), and the deviation of the spline approximation
from solutions to the ODE, xi.tij/− x̂i.tij/ (model misfit). The data misfit can be computed directly once
some criterion has been determined for proposing ĉik.θ, x0/, but the model misfit is not available. Instead
the deviation of x̂′

i.tij/ from fi.x, u, tij|θ/ is used to measure model misfit.
I would like to note that methods of combining the measures of misfit will vary in suitability dependent

on the inference problem that is attacked. If we only seek to estimate θ then it does not matter whether
x̂N.t/→x.t/ as N →∞ but only that

@

@θk

‖x̂N.t/−x.t/‖β

becomes negligible with increasing N. If we are interested in prediction of the output variables, then this
fact changes.

The most important component of the procedure is the choice of regularization parameters {λi}d
i=1,

and the norms that are chosen for the data and model misfits, which are denoted by α and γ respectively.
For large N with α= 2 some further remarks can be made. Unless the data are very strongly correlated
in time, H.θ|λ/ = O.N/. I point out that Ki = Ki.N/ = O.N/ and λi =λi.N/. To provide consistent large
sample theory PENi.x̂/ = ‖x̂′

i.t/ − fi.x, u, t|θ/‖γ = O.N−δ/ for some δ > 0 must be imposed. The choice
of δ determines the rate of convergence of the approximation to the true solution. To ensure that the
approximation of x.t/ becomes exact for increasing sample sizes, a condition such as

lim
N→∞

{N−1∑
i

λi.N/ PENi.x̂/}=C<∞ .38/

must be imposed. With smoothness assumptions on xi.t/, or equivalently on fi.x, u, t|θ/, PENi.x̂/ can be
bounded with Ki.N/ sufficiently large, in powers of N. This combines with a large sample argument for
determining the optimal order of λi.N/. If we take Ki order O.N/ then λi.N/=O.N1+δ/ for suitable δ will
for large N ensure that x̂N.t/→x.t/, in some suitable sense. Furthermore by taking λi.N/→∞ as N →∞
the results of theorems 1 and 2 gain additional interpretability. Clearly λi.N/ should be chosen to ensure the
asymptotic efficiency of θ̂N . Decreasing λi.N/ appears to increase the variance of the estimators (see the
curvature of Figs 2 and 5, and note the change of axes.)

To ensure the existence of a ‘good’ solution, we need to take Ki.N/ sufficiently large. Arguments to
confirm the existence of the solution for a specific γ, λi.N/ and Ki.N/ can be made. λi.N/ might also be
chosen to account for how informative (sensitive) xi.t/ is to θ.

The specification of λi.N/ needs to be automated. For method 1 proposed on page 753,

(a) how do we know whether the first minimum is appropriate,
(b) can random variability due to the errors cause many minima and order mixing of minima and
(c) is there a strict theoretical justification for this procedure?

Method 2 proposed on page 754 is speculative and appears to underestimate the size of the regularization
parameter. I think that, if a semiparametric model is appropriate, relevant assumptions must be made
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about the deviation of the derivatives of the sample paths from the ODE. Another possible approach to
the problem is to combine the model misfit with the data misfit by using a Bayesian formulation of the
problem; see Wahba (1978). In this case the variability of each sample path of x.t/ needs to be modelled.
Many alternatives to a Brownian coupled set of stochastic differential equations are available. Wahba
and Wang (1990) have discussed issues with the usage of generalized cross-validation for the selection of
regularization parameters. Certainly the choice of loss function should be approached with some care and
should be linked to the inferential problem that is addressed. Neither proposed automated procedure was
actually used for the simulated data or the nylon example.

Permitting a very weak norm for the measure of the deviation of x̂′
i.t/ from fi.x, u, tij|θ/ will lead to

large deviations in x̂i.t/ from xi.t/, as large deviations will aggregate once x̂′
i.t/ has been integrated. Thus,

despite the recent popularity of the γ = 1 norm in signal processing, I do not suggest usage of this norm
for the penalty, but I would rather advocate γ =∞. With an appropriate basis expansion an l1-penalty on
c may be appropriate; see the Danzig selector (Candès and Tao, 2005).

Another issue which is glossed over by the authors is model checking. The distribution of the error terms
determines H.θ|λ/. The residuals should be checked for serial correlation, which appears to be present
in the nylon data set residuals; see Fig. 13(a). Determining the second-order structure of eij is equally
important to specifying an appropriate choice of regularization parameter. A simple autoregressive length
1 model seems to explain the serial correlation; see Fig. l3(b). The time sampling is not evenly spaced;
hence models such as autoregressive processes may not always be appropriate. Non-parametric methods
such as runs tests could be employed to test for serial correlation of the residuals; see for example Mood
(1940).

There are issues with usage of profile likelihood: see the discussion in Berger et al. (1999), and note
that unfortunate ‘ridge maximization’ may ensue. With the observed ripples in the likelihood such effects
may lead to unfortunate properties of the procedure. Some care must therefore be taken with the profile
maximization.

I have outlined some questions with regard to the performance of the methods proposed. A very adven-
turous step has been taken by the authors to construct a coherent likelihood framework for inference of
systems of ODEs. Numerous modelling, consistency and fitting issues remain, as inevitably will be the case
when boldly embarking on a new area of inference: I am very pleased to join Dr Arne Kovac in thanking
the authors for their innovative and challenging paper.

Fig. 13. (a) Residuals from the nylon data from run 2 (the serial correlation is apparent from the residuals)
and (b) non-parametric estimated autocovariance of the residuals (assuming stationarity) for run 2 ( ,
critical region based on approximations to the distribution of the estimated autocorrelation under H0 of no
correlation with a pointwise level of 0.05 at each lag; an AR(1) fit to the first set of residuals is also included
as the curve in the top panel)
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The vote of thanks was passed by acclamation.

Steven M. Boker (University of Virginia, Charlottesville)
I congratulate Ramsay and his colleagues on a stimulating paper that addresses a problem that has been
long considered important. 80 years ago Hotelling (1927) wrote of the difficulty of estimating differential
equations in the presence of error. When data are sampled from real systems and a model is estimated, this
error can be divided into at least three parts: a part that is associated with the measurement instrument
itself, a part that is associated with exogenous influences which propagate in time and a part that is asso-
ciated with inadequacy of the model to account for the relationships between the time derivatives of the
system. Separation of these sources of error from signal while simultaneously estimating parameters of
a system and providing goodness-of-fit estimates for the chosen model allows model comparison. These
goals are particularly problematic when the system is non-linear and realizations of the system may diverge
exponentially.

Some widely used methods for parameter estimation of differential equations are variants of Kalman
filtering or Kalman smoothing (Kalman, 1960; Molenaar and Newell, 2003) and methods from stochastic
differential equations (Itô, 1951; Bergstrom, 1966; Singer, 1993). These forward prediction methods oper-
ate on the integral form and thus require analytic solutions to the chosen system of differential equations.
One advantage of the method that is outlined in this paper is that it estimates the parameters of the differ-
ential equations directly and thus does not require the analytic solution, which for non-linear systems may
be unknown. A second interesting feature of the method is that it allows separate cost functions for the
equation and error parameters.

There are three practical problems that I see arising when using the approach of Ramsay and his col-
leagues. The first concerns the choice of the smoothing complexity parameter λ, some potential solutions
to which the paper covers. The second problem is that it is unclear how the separation of time-indepen-
dent and time-dependent error is to be accomplished such that solution uniqueness is obtained given
that the smoothness λ must also be chosen. Perhaps a latent variable form of the differential equation
in question could be specified if multivariate indicators were available for each variable (Boker et al.,
2004). The third problem arises when the model structure is unknown: by what metric are we to per-
form model comparison given the flexibility of this method? Some penalty for lack of parsimony might
unify solutions to these three problems. I do not see these problems as insurmountable and I hope that
Ramsay and colleagues will consider them in hopes of widening the applicability of their interesting
work.

Leonard Smith (London School of Economics and Political Science)
The paper is an important contribution to parameter estimation in non-linear systems of ordinary differen-
tial equations. We lack a general coherent theory here, despite important applications ranging from the
small scale industrial processes that are discussed in the paper to informing decision support in climate
change (Stainforth et al., 2005). I thank the authors for the chance to suggest links between their work
and approaches from non-linear dynamics, as the geometric–dynamics view provides a complementary
perspective on parameter estimation which might allow

(a) better estimation when the model structure is exact and the non-linearities are non-trivial,
(b) improvement in model structure when it is known to be imperfect and
(c) clarification of the role of stochastic dynamics.

Imperfections in the model structure reopen the question of which parameter values should be used when
elements of the parameter vector Θ are known from ‘theoretical considerations of other sources of infor-
mation’. Even in artificial cases where the model structure and the observational noise model are known
exactly, traditional approaches like least squares are likely to prove unsatisfactory, as even normally dis-
tributed input uncertainties yield outputs under the model which are not normally distributed (Judd, 2007;
McSharry and Smith, 2004).

In practice we are never in that perfect model scenario; the goal of parameter estimation, and indeed
state estimation, is not only unclear but also unlikely to have a single well-posed definition (Smith, 2000;
Judd and Smith, 2004). Focusing on information from the dynamics rather than focusing on the statistics
abandons one notion of optimality for the goal of improved consistency. One simply asks whether the
model admits trajectories that are consistent with the observations (Judd et al., 2004). The distribution of
the durations of shadowing orbits allows parameter estimation, provides a structured approach to estimat-
ing Ramsay’s λ and locates regions of the model state space where the system dynamics are systematically
inconsistent with those of the model (McSharry and Smith, 2004). When shadowing trajectories cannot
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be found, we can examine the mismatch ‘errors’ of pseudo-orbits that are consistent with the observations.
This has the dual aims of model improvement and of developing stochastic models which are more likely
to yield useful trajectories (Judd and Smith, 2004). These models are not, however, the traditional form of
stochastic models: the innovations reflect the geometric failings of the model flow in model state space and
aim to allow for the attracting manifolds that are common in non-linear dissipative models. Ideally the
innovation distribution will be state dependent and perhaps path dependent. The clear formulation of such
truly non-linear stochastic models which respect the geometrical dynamics of the model and observations
of the underlying system would prove of great value in refining the models that Ramsay and his colleagues
now provide us with.

Steven Gilmour (Queen Mary, University of London)
Parameter estimation for differential equations is a topic of enormous importance and applicability, which
requires much more attention from statisticians. I welcome this paper which addresses the problem from
one particular viewpoint, which seems to work rather well. My own interests are in the design of experi-
ments which will enable the parameters to be estimated efficiently.

At a simple level, a design could be chosen which optimizes some function of var{θ̂.y/}, as given in
equation (24). Usually we would have to integrate over prior distributions for θ and λ, so this is a far from
trivial task.

However, it is important that we get the basics correct. The classical principles of good design have a role
to play in complex experiments, which is at least as important as their role in simple text-book experiments.
The tank reactor experiment that is described in Section 1.2.2 and illustrated in Fig. 3 is typical of many
experiments on dynamical systems. It is not obvious even how to describe it in classical terms. We need to
identify

(a) the treatments—combinations of the levels of six factors, Fin, Cin, Tin, Tco, Fco and the base-line Tco,
(b) the experimental units—these seem to be runs of the process of length t =4—and
(c) the responses from each experimental unit–time series of C and T.

Then the design, using a standard coding, is shown in Table 3.
This design is poor on several counts: there is no randomization, no sensibly chosen replication, no

blocking (so long-term drifts will have systematic effects), no protection of experimental units (it might be
sensible to exclude the first part of the time series on each unit), no use of the factorial treatment structure
(so interactions cannot be estimated) and a failure to recognize multiple strata (base-line Tco is a whole-plot
factor). Such a poor design would be useless even for simple responses.

Also important are the implications of the design for the analysis. The concept of experimental units
is always meaningful and implies a discreteness, even in dynamical systems. Each time that the system is

Table 3. Design of the tank reactor experiment

Base Fin Cin Tin Tco Fco Base Fin Cin Tin Tco Fco

−1 0 0 0 0 0 1 0 0 0 0 0
−1 −1 0 0 0 0 1 −1 0 0 0 0
−1 1 0 0 0 0 1 1 0 0 0 0
−1 0 0 0 0 0 1 0 0 0 0 0
−1 0 −1 0 0 0 1 0 −1 0 0 0
−1 0 1 0 0 0 1 0 1 0 0 0
−1 0 0 0 0 0 1 0 0 0 0 0
−1 0 0 −1 0 0 1 0 0 −1 0 0
−1 0 0 1 0 0 1 0 0 1 0 0
−1 0 0 0 0 0 1 0 0 0 0 0
−1 0 0 0 −1 0 1 0 0 0 −1 0
−1 0 0 0 1 0 1 0 0 0 1 0
−1 0 0 0 0 0 1 0 0 0 0 0
−1 0 0 0 0 −1 1 0 0 0 0 −1
−1 0 0 0 0 1 1 0 0 0 0 1
−1 0 0 0 0 0 1 0 0 0 0 0
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disturbed by changing the level of a factor a new, discrete, error is introduced (e.g. through small uncer-
tainties in setting the levels) and so the model should contain random unit effects.

The following contributions were received in writing after the meeting.

Caroline Bampfylde (University of Alberta, Edmonton)
I thank Ramsay, Hooker, Campbell and Cao for their contribution to the practicalities of fitting dynamical
models to data and estimating model parameters. This is a task which is commonly encountered by applied
scientists and the rigorous solution technique that is provided by this manuscript is most welcome.

Although Ramsay and co-authors make efficient use of matrix algebra to simplify the calculation of the
derivatives in Appendix A, the resulting formulae that are presented seem to be overly complicated. I am
concerned that the implementation of their methods is non-trivial, especially for many applied scientists
whose interest is in the results and their application rather than the details of the method. However, I do
applaud the publishing of on-line materials providing open source software and numerical code to facilitate
the implementation of their techniques. It appears that the Web site http://www.functionaldata.
org needs to be updated to reflect the new statistical techniques and to present some examples that users
can then modify to fit to their own problems.

I should like to end my discussion with thoughts about the wider applications of the authors’ tech-
niques. The methods have thus far been applied to systems of ordinary differential equations. Would it
be possible to consider the extension to discrete time dynamical systems such as systems of difference
equations? In my research I have to deal with dynamical systems both continuous and discrete in nature
and a consistent technique for parameter estimation would be very useful. Have the authors considered
the application to partial differential equations and integrodifferential equations which are regularly used
for spatial problems? Any further extensions or generality that can be derived from their methods would
be a great addition to the parameter estimation toolbox.

My thanks go to the Research Section of the Royal Statistical Society, for the opportunity to contribute
to the discussion of this important paper.

Lorenz Biegler (Carnegie Mellon University, Pittsburgh)
It is a pleasure to comment on this paper. I found this paper very informative and useful and my comments
are mostly from an optimization algorithm perspective. The approach that is mentioned in the paper com-
plements strategies for dynamic optimization but specializes them with interesting statistical concepts and
problem formulations.

On page 750, using the total variation penalty in equation (l2) may be advantageous, although it is not
used in the analysis or the examples. Although the necessary smoothness conditions are absent, the finite
dimensional analogue to equation (l2) is actually preferred over equation (11) because only a finite value
of λ is needed to satisfy theorem 2. Also, equation (11) has the disadvantage that λ must approach ∞ to
force PEN(·) to zero, thus leading to severe ill conditioning in the optimization. Some discussion on these
numerical aspects (and possible improvements) can be found in chapter 17 of Nocedal and Wright (2006).

Sections 3 and 4 contain excellent examples that illustrate the benefits of the approach in Section 2 and
also show how they apply to real world data. In the second paragraph of page 760, it should be men-
tioned that a Runge–Kutta initial value algorithm was used. The failure for this unstable system is due
to this single shooting approach. Instead, if the instrumental variables were replaced with corresponding
(dichotomous) boundary conditions, and the solver replaced by a corresponding boundary value solver
(e.g. COLSYS or COLDAE; see Ascher and Petzold (1998)), the problem should also solve easily, just as
the principal differential analysis method does. A method to do this along with a pathological parameter
estimation problem is given in Tanartkit and Biegler (1995, 1996).

Section 5 is very useful in exploring future topics. More detail could be added in several areas. The
exploration of differential algebraic equations (DAEs) has been done for some time and DAE systems
have now been well studied and understood for parameter estimation. Ascher and Petzold (1998) provided
a comprehensive discussion and summary of these systems. Many practical systems can be written as index
1 DAEs (or can be reformulated as index 1 DAEs). For these, much of the discussion in this paper could
be extended directly.

Partial differential equation constrained optimization enjoys considerable current research attention
and several approaches have been explored that are relevant to principal differential analysis. The authors
might find Biegler et al. (2003) useful. Finally, for future work I think that the greatest potential of this
approach is for stochastic systems. I look forward to further developments in this area with this approach.
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Emery N. Brown (Massachusetts Institute of Technology, Cambridge, and Harvard Medical School, Boston)
It remains to be clearly established what the methods of Ramsay and colleagues add to current methods
for differential equation model analyses.

The Ramsay analyses provide no comparisons with existing methods for analysing differential equation
models. Therefore, the current work tells neither the dynamicist nor the statistician what if any improve-
ments the new approach brings. For example, if a likelihood-based analysis had been applied to the nylon
production problem as was done for the circadian data in Brown (1987) and Brown et al. (2000) what
improvements would the new methods have provided? The likelihood-based analysis that was used in
those references estimated non-linear dynamical systems models from observations with very strong serial
dependence, computed confidence intervals for parameter estimates and demonstrated that estimation
with approximate and exact solutions of the differential equation system gave similar answers.

Dynamical systems often have specific properties such as Hopf bifurcations, limit cycles and chaotic
dynamics. Inferring these specific properties from experimental data is a fundamental question in dynami-
cal systems analyses (Czeisler et al., l989, 1999; Diks, 1999). The authors give no evidence to show that their
approach would allow dynamicists to determine whether particular types of dynamic behaviour can be
more reliably determined from experimental data analyses by using their methods compared with current
methods.

Another fundamental question in many dynamical systems analyses in neuroscience is how to model the
stochastic features of a given neural system. The smoothness constraint should reflect specific hypotheses
about the stochastic features of the dynamical system. The smoothness constraint in the Ramsay analyses
represents an explicit (mathematically convenient) assumption about the stochastic features of the dynam-
ical system. It does not relate to any specific hypothesis about the physical, chemical or biological origins
of the stochastic features of the systems that are studied in their examples.

A dynamical system with noise in its observation process and/or its system equation falls naturally into
the state space and the partially observed systems framework. The authors miss an important opportunity
to relate their work to these established paradigms.

The FitzHugh–Nagumo example does not provide a true illustration of the issues that computational
neuroscientists address in relating dynamical systems models to experimental data. Time courses of
actual subthreshold membrane voltage potentials of single neurons (what the FitzHugh–Nagumo model is
intended to characterize) are recorded by many neurophysiologists. Estimating the dynamic properties of
these data is a challenging problem being investigated by many computational neuroscientists (Koch, 2001).
Would the methods of Ramsay and colleagues outperform current methods in the study of this problem?

Sy-Miin Chow and Stacey S. Tiberio (University of Notre Dame)
The authors are to be congratulated for providing a comprehensive treatment of using smoothing methods
to fit non-linear ordinary differential equation models. We particularly like the proposed approach’s ease
of use with irregularly spaced discrete time observations, and the authors’ discussion on its diagnostic
utility. We believe that the method proposed can be effectively integrated with recent advances in fitting
non-linear, non-Gaussian state space models. In particular, we ask the authors to consider a non-linear
continuous time state space model of the form

dxi.t/=f{xi.t/, t|θ} dt +dwi.t/, .39/

yij =hi{xi.tj/, tij|θ}+ eij , .40/

where f is a non-linear drift function, h is a (possibly) non-linear measurement function, wi.t/ is a Wiener
(or possibly other dynamic noise) process and ej is a vector of measurement errors.

If basis function expansion is used to obtain smoothed estimates of equation (39), the log-likelihood
function H.θ, σ|λ/ can then be written as a function of the innovations eij = yij − hi{ĉi.σi, θ;λ/′ φ.tij/}.
Along a similar line, H.θ, σ|λ/ and the penalty function can then be used as the basis for assessing misfits
stemming from the dynamic model and the measurement model (equations (39) and (40)) respectively.
In addition, we do see some merits in incorporating process noise in the dynamic model in equation (39)
in addition to allowing for non-Gaussian measurement processes (e.g. Poisson processes; Durbin and
Koopman (200l) and Fahrmeir and Tutz (1994)) in equation (40). For instance, serially independent mea-
surement errors can play a very different role from that of dynamic noises that do show continuity over
time. More research along this line is certainly warranted. Some of the recent continuous time adaptations
of Monte Carlo techniques (e.g. Beskos et al. (2006) and Särkkä (2006)) may also be a helpful alternative
or addition to the generalized smoothing approach.
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Our remaining comments are mainly questions to help to pave future extensions along this line. We won-
der whether the authors can comment on the relationship between the complexity of the basis functions
and the choice of the smoothing parameter λ. Specifically, how does the role of λ change if the numbers of
knot points and basis functions that are used are overfitting compared with underfitting the data, especially
when sample sizes are small to moderate? Furthermore, if an ordinary differential equation model is fitted
to data with mild process noise, can the model misspecification be partially compensated by, for example,
using more basis functions to construct x̂.t/?

Sophie Donnet and Adeline Samson (University Paris Descartes)
When a biological or physical process is measured, the regression function of the statistical model describ-
ing the observed data often derives from dynamic systems based on ordinary differential equations (ODEs).
The differential system often does not have any analytical solution, leaving only the combination of estima-
tion procedures and discretization schemes to solve the ODE. As an alternative to addressing the various
problems that are involved in these methods—computational time and stability—the authors suggest
an original and efficient solution. Their method relies on a basis function expansion of the dynamic pro-
cess and then consists of data fitting and an equation fidelity criterion combined in a penalized log-
likelihood.

We shall now stress the numerous qualities of the method. First, the fact that no discretization scheme
is used to solve the problem makes it possible to consider boundary or/and distributed data problems and,
most of all, side-steps the instability problems that are involved with non-continuous input functions.
These discontinuous functions are common in biology or physics and constitute a major limit to the use
of classical discretization schemes such as Euler or Runge–Kutta schemes in estimation algorithms. More-
over, this method seems robust to the starting parameter values, which is often a concern with a non-linear
least squares approach. Furthermore, the authors provide explicit expressions for the derivatives, allowing
the use of an efficient Gauss–Newton algorithm. Finally, one of the major advances of this paper is the
fact that it provides accurate estimations of the confidence intervals of the estimated parameters.

Obviously, this work opens many new perspectives in the active research field of the estimation in ODE
models. As stressed by the authors, many extensions can be considered. Firstly, in biology, experimental
studies often consist of repeated measurements of a biological criterion obtained from a population of
subjects. The statistical parametric approach that is commonly used to analyse these data is mixed models.
The extension of the estimation method that is proposed by Ramsay and his colleagues to mixed models
would be an interesting alternative to classical methods that are based on discretization schemes. Secondly,
it would be of considerable interest to develop such a method for stochastic differential equations, which
are a natural extension of the models that are defined by ODEs, as it allows taking into account errors
that are associated with misspecifications and approximations in the dynamic system.

Michael Dowd (Dalhousie University, Halifax)
My congratulations go to the authors for their interesting and topical study. Rigorous statistical examina-
tion of estimation problems for systems that are governed by differential equations (DEs) is important and
timely. Such models are the theoretical foundation for many scientific fields and the synthesis of dynamical
models and data is a pressing issue, e.g. for data assimilation (Lewis et al., 2006).

This study offers a unique approach to parameter estimation for DEs by using a weak constraint for-
mulation and exploiting the functional nature of the system state. The ‘parameter cascade’ appears an
effective strategy for estimating different types of parameter. It offers a viable alternative to non-linear
regression (Thompson et al., 2000).

The paper also emphasizes the importance of identifying efficient and effective methods for parameter
and state estimation for stochastic (and partial) DEs. An approach that supports these extensions directly
is the state space model. It treats partially observable non-linear stochastic dynamics and multivariate
non-Gaussian observations according to

xt ∼p.xt |xt−1, θ/,
yt ∼p.yt |xt , φ/:

The first equation describes the Markovian transition of the state xt , with parameters θ. This corresponds
to stochastic dynamic prediction using discretized DEs, i.e. xt =f.xt−1, nt , θ/: Observations yt can be related
to xt through a non-linear measurement operator with φ being parameters of the measurement distribu-
tion. In Dowd (2006), I applied such a model for complex non-linear dynamical systems to recover state
and dynamic parameters for a system which regularly transitioned across a bifurcation point.
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The problem that is considered by this paper is the estimation of static parameters. Given the observation
set as y1:T = .y′

1, . . . , y′
T /′ and using Bayes’s theorem yield the target density for the state, p.xτ |y1:T , θ, φ/.

This can be computed with sampling-based sequential Monte Carlo (MC) techniques (Künsch, 2005;
Godsill et al., 2004).

Unknown parameters θ and φ can be then be determined by maximizing the likelihood (see Kitagawa
(1996)):

L.θ, φ|y1:T /=
T∏

t=1

∫
p.yt |xt , φ/ p.xt |y1:t−1, θ/dxt

≈
T∏

t=1

{
N−1

t

Nt∑
i=1

p.yt |x.i/
t|t−1, θ, φ/

}

where the latter approximation relies on {x
.i/
t|t−1}, i=1, . . . , Nt , which is a sample from the predictive density

generated via sequential MC sampling. The resultant likelihood is affected by MC sampling variability
and challenges optimizers; incorporation of kernel density estimation appears useful (de Valpine, 2004).

Computationally, application of these MC approaches to higher dimensional dynamic systems is a
major challenge. Ideas based on dynamical analysis (Chorin and Krause, 2004) and effective approxima-
tions, e.g. the ensemble Kalman filter (Evensen, 2003), appear promising. I have compared some of these
methods for non-linear dynamic systems (Dowd, 2007). It would be interesting to compare these further
with the parameter estimation method of this paper, extended to the case of stochastic DEs.

David J. D. Earn (McMaster University, Hamilton)
Estimation of parameters of non-linear differential equations from noisy, observed time series is a problem
that arises frequently in applied science. Unfortunately, anyone who has tried this is likely to be familiar
with serious theoretical and computational challenges. The new method of Ramsay and colleagues is very
welcome, and it will be interesting to see how it fares on a wide range of problems.

The method may prove particularly useful for the study of transmission dynamics of infectious diseases
(Anderson and May, 1991). The state variables in the basic susceptible–infectious–recovered (SIR) model
are the numbers of individuals who are susceptible (S), infectious (I ) and recovered or immune (R), and
the parameters are the rates of birth (ν), death .μ/, transmission .β/ and recovery .γ/:

Ṡ =ν − .βI +μ/S, .41a/

İ =βIS − .γ +μ/I, .41b/

Ṙ=γI −μR: .41c/

Note that I records the prevalence of the disease, i.e. the number of individuals who are currently infected.
We typically observe incidence, i.e.

∫
βSI dt, where the integral is over the reporting interval (typically

weekly or monthly, but sometimes daily).
For human diseases that have been present in the population for years, we typically have estimates of

all the parameters from data other than time series of reported cases or deaths. Moreover, the SIR model
as formulated in equation (41) has a globally asympotically stable equilibrium, so we can easily compare
the predicted equilibrium with the observed times series (without the aid of Ramsay and colleagues).

The catch is that the transmission rate β is rarely constant in practice. Instead, β often varies seasonally,
either because of seasonally changing aggregation patterns (London and Yorke, 1973) or other seasonal
factors that may be difficult to pin down (Dushoff et al., 2004). Seasonal forcing drastically changes the
dynamics of the SIR model, often leading to co-existing stable cycles (Schwartz and Smith, 1983) or chaos
(Schaffer, 1985). Since the conclusions that we draw depend strongly on the estimated amplitude of sea-
sonal forcing (Earn et al., 2000; Bauch and Earn, 2003), we need a credible way of estimating time variation
in β and we rarely have useful data to work with other than incidence time series. The method of Ramsay
and colleagues is begging to be applied to this problem and I look forward to comparing the results that
are inferred from it and from previous methods (Fine and Clarkson, 1982; Ellner et al., 1998; Finkenstädt
and Grenfell, 2000; Bjornstad et al., 2002; Wallinga and Teunis, 2004).

Finally, it is worth mentioning a vexing issue that has the potential to undermine parameter estima-
tion for differential equation models of disease spread. The process of infectious disease transmission is
fundamentally stochastic. Solutions of the SIR model (41) can be thought of as ensemble means of the
true stochastic process (Kurtz, 1980), but any incidence time series represents only one realization of that
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stochastic process and may not accurately reflect the mean. In the specific context that I have highlighted—
estimating a seasonal forcing function—this problem may not be serious if we have data covering many
seasons, but it is worth bearing in mind.

Stephen P. Ellner (Cornell University, Ithaca)
I congratulate the authors for two important contributions: the profiling method and for highlighting to
the statistical community the problems of fitting dynamical systems models. Non-linear differential equa-
tions are core models in many sciences, including my own discipline of ecology, but are sorely neglected
in statistical research (Ellner and Guckenheimer, 2006). In ecology, low dimensional non-linear dynamic
models that would have been called a caricature or metaphor 20 years ago have proved remarkably suc-
cessful in confrontations with real data (e.g. Zimmer (1999) and Turchin (2003)). These models necessarily
leave out many ‘inessentials’ (rare species, spatial variability, etc.) and are often deterministic even though
we know better. Omitted inessentials are problematic for non-linear systems because they can have a large
effect on long-term model trajectories even if their effect at any instant is small. Wanting f{x̂.t/, θ} to be
near dx̂.t/=dt, where x̂.t/ is near the data, is a more reasonable hope for a model with the right ‘essentials’.

But for practical acceptance I believe that selection of the smoothing parameter λ must be automated
on a defensible basis. The profiling criterion immediately suggests cross-validation. Straight leave-one-out
methods are computationally infeasible for end-users (though computer and algorithmic improvements
may change this situation), but we can still use the principle of predicting something that was not used in
fitting. Dynamic models predict the future, so we can evaluate them on the basis of forecasting accuracy.
Let φt .x0; θ/ be the model solution at time t starting from x.0/=x0. A measure of prediction error at time
interval τ is

PE.λ; τ /=∑
j

‖y.tj/−ϕτ{x̂λ.tj − τ /; θ̂λ}‖2: .42/

PE should be large if x̂λ undersmooths or oversmooths the data, either way throwing off parameter
estimates. I tried this criterion on the FitzHugh–Nagumo system (modifying MATLAB code that was
provided by Hooker), with the omitted inessential being an additive perturbation to dV=dt (Fig. 14(a))
that changes the period of the oscillations (Fig. 14(b) versus Fig. 14(c)). Fitting five artificial data sets by
profiling with a range of λ-values, PE selects a range of λ-values that is good for parameter estimation
(Figs 14(d) and 14(e)). Profiling with a ‘good’ λ performs comparably with two-step methods in which the
data are smoothed without regard to the model, and the ordinary differential equation is then fitted to
the smooth or its time derivative; with a ‘bad’ λ profiling is less successful. Profiling’s big advantage over
two-step methods is that it does not need data on all state variables but, as this small example indicates,
success may depend on choosing λ well.

Chong Gu (Purdue University, West Lafayette)
The authors are to be congratulated for a fine paper on a challenging problem. As shown in the paper,
fitting data to models derived from ordinary differential equations (ODEs) involves numerous issues such
as the numerical strategies and the methodological framework, and it is the methodological aspects that
we shall comment on.

First let us attempt a crude parallel between the setting of the paper and a standard cubic spline as the
minimizer of

n∑
i=1

{yi −x.ui/}2 +λ

∫ (
d2x

du2

)2

du: .43/

Setting λ = ∞ in expression (43) forces d2x=du2 = 0 that characterizes a static system, with the solu-
tion of the form x.u/ = c1 + c2u, where .c1, c2/ are to be determined by the data .yi, ui/ through the
least squares; if precise readings of (u, x) are available from x.u/ = c1 + c2u, we need only two pairs of
‘initial values’ to pin down .c1, c2/. Likewise, replacing pen.x/ = ∫ .d2x=du2/2 du in expression (43) by
pen.x/=∫ .d2x=du2 +ω2x/2 du yields an L-spline, and setting λ=∞ then forces d2x=du2 +ω2 =0 with the
solution of the form x.u/= c1 sin.ωu/+ c2 cos.ωu/: Compare these with

n∑
i=1

{yi −x.ti/}2 +λ

∫ {
dx

dt
−f.x, u, t|θ/

}2

dt, .44/

where for simplicity we consider only a single ODE. The main difference between expressions (43) and
(44) is the time variable t in expression (44) and the implicit dependence of x on u. The system parameter
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θ is absent for the cubic spline and is the period ω for the L-spline. Setting λ=∞ in expression (44) forces
dx=dt − f.x, u, t|θ/ = 0 with the solution of the form xu.t;θ, c/, say, and the parameters θ and c may be
fixed via least squares as in expression (44) or through alternative ‘initial values’.

As crude as the parallel is, it sheds light into the roles of various components in the proposed setting.
For data smoothing via expression (43) or the like, the stochastic structure of the data is typically well

Fig. 14. Parameter estimation by profiling for the Fitzhugh–Nagumo model PV D c.V � V 3=3 � R/, PR D
�.V � a C bR/=c: (a) solution trajectories with parameters (a, b, c) D (0.2, 0.2, 3) (the thicker curve is PV .t//;
(b) time varying perturbation z.t/ added to PV ; (c) solution trajectories and one of the artificial ‘data sets’
generated by the perturbed model PV D c.V � V 3=3 � R/ C z.t/, PR D�.V � a C bR/=c; (d) root-mean-square
prediction error (averaging over five artificial data sets) as a function of the value of λ used when fitting the
data by profiling, for prediction horizon τ D 5 time units; (e) mean scaled parameter error, averaging across
the same five artificial data sets (scaled parameter error D jestimated value � true valuej/(true value); ,
mean scaled parameter error from two-step methods; each data set was first smoothed without reference to
the differential equation, using gam from the mgcv package in R (R Core Development Team, 2006; Wood,
2006); parameters were estimated by ‘gradient matching’ (. . . . . . ., Ellner et al. (2002)), i.e. fitting the right-hand
side of the model to the time derivative of the smooth by non-linear least squares, or by minimizing equation
(42) with y.tj / and x̂.tj � τ / both given by the smooth and τ D5 (-- - - - - -))



782 Discussion on the Paper by Ramsay, Hooker, Campbell and Cao

specified, whereas the roughness penalty pen(x) is virtually an afterthought mainly to provide ‘stability’
to the end results, and one is more than willing to ‘warp’ the function away from the ‘null model’ charac-
terized by pen.x/=0 to fit the data. For solutions to the dynamic systems, however, the roles of goodness
of fit and ‘roughness penalty’ seems more likely reversed, with fidelity to the ODE the major concern and
the ‘error distribution’ of the data an afterthought. With such an understanding, automatic λ-selection
via cross-validation may not be the most appropriate for expression (44); cross-validation was designed
to minimize the estimation error for data smoothing, Σn

i=1{x̂.ui/−x.ui/}2 in the setting of expression (43)
with yi =x.ui/+"i. Instead, a manual selection of λ that keeps

∫ {dx=dt −f.x, u, t|θ/}2 dt �ρ, say, for some
prespecified tolerance level ρ, might be more appropriate.

John Guckenheimer (Cornell University, Ithaca) and Joseph Tien (Fred Hutchinson Cancer Research Center,
Seattle)
A key issue in parameter estimation problems for differential equations is minimizing residual functions
with optimization algorithms. As illustrated in Fig. 2, the graph of the residual as a function of the parame-
ters may be so convoluted that smooth optimization algorithms that are based on quadratic models require
initial parameter values that are very close to the optimal values. Ramsay and his colleagues smooth the
residual by a spline fit, together with a penalty on discrepancies between the fitted curve to solutions of
the differential equations.

Our work also introduces residual functions which involve penalties, but we focus on the relationships
between qualitative properties of the differential equation solutions to the geometry of the response sur-
face. Those relationships prompt us to propose new residual functions that incorporate geometric features
of the dynamical system and simplify the landscape. Examples of these geometric features include periodic
orbits, bifurcation boundaries and fast–slow decompositions of multiple-timescale solution trajectories.

This paper represents solutions of differential equations through their initial values. When these solu-
tions depend sensitively on initial values or system parameters, the residual function has large gradients.
This is evident in Fig. 2, showing a residual function for solutions to the FitzHugh–Nagumo equation
fitted over approximately 2.5 periods of an oscillatory solution. Since the oscillation period varies with the
system parameters, the residual is more sensitive when evaluated for longer time intervals. If the data to
be fitted are at its periodic asymptotic state, we suggest fitting the periodic orbit of the model to the data
instead of the solution of an initial value problem. This approach was developed by Casey (2004). Match-
ing the period of a periodic orbit to its measured period is a step towards solving the parameter estimation
problem. Furthermore, the ‘cliff ’ in the response surface of Fig. 2 suggests that there is a bifurcation of
the model at these parameter values. Bifurcation boundaries in the model form natural constraints of the
‘reasonable’ parameter region for fitting attractors to stationary data. We advocate using computations of
bifurcation boundaries in this context.

In multiple-timescale systems, abrupt changes in solutions occur due to changes in the transitions
between slow and fast segments of solutions. The geometry of fast–slow decompositions of solution tra-
jectories can be used to define residual functions for both non-periodic and periodic solutions (Tien and
Guckenheimer, 2007; Tien, 2007).

Serge Guillas (Georgia Institute of Technology, Atlanta)
I congratulate the authors for their paper. They have introduced a technique for the estimation of param-
eters for differential equations that is fast and precise. Unlike many smoothing situations, the large range
(e.g. several orders of magnitude in the FitzHugh–Nagumo equations) of good λ is quite surprising. The
analysis for which the authors examine the asymptotic behaviour of the estimates when λ→∞ is very
helpful and rarely done in traditional smoothing settings. It would be interesting to study further the range
of values of λ that give accurate estimates.

The authors mention Bayesian methods as an alternative to their method. In this framework, the numer-
ical solution to the differential equation at each sample time point is assumed to be normally distributed,
with the use of the Metropolis–Hastings algorithm. In the more general context of complex computer
models, two approaches have been recently developed to take into account the functional form of the
output better. For well-chosen designs for the parameters, and sufficient computing power, these methods
are efficient and robust, in particular if there is no complete knowledge of the set of differential equations.
Higdon et al. (2007) represent a functional output through a principal components analysis. Bayarri et al.
(2007) considered a decomposition of the time series of outputs in a wavelet basis. Wavelets can easily
model abrupt changes in the outputs. This could be helpful for a better understanding of certain types of
solutions to differential equations. Calibration can then be directly carried out on the coefficients them-



Discussion on the Paper by Ramsay, Hooker, Campbell and Cao 783

selves following a traditional approach (Kennedy and O’Hagan, 2001). These formulations may improve
the estimation of the parameters in the case where complicated noise and biases are present. The addi-
tional discrepancy term can accommodate biases that depend on the initial conditions. Also the Bayesian
approach naturally leads to an assessment of the uncertainties. Combining Gaussian processes and infor-
mation from derivatives is also possible (O’Hagan, 1992; Morris et al., 1993; Mitchell et al., 1994; Solak
et al., 2003).

Jianhua Huang (Texas A&M University, College Station) and Yanyuan Ma (Université de Neuchâtel)
We are glad to have the opportunity to discuss this stimulating and exciting paper. We tried to approach
the problem from the viewpoint of familiar M-estimation. To simplify the notation and to focus on the
main idea, consider the case of only one equation. The penalized least squares criterion function is

L.c, θ/=∑
j

{yj − c′φ.tj/}2 +λ

∫
[c′φ̇.t/−f{c′φ.t/, t|θ}]2 dt,

minimization of which for fixed λ gives a joint estimation of c and θ. Potential overfitting of the data that
is caused by a high dimensional parameter c is avoided owing to the second term in the criterion function,
where a large λ can reduce significantly the effective dimension of c.

There are several computational approaches to solving the optimization problem—joint optimization
of c and θ, backfitting or profiling. The method that is proposed corresponds to a variation of the profiling
method that drops the second term in L.c, θ/ when optimizing L{ĉ.θ/, θ} in the second step. Dropping
the second term simplifies computation and can be justified when the differential equation is satisfied or
approximately so, which is the case when a very large penalty parameter λ is used. The M-estimation
formulation also enables us to approximate the sampling variation of θ̂ and ĉ easily, without relying on the
implicit function theorem. The authors could probably give us some insight on advantages of the proposed
multicriterion approach in comparison with the more direct approach here.

Next we report some results from an experiment on fitting the FitzHugh–Nagumo equations in example
3.1 by using the software that was kindly provided by the authors. Motivated by many real biomedical
data sets where only a sparse sample is available, we considered a sparse sampling of the profiles of V
with only 21 observations. Fig. 15(a) shows that the parameter estimate can be seriously biased. However,
when we reran the program but increased the number of bases in the collocation method to 10 times the
sample size, we obtained reasonable estimation, as shown in Fig. 15(c). This prompted us to believe that
the number of bases that are used in collocation should be decided by the essential nature of the ordinary
differential equation instead of just the number of observations. Our belief is reinforced by the results from
using 21 and 201 basis functions to fit data sampled at 201 time points as given in Figs 15(b) and 15(d).
Our finding indicates an important difference between pure data smoothing and smoothing in parameter
estimation for ordinary differential equations.

Edward L. Ionides (University of Michigan, Ann Arbor)
The authors are to be congratulated for their elegant approach to reconciling mechanistic dynamic models
with time series data. Their methodology appears to be readily applicable to a range of challenging infer-
ence problems. I would like to compare and contrast the deterministic dynamic modelling approach, which
was adopted by the authors, with a stochastic dynamic modelling approach. For the sake of discussion,
ordinary differential equations (ODEs) can be compared with stochastic differential equations (SDEs),
though similar considerations will apply to other models, such as Markov chains.

A drawback of the authors’ method is that the fitted model is not readily apparent. One may be led to
interpret the fitted model as an ODE with parameter vector θ̂, but of course the trajectories that are fitted to
the data do not perfectly follow this ODE. There is allowance for some deviation, which is controlled by the
parameter λ, and this deviation may be important for both the qualitative and the quantitative behaviour
of the system. The differences between stochastic dynamic models and their approximating ODEs, which
is termed the ‘deterministic skeleton’ of the model, have been found to be relevant in ecological systems
(Coulson et al., 2004). One related issue is, how should trajectories be simulated from the fitted model? In
the context of the tank reactor, for example, it would seem desirable if the variability between simulated
trajectories were comparable with variability between replications of the experiment. Additionally, such
simulated trajectories should be available to a researcher who is aware of only the reported values of θ̂ and λ.

One way around these difficulties is to consider the equivalent SDE, which is given by the authors in
Section 5.2, as the fitted model. The authors are reluctant to do this since ‘lack of fit in non-linear dynamics
is due more to misspecification of the system under consideration than to stochastic inputs’. I would argue
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Fig. 15. 25%, 50% and 75% quantiles of the parameter estimates for the FitzHugh–Nagumo equations (the
experiment is conducted by using equally spaced observations of V in the time range from 0 to 10, with differ-
ent numbers of knots and observations; the parameter values, the initial conditions and the level of noise of
the observed data are the same as those in example 3.1 of the paper; the starting values of the parameters
are the true values plus random noise with the standard deviation equal to 20% of the parameter values;

, truth; -�-, a .0:2/; ..�.., b .0:2/; � - � - � - �, c .3//: (a) 21 observations, 21 knots; (b) 201 observations, 21
knots; (c) 21 observations, 201 knots; (d) 201 obervations, 201 knots

that it should be acceptable to interpret the noise as model misspecification combined with random var-
iation; such interpretations are certainly routine in linear regression, for example. Quite general methods
exist for carrying out inference in the context of partially observed non-linear SDE systems (Ionides et al.,
2006). However, the authors’ penalized spline approach has considerable computational advantages that
should motivate future work into clarifying the relationship between the penalized splines and comparable
SDE models.
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Satish Iyengar (University of Pittsburgh)
I congratulate the authors for bringing to the attention of the statistics community methods of inference
for differential equations.

Early in their paper, the authors mention the case ‘when only a subset of variables of a system is actually
measured. . . ’. I suspect that this case is quite common in many areas. It typically leads to the non-identi-
fiability of parameters of the model. We encountered this problem in our studies of varying spike rates in
certain monkey interneurons (Czanner, 2004; Czanner et al., 2007). We fit a leaky integrate-and-fire model
(Liu and Wang, 2001) for the (observed) membrane potential V and the (latent) intracellular calcium
concentration X. The model has the form

dVt = .α+βVt −γXtVt/ dt +dWt ,
dXt =−δXt dt +dW̃ ,

where W and W̃ are independent Brownian motions. On firing V returns to its reset potential and X is
increased by a constant to model the resulting calcium influx. In the discretized version, there are about a
dozen parameters, with the number of identifiable functions of the parameters depending on the details
of the experiment. A careful study of what those identifiable functions are can be used to suggest auxiliary
experiments that are needed to estimate the original parameters. However, determining the identifiable
parameters can be a rather involved task. Widely applicable approaches to do that would be useful.

Robert E. Kass (Carnegie Mellon University, Pittsburgh) and Jonathan E. Rubin and Sven Zenker (University
of Pittsburgh)
The fitting of differential equations to data has an illustrious history in neuroscience, but further pro-
gress requires solutions to several important problems. For example, in their pioneering work, Hodgkin
and Huxley (1952) modelled action potential generation in the space-clamped squid giant axon by fitting
parameters in a system coupling the voltage equation

dV

dt
= I − INa.V , m, h/− IK.V , n/− IL.V/

C
.45/

to equations for auxiliary variables m, h and n each of the form

dx

dt
=φ{αx.V /.1−x/−βx.V /x}: .46/

Each pair (αx.V/, βx.V/) incorporates five parameters, whereas the voltage-dependent currents in equation
(45) include four (INa), three (IK) and two (IL) parameters respectively. Together, equations (45) and (46)
contain 27 parameters.

An immediate issue is that the parameter values in equations (45) and (46) are not uniquely determined
from readily available data, i.e. a näive statistical model will be non-identifiable. The best solution is to
obtain additional data (as Hodgkin and Huxley (1952) did), but this is often impractical. Methodologically,
two things are needed:

(a) a method for checking whether the statistical model is identifiable and,
(b) when it is not, a constructive method for proceeding.

Item (a) has been discussed in the optimization literature (e.g. Nocedal and Wright (2006)). Item (b) is
generally more difficult. One possibility is to simplify models to reduce the number of parameters. This
may be disadvantageous in situations where there is a direct correspondence between model structure and
physiological interpretation, as inference about physiological parameters is often the objective, whereas
non-uniqueness of parameter vectors may reflect physiological reality (Prinz et al., 2004). For such scenar-
ios, local optimization methods like that presented by Ramsay, Hooker, Cambell and Cao are of limited
use. An alternative is to apply simulation-based Bayesian inference to compute a (potentially multimodal)
posterior density on the parameter vector and thereby to quantify uncertainty about lower dimensional
parameter subsets of interest (Zenker et al., 2006).

We hope that the interesting overview by Ramsay, Hooker, Cambell and Cao will succeed in drawing
attention to this important class of problems. The large body of literature on collocation methods should
be considered carefully. This may be a case in which the field of statistics will advance most rapidly by
incorporating results from other mathematical disciplines, via collaborative research that delves deeply
into particular scientific problems.
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Stefan Körkel (Humboldt-Universität, Berlin)
In this paper, the authors present an approach for the estimation of parameters in non-linear differential
equation models.

For the parameterization of the differential equations, a collocation method is applied with an expan-
sion of the state solution in terms of basis functions introducing the collocation coefficients as additional
nuisance parameters.

The data fitting criterion, a negative log-likelihood of the observation error distribution, is augmented
by a regularization term, the equation fidelity, which is a norm of the differential equation residual, which is
numerically approximated by a quadrature formula. The two parts of this objective function are weighted
by a smoothing multiplier λ to control the relative emphasis on fitting the data and solving the model
equations.

The authors propose to solve the optimization problem for parameter estimation in a hierarchical
way: an outer optimization with respect to the structural equation parameters is performed subject to an
underlying inner optimization with respect to the collocation coefficients for fixed equation parameters.

The choice of the smoothing parameter λ is crucial for the robustness of the method. In the numeri-
cal examples presented, the authors could find suitable values by manual adjustment. Alternatively, they
suggest an automatic iterative strategy based on the idea of preventing that the regularization distorts the
estimate. The behaviour for λ→∞ is studied and shows a natural behaviour of the approach.

The method that is presented by the authors exhibits robustness and flexibility. This is demonstrated for
four examples: two academic test problems, the FitzHugh–Nagumo equation system which leads to a very
non-convex least squares estimation problem and the tank reactor equation system which, for particular
experimental settings, has a behaviour which is close to instability. Moreover, the method is applied to
two real data examples: nylon production and flare dynamics in lupus.

For all these examples, appropriate smoothing can be found and parameter estimates can be obtained
from quite noisy data and in situations where not all model states can be observed. The choice of the
initial guesses for the parameters is not critical at all. For comparision, for such problems with high non-
convexity of the least squares fitting criteria, Gauss–Newton methods often are not usable because of
small convergence regions.

The hierarchical optimization approach presented requires higher computational effort compared with
an all-at-once approach, but it provides a very robust method for the estimation of parameters in intricate
non-linear situations.

Reg Kulperger (University of Western Ontario, London)
I congratulate the authors on their proposal of a very useful and practical method. Their idea of projecting
the differential equation (DE) solution to a linear space through expression (7) and then not having to
find the coefficients c.θ/ explicitly in terms of θ are the key elements. It is impressive that their method
works amazingly well, and in some cases with data on only a subset of the components. The real example
in Section 4.1 shows a very good fit of the data and estimated DE solutions.

In Section 3.1 you have chosen the standard deviation to be 0.5. How stable is the estimation over
different noise levels? It is reasonable to hope for good estimates with small noise, but at what level does
the estimation break down?

Fig. 6, and the discussion around it, suggests a practical way of choosing λ, the penalty tuning parame-
ter. In an Akaike or Bayes information criterion the penalty is a function of the sample size n. The penalty
in this paper is more in the spirit of spline regression but does not explicitly involve the sample size n or
the level of noise. Are these implicitly reflected in the tuning parameter λ?

The estimator variances that are approximated by expressions (18) or (24) are compared in a simulation
study in Section 3.2. They are first-order delta method approximations, and they perform very well in
these examples compared with the actual sample standard deviation in the simulation experiment for the
two models in Section 1.2. How do you expect this approximation to behave in other model applications
and different noise levels?

Section 5 raises some other interesting questions. Does a lagged equation model also require data at
offsets δ, or is it possible for the data still to be irregularly spaced or at least not depending on δ? If the
former is needed then δ is a number that must be known and not estimated. Equivalently, is δ identifi-
able?

The stochastic DE (SDE) that is described in Section 5.2 is considered with diffusion term λ dW.t/
(where λ is not the same as the penalty parameter). In general X.t/ = E{x.t/} does not satisfy the
noise-free DE X.t/ = f{X.t/, u, t|θ}. These SDE processes have quite different dynamics from those of



Discussion on the Paper by Ramsay, Hooker, Campbell and Cao 787

the regression form that is described here. Is there some analogous method for an SDE setting, or are these
a different class of estimation problems?

Subhash Lele (University of Alberta, Edmonton)
This paper proposes a method to confront non-linear dynamical models with real data so that they pro-
vide not just pretty pictures and qualitative understanding, but also quantitative predictions and model
adequacy measures.

The method that is developed in this paper is intuitive and appealing but somewhat ad hoc.

(a) How does the choice of the number and the form of basis functions affect the estimates?
(b) Do and how do the standard errors and resultant confidence intervals reflect the amount of approx-

imation that is involved in equation (7)?
(c) The method is based on estimating functions but it is unclear whether the resultant estimating

functions are, in fact, zero unbiased or not. Are they information unbiased? If not, the asymptotic
variances should be based on Godambe information rather than Fisher information.

(d) What kind of asymptotics are appropriate: infill asymptotics, or increasing domain asymptotics or
both (Cressie, 1991)?

(e) Can we use resampling techniques to obtain robust standard errors?
(f) In population dynamics models, there is demographic stochasticity and environmental stochasticity

(Lande et al., 2003). Can the methodology that is developed in this paper be useful for such models?
(g) With hidden layers in the model, how would you know that the parameters that you are trying to

estimate are, in fact, identifiable?

Recently, extending the work of Robert and Titterington (1998), I, jointly with my colleagues, have
developed a technique, which is called data cloning, to conduct likelihood inference for hierarchical mod-
els (Lele et al., 2007). Data cloning is based on the simple idea that, as the sample size increases, posterior
distributions converge to a Gaussian distribution with mean equal to the maximum likelihood estimate
and variance equal to the inverse of the Fisher information. One can artificially increase the sample size
by cloning the data several times. Then, a standard application of Markov chain Monte Carlo methods
provides the maximum likelihood estimate along with its standard error. We are currently using the data
cloning method to conduct inference for stochastic population dynamics models for single or multiple
populations such as the Lotka–Volterra model. We are also using data cloning to conduct inference for
epidemiological models such as the susceptible–infected–recovered model. One of the major advantages of
the data cloning method is that it provides a simple check for the identifiability of the parameters. We have
found that the initial conditions are, in general, very difficult to estimate (if identifiable). But, otherwise,
the data cloning method is computationally quite fast.

Lang Li (Indiana University, Indianapolis)
I congratulate the authors for their breakthrough in parameter estimation problems for differential equa-
tions. I would also like to express my appreciation for the effort of the Royal Statistical Society. This pioneer
paper advocates the integration of cutting edge statistics and traditional mathematics.

As a statistician working exclusively in the pharmacology area, I can see an immediate application of this
smoothing approach to pharmacokinetics models. Besides the work by Gelman (1996) that is referred to in
the text, more comprehensive reviews of statistical and computational work in pharmacokinetics models
can be found in Davidian and Giltinan (2003) and Pillai et al. (2005). It is worthwhile to mention that in
Li (2002, 2004) the non-linear relationships between pharmacokinetics parameters and covariates were
modelled by cubic splines. These works were probably the earliest integration of smoothing techniques
and differential equations in pharmacokinetics models. So far, all pharmacokinetics model fittings are
based on the numerical solution of a differential equation, when the analytical solution is not available.

Now, the generalized smoothing approach totally changed the paradigm of parameter estimation for
differential equations. It transformed a fragmented numerical procedure into a uniformed non-linear
regression. As the authors claimed in the paper, the computational stability is much improved. I think
that this is a major improvement.

Computational speed is obviously a critical factor for its more general usage. When not all the response
variables in the ordinary differential equations are measurable, the unmeasured variables still need to be
solved from ordinary differential equations, and they will be used in the penalty term. According to current
smoothing parameter selection strategy, the model may need to be fitted to the data multiple times. Hence,
it is not clear whether or not its computational expense is lower than that of the other approaches. In all
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pharmacokinetics models, only blood samples can be assessed; the drug concentrations in all the other
organs or peripheral compartments cannot be directly measured. Therefore, an evaluation of the speed
for various approaches is absolutely necessary.

One important application of the pharmacokinetics model is its ability in prediction. It will be interesting
to see whether the generalized smoothing approach can improve the prediction or not.

Sylvain Sardy (Université de Genève)
The backbone of the methodology proposed is the expansion representation of output functions so that
both xi.t/=ΣKi

k=1cik φi.t/ and its derivative ẋi.t/=ΣKi
k=1cik φ̇i.t/ are a linear form of the same coefficients ci.

Besides solving the non-trivial optimization, providing variance estimation is also an achievement. The
authors’ substantial work is the source of many research directions for statisticians, like non-parametric
estimation.

The authors essentially solve the least squares problem for systems of differential equations by letting
λi become large in equation (13). At the limit, no regularization is performed: they solve the constrained
problem, as in linear regression one could solve minθ.‖y−Xθ‖2

2/ by successively solving min.θ,x‖y−x‖2
2/+

λ‖x −Xθ‖2
2 and letting λ→∞. This observation leads to two points. First the constrained optimization

could be solved efficiently by handling constraints directly. Second if the true parametric equations are
not completely known, the practice is to do model selection. Take the FitzHugh–Nagumo equations (2)
for instance: we could start with the richer model

V̇ = c

(
V − V 3

3
+dR+ eR2

)
,

Ṙ=−1
c
{fV +g log.V/−a+bR+hR2}

and estimate a sparse vector of coefficients θ= .a, c, d, e, f , g, h/ while satisfying the constraints that are
imposed by the differential equations. A possible model selection strategy consists in solving a lasso-type

Fig. 16. Monte Carlo simulation for θ D1:3 with Gaussian equispaced samples of 500: (a) box plots of θ̂ for
Q 2{K � 1, K � 2, K � 50} and one typical estimated derivative of ·x.t/, when (b) dim(Ker)D1, (c) dim(Ker) D
2 and (d) dim(Ker) = 50
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l1 penalized least squares. The convex l1-penalty on θ may also have the advantage of removing some of
the ripples of Fig. 2. Solving the constrained l1 penalized least squares is a worthy challenge to achieve
model selection for systems of non-linear differential equations. Finally, increasing the dimension of θ
with the sample size, non-parametric estimation becomes possible.

The number of terms Ki that are used in each spline expansion relative to the number Qi of collocation
points is important. We illustrate with a toy differential equation: ẋ.t/=f.t, x; θ/=θ x.t/ defined on [−2, 2]
with θ=1:3. The data consist of N =500 equispaced measurements y =x +ε, where ε∼N.0, I/. We solve

min
θ,c

. 1
2 ‖y −x‖2

2/

subject to

L.c, θ/ := Ḃc −θBc =0,
x =Xc

where X is the N × K spline matrix (K = 250), and B and Ḃ are the Q × K matrices of splines and their
derivatives. For the residuals L.c, θ/=0 to have a solution other than c =0 for all θ, the kernel of Ḃ − θB
must be different from {0}. A sufficient condition is Q<K. Here the correct choice seems to be Q=K −1
to have dim{Ker.Ḃ −θB/}=1 and to fit the solution x.t; θ/= exp.θt/. Choosing a smaller value of Q has
adverse effects. For each choice of Q∈{K − 1, K − 2, K − 50} we estimate 500 times θ and c. Looking at
Fig. 16, we see that both bias and variance increase with K −Q and that the estimation of ẋ.t/ becomes
bad when Q<K −1. This Monte Carlo experiment shows that the choice of Ki and Qi calls for particular
attention.

Hulin Wu (University of Rochester)
I congratulate Professor Ramsay and his collegues on their stimulating paper that introduces the inverse
problem of ordinary differential equations (ODEs) to the statistical research community. The problem of
predicting the results of measurements for a given ODE model is called the forward problem. The inverse
problem is to use the measurements of state variables to estimate the parameters in the ODE model. This
paper reflects the important effort to promote more statistical research to address the statistical inverse
problem for differential equation models. The inverse problem for ODE models is a long-standing prob-
lem in the mathematical modelling research community, but it is less familiar in the statistical research
community. However, this is an area in which statisticians can make significant contributions. Mathema-
ticians and engineers have made great progress in addressing the ODE inverse problem, but mostly from
theoretical perspectives and on the basis of the standard least squares principle (Anger, 1990; Lawson
and Hanson, 1995; Englezos and Kalogerakis, 2001; Tarantola, 2005; Aster et al., 2005; Li et al., 2005).
Modern statistical techniques have not been widely used in this field.

Ramsay and his colleagues introduced an interesting smoothing-based profiling estimation procedure to
estimate parameters in ODE models. This method avoids numerically solving the ODEs, which is a good
feature compared with the least squares method. The proposed penalized log-likelihood and least squares
criteria (14) and (15) are weighted ‘goodness-of-fit’ measures to the observed data and to the ODE model.
This indicates that both observations and ODE model have errors, and the criteria proposed are an attempt
to trade off these two errors. Thus, the optimal weight (λ) should depend on the relative magnitudes of the
observation error and the ODE model error. Thus, there is a need to introduce the model error into the spec-
ification of the ODE model which is similar to the Kalman filtering in the state space model (Stengel, 1994).

It is worthwhile to point out that there are a few publications on ODE parameter estimation in the
statistical literature. For example, Li et al. (2002) proposed a spline-based estimation method to estimate
the time varying parameters in a pharmacokinetic (ODE) model for longitudinal data, whereas Chen and
Wu (2007) proposed a local kernel smoothing-based two-step estimation method to estimate time vary-
ing parameters in ODE models. Huang and Wu (2006) and Huang et al. (2006) employed a hierarchical
Bayesian approach to estimate kinetic parameters in ODE models for longitudinal data.

The authors replied later, in writing, as follows.

We thank the Royal Statistical Society for providing the venue for this paper and its discussion, and the
discussants for their many insightful comments from so many different backgrounds. There seems to be
near universal agreement on the lack of good statistical methodology for estimation and inference in non-
linear dynamics and on the need for greater involvement from the statistical community in these problems.
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The generation of interest may be the most important contribution of our paper. We are, of course, not
the only statisticians to have worked in this field, and we thank the discussants for adding to our references
to previous work. The range of ideas in the commentaries indicates the breadth of research problems that
remain open, and we look forward to exciting times. From among the many issues raised, we have selected
a few that especially require further comment.

Choosing λ for inference and prediction
Smoothing parameter choice is clearly the most vexing aspect of our method. We do not have ready
answers, and in fact we think that interesting answers will have to wait for a tighter specification of the
questions. For example, Gu points out that there are two distinct and often contradictory goals here. The
smoothing objective of representing the observed trajectories well will often require somewhat smaller
values of λ than will the problem of estimation of the parameters θ.

Criteria such as cross-validation, generalized or not, are too tightly tied to data smoothing to be reliable
routes to optimal parameter estimation. More generally, a data smoother is only one example of a function
g.θ/ that may be the actual target of the experiment and subsequent data analysis, and where we judge the
quality of θ̂ by the usefulness of g.θ̂/. Ellner raises the important question of extrapolation, either further
forward in time or for new runs, given that our smooth is not a direct solution to the ordinary differential
equation (ODE). We are intrigued by his ideas, and we note their resemblance to the path following tech-
niques that are described by Smith. We look forward to seeing further developments; a particular question
would be how far ahead we should look.

When the smooth and the ODE do not coincide, we suggest that it is the smooth that should be taken
to represent the actual trajectory of the system. However, the discrepancy between the two can be used as
a diagnostic for potentially misspecified measurement processes, such as in the autoregressive integrated
moving average structure that is highlighted by Olhede.

Stochastic differential equations
We warmly agree with the many commentators who insist that no experiment is completely deterministic
and free of external influences. Numerous of them have pointed out the resemblance of our methods to
stochastic differential equations (SDEs), where the usual notation is

dXt =f.Xt , t/ dt +σ.Xt , t/ dBt

with dBt being the innovation distribution and σ.Xt , t/ specifying its standard deviation, possibly varying
with the process level Xt and otherwise with respect to time t.

The innovation distribution in SDEs is intended to account for random variation and unobserved influ-
ences. As Ionides points out, it may also be used to account for model misspecification, although this needs
to be taken in conjunction with diagnostics for systematic lack of fit, As with serial correlation in linear
regression, some care needs to be taken in evaluating the appropriateness of the innovation distribution.
Here, Smith’s methods have some interesting diagnostic ideas and we would like to see whether they could
also be used to suggest some form of serial correlation as, for example, in an integrated Gaussian process.
Allowing the innovation distribution to vary over state space (which is another intriguing idea) could be
incorporated in the smoothing methods that we describe, but we are cautious about overcomplicating
models without good reason.

The connection between penalized splines and Gaussian processes has long been recognized, and for-
malized, for example, in Wahba (1990). We are working on extending these results to non-linear penalties
of the type that we use, and we thank Ionides for his encouragement. An alternative approach to estimating
SDEs by using smoothing could be to represent the innovation distribution as

dB.t/=φ.t/′c

where the c are random effects in the spirit of Ruppert et al. (2005). Our estimation procedure would
then look like conditional inference in a non-linear mixed model. This opens the door, for example, to
restricted maximum likelihood type estimates of λ. Such an approach reintroduces some of the numerical
difficulties that we sought to avoid, but we are exploring how mixed model ideas could be translated into
our methods.

Diagnostics
No models are perfect and Kovac, Olhede, Smith, Boker, and Chow and Tiberio have all pointed out the
need for good methods to suggest model improvements. Kovac and Olhede both suggest methods for find-
ing serial correlation that may need to be accounted for via a change in the likelihood, or for finding regime
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changes which would motivate a change in parameter values. Chow and Tiberio would use the penalty as
a way of checking for misspecification on the derivative scale, which would give us direct access to where
the model may be wrong structurally. We have developed this idea in Hooker (2007), including examining
some identifiability issues. One problem is the vast range of model modifications that are possible in a
non-linear dynamic model, and we advise particular caution and consultation with domain experts.

Extensions
A large range of further models to which our methods could be applied have been mentioned by com-
mentators. We would like to point out that some of the desired functionality is already available in the
publicly provided software, although these have not been directly addressed. In particular, we allow for θ
to be penalized by a twice differentiable function. This provides a way to include a Bayesian prior (Kass
and Guillas), parameters that vary smoothly over time (Earn, Kovac and Smith) and mixed models over
experiments (Li, and Donnet and Samson). We also allow for mixtures of derivatives, including zero order.

Unfortunately, the choice of norms that is desired by Biegler and Olhede is not available in current soft-
ware, but we agree that this represents an important area of software development. The partial differential
equations that are desired by Bampfylde are more problematic, both in terms of implementation and in
terms of theory. Unlike ODEs, partial differential equation boundary conditions are infinite dimensional
and must be constrained in some way to ensure that the problem is identifiable. This seems like a fascinating
area for future work.

Bayesian methods and identifiability
Bayesian analysis (Dowd, Guillas, Kass and Wu) has been used in some of the most successful applications
of statistical methods to non-linear dynamic systems. This is at least partly due to the ease of implemen-
tation of Markov chain Monte Carlo computation and its ability to side-step the issue of parameter
identifiability. However, our own experience is that the local minima that plague non-linear least squares
methods is also a problem for a Bayesian approach, so one must be cautious in concluding that the Markov
chain has converged.

In recent work, Campbell (2007) has adapted our relaxed fit smoothing to a collocation tempering
approach with Markov chain Monte Carlo methods. In this parallel chain Markov chain Monte Carlo
algorithm, one chain uses the solution to the ODE xθ.t/, as the location parameter in the likelihood.
The remaining parallel chains are constructed by substituting xθ.t/ with smooth approximations to the
ODE solution xθ,λ.t/ = c.θ, λ/′ φ.t/, where λ is fixed within each chain. Parameters are allowed to swap
between parallel chains, similarly to parallel tempering (Geyer, 1991), leading to improving convergence
and stability. Furthermore, the combination of chains using xθ.t/ and xθ, λ.t/ allows inference on θ and
the fits to the data from the deterministic model and a relaxed smooth.

There is a substantial literature on identifiability in ODEs, as picked up by Kass and Iyengar, and it is not
difficult to find systems which are unidentifiable. A simple diagnostic is to examine the Fisher information
matrix at the current parameters, as do Wu et al. (2007) for the dynamics of human immunodeficiency virus.

Bases
Huang and Ma, and Olhede note that, unlike traditional smoothing, a large number of basis functions
may be required by our collocation approach. Deuflhard and Bornemann (2000) reviewed the literature
in numerical analysis on the size of basis. If we intend to let λ→∞, then it is sufficient to select a basis
that is sufficiently rich to represent a solution to the ODE. Could stochastic differential equations require
even richer bases? This may be possible, but we know of no work in the area.

The choice of quadrature technique is an issue, and we know that our implementation may not be opti-
mal. Biegler, Kovacs and Olhede argue for penalty norms that would allow the penalty to be explicitly set
to zero for a finite λ, and Sardy observes that this is only possible if the quadrature rule contains no more
points than basis functions. In fact, collocation methods are usually based on Gauss–Radau quadrature
between knots with the same number of Legendre polynomial terms as quadrature points.

We reran the FitzHugh–Nagumo simulations using Huang and Ma’s 201 observations and 201 knots
but placed equally weighted quadrature points only at each knot. At λ = 104, there was no observable
difference over 200 simulations between this quadrature and the Simpson’s rule that we initially employed
in terms of parameter estimation bias and standard error. However, the new quadrature rule was about
100 times faster to provide answers.

However, we encountered a new issue when we smoothed a sample of simulated date at the higher
smoothing level λ=107 using the true parameters. Fig. 17 shows that Simpson’s rule quadrature produces
a substantial distortion in the initial shape of the path, whereas the simpler collocation regime remains
indistinguishable from the true trajectory. In contrast, the FitzHugh–Nagumo dynamics are comparatively
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Fig. 17. Smooths of the data (�) with true parameters and by using Simpson’s quadrature rule ( ) and
equally weighted quadrature points at the knots (– – –): the simpler quadrature rule is visually indistinguish-
able from the true trajectory

mild, and our experience is that the choices of bases and quadrature methods for systems with sharper
dynamics and discontinuous inputs require considerable care.

Dynamical features
Dynamical features such as limit cycles, fixed points, bifurcations and chaos are central areas of interest in
non-linear dynamics and, as both Brown, and Guckenheimer and Tien observe, they have played very little
role in traditional parameter estimation techniques, including our own. Too little attention has been given
to problems of inference about dynamical features. However, along with Kulperger, we note that dynamic
behaviour can be quite different in stochastic differential equations and the analysis that is required to
understand it is not necessarily easy.

Guckenheimer and Tien suggest only searching the parameter space where limit cycles exist. In general,
dynamical features, when they can be readily analysed, can be incorporated in Bayesian priors. Using
estimated features such as periods and peaks as data is also interesting, but methods for understanding
uncertainty from this feature perspective remain to be developed.

Response surfaces
We are pleased to see so many commentaries on our Fig. 5: the nature of response surfaces that must be
minimized has been one of the factors retarding progress in the area. In common with our approach, several
methods have been developed over the years that rely on relaxing the solution to the differential equation,
at least at intermediate steps. The idea of fitting cycles independently, as advocated by Guckenheimer and
Tien, may be viewed as using different initial conditions for each cycle. This is similar to the methods
in Bock (1983), in which the ODE is solved over adjoining small intervals, and where discontinuities at
interval boundaries are successively reduced. Tjoa and Biegler (1991) also provided methods that do not
explicitly solve the ODE until the final set of parameter estimates.

An explanation for why the approach provides better-conditioned minimization problems could be that,
if the approximate trajectory is different from the trajectory that is given by the parameters, the response
surface will be partly affected by ‖ẋ − f.x, θ/‖, which is frequently more convex than the original likeli-
hood criterion. We believe that firming up this conjecture may be useful for other difficult optimization
problems.

Asymptotics
No statistical paper is complete without an asymptotic analysis, and we thank Olhede for providing ours.
This is given in the context of a deterministic model in which the essential point is to ensure that θ continues
to affect xθ,λ. With infill asymptotics, we are now back to maximum likelihood theory. In the expanding
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domain case, the situation is somewhat more complicated, since we need to ensure that λ increases at a rate
that is sufficiently fast to force the convergence of xθ,λ to an exact solution; this again implies an N1+δ-rate.
To answer Lele’s question, infill asymptotics with independent and identically distributed residuals about
a deterministic system does not appear to be reasonable and suggests either a Gaussian process for the
errors or a stochastic differential equation, or both. In such cases, neither infill nor expanding domain
asymptotics alone may be sufficient to provide consistency.

Conclusion
We have been impressed and stimulated by the range of ideas and perspectives in the commentaries and
thank the Royal Statistical Society for making this discussion possible. There appear to be several indepen-
dent suggestions that might benefit from collaboration between our discussants. Many other comments
will require a paper or more to address adequately. It is clear that we still have much work to do, both for
this method and for inference in non-linear dynamics generally. We hope that this paper has demonstrated
both the challenge and the interest in these problems, and that it inspires more statisticians to help us to
solve them.

References in the discussion

Anderson, R. M. and May R. M. (199l) Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford
University Press.

Anger, G. (1990) Inverse Problems in Differential Equations. Berlin: Kluwer.
Ascher, U. M. and Petzold, L. R. (1998) Computer Methods for Ordinary Differential Equations and Differential-

algebraic Equations. Philadelphia: Society for Industrial and Applied Mathematics.
Aster, R. C., Borchers, B. and Thurber, C. H. (2005) Parameter Estimation and Inverse Problems. Boston: Elsevier.
Bauch, C. T. and Earn, D. J. D. (2003) Transients and attractors in epidemics. Proc. R. Soc. Lond. B, 270, 1573–

1578.
Bayarri, M., Berger, J., Cafeo, J., Garcia-Donato, G., Liu, F., Palomo, J., Parthasarathy, R., Paulo, R., Sacks, J.

and Walsh, D. (2007) Computer model validation with functional output. Ann. Statist., to be published.
Berger, J. O., Liseo, B. and Wolpert, R. L. (1999) Integrated likelihood methods for eliminating nuisance param-

eters. Statist. Sci., 14, 1–28.
Bergstrom, A. R. (1966) Nonrecursive models as discrete approximations to systems of stochastic differential

equations. Econometrica, 34, 173–182.
Beskos, A., Papaspiliopoulos, O., Roberts, G. O. and Fearnhead, P. (2006) Exact and computationally efficient

likelihood-based estimation for discretely observed diffusion processes (with discussion). J. R. Statist. Soc. B,
68, 333–382.

Biegler, L. T., Ghattas, O., Heinkenschloss, M. and van Bloemen Waanders, B. (eds) (2003) Large-scale PDE-
constrained optimization. Lect. Notes Computnl Sci. Engng, 30.

Bjornstad, O. N., Finkenstadt, B. F. and Grenfell, B. T. (2002) Dynamics of measles epidemics: estimating scaling
of transmission rates using a time series SIR model. Ecol. Monogr., 72, 169–184.

Bock, H. G. (1983) Recent advances in parameter identification techniques for ODE. In Numerical Treatment of
Inverse Problems in Differential and Integral Equations (eds P. Deuflhard and E. Harrier), pp. 95–121. Basel:
Birkhäuser.

Boker, S. M., Neale, M. C. and Rausch, J. (2004) Latent differential equation modeling with multivariate multi-
occasion indicators. In Recent Developments on Structural Equation Models: Theory and Applications (eds K.
van Montfort, H. Oud and A. Satorra), pp. 151–174. Dordrecht: Kluwer.

Brown, E. N. (1987) Identification and estimation of differential equation models for circadian data. PhD Dis-
sertation. Department of Statistics, Harvard University, Cambridge.

Brown, E. N., Choe, Y., Luithardt, H. and Czeisler, C. A. (2000) A statistical model of the human core-temperature
circadian rhythm. Am. J. Physiol., 279, E669–E683.

Campbell, D. (2007) Bayesian collocation tempering and generalized profiling for estimation of parameters from
differential equation models. PhD Thesis. McGill University, Montreal.

Candès, E. J. and Tao, T. (2005) The Dantzig selector: statistical estimation when p is much larger than n. Technical
Report. Caltech, Pasadena.

Casey, R. (2004) Periodic orbits in neural models: sensitivity analysis and algorithms for parameter estimation.
PhD Thesis. Cornell University, Ithaca.

Chen, J. and Wu, H. (2007) Estimation of time-varying parameters in deterministic dynamic models with appli-
cation to HIV infections. Statist. Sin., to be published.

Chorin, A. J. and Krause, P. (2004) Dimensional reduction for a Bayesian filter. Proc. Natn. Acad. Sci. USA, 101,
15013–15017.

Coulson, T., Rohani, P. and Pascual, M. (2004) Skeletons, noise and population growth: the end of an old debate?
Trends Ecol. Evoln, 19, 359–364.

Cressie, N. A. C. (199l) Statistics for Spatial Data. New York: Wiley.



794 Discussion on the Paper by Ramsay, Hooker, Campbell and Cao

Czanner, G. (2004) Applications of statistics in neuroscience. PhD Dissertation. Department of Statistics, Uni-
versity of Pittsburgh, Pittsburgh.

Czanner, G., Iyengar, S., Zajtsev, A. and Krimer, L. (2007) Maximum likelihood estimation of state-space
integrate-and-fire model of adapting neurons. Technical Report. Department of Statistics, University of Pitts-
burgh, Pittsburgh.

Czeisler, C. A., Duffy, J. F., Shanahan, T. L., Brown, E. N., Mitchell, J. F., Rimmer, D. W., Ronda, J. M., Silva, E.,
Allan, J. S., Emens, J. S., Dijk, D. J. and Kronauer, R. E. (1999) Age-independent stability, precision, and near
24 hour period of the human circadian pacemaker. Science, 284, 2177–2181.

Czeisler, C. A., Kronauer, R. E., Allan, J. S., Duffy, J. F., Jewett, M. E., Brown, E. N. and Ronda, J. M. (1989)
Bright light induction of strong (Type 0) resetting of the human circadian pacemaker. Science, 244, 1328–
1333.

Davidian, M. and Giltinan, D. M. (2003) Nonlinear models for repeated measurement data: an overview and
update. J. Agric. Biol. Environ. Statist., 8, 387–419.

Davies, P. L. and Kovac, A. (2001) Local extremes, runs, strings and multiresolution (with discussion). Ann.
Statist., 29, 1–65.

Deuflhard, P. and Bornemann, F. (2000) Scientific Computing with Ordinary Differential Equations. New York:
Springer.

Diks, C. (1999) Nonlinear Time-series Analysis: Methods and Applications. Singapore: World Scientific Publish-
ing.

Dowd, M. (2006) A sequential Monte Carlo approach to marine ecological prediction. Environmetrics, 17, 435–
455.

Dowd, M. (2007) Bayesian statistical data assimilation for ecosystem models using Markov Chain Monte Carlo.
J. Mar. Syst., doi 10.1016/j.jmarsys.2007.01.007, to be published.

Durbin, J. and Koopman, S. J. (2001) Times Series Analysis by State-space Methods. New York: Oxford University
Press.

Dushoff, J., Plotkin, J. B., Levin, S. A. and Earn, D. J. D. (2004) Dynamical resonance can account for seasonality
of influenza epidemics. Proc. Natn. Acad. Sci. USA, 101, 16915–16916.

Earn, D. J. D., Rohani, P., Bolker, B. M. and Grenfell, B. T. (2000) A simple model for complex dynamical
transitions in epidemics. Science, 287, 667–670.

Ellner, S. P., Bailey, B. A., Bobashev, G. V., Gallant, A. R., Grenfell, B. T. and Nychka, D. W. (1998) Noise and
nonlinearity in measles epidemics: combining mechanistic and statistical approaches to population modeling.
Am. Naturlst, 151, 425–440.

Ellner, S. P. and Guckenheimer, J. (2006) Dynamic Models in Biology. Princeton: Princeton University Press.
Ellner, S. P., Seifu, Y. and Smith, R. H. (2002) Fitting population dynamic models to time-series data by gradient

matching. Ecology, 83, 2256–2270.
Englezos, P. and Kalogerakis, N. (2001) Applied Parameter Estimation for Chemical Engineers. New York: Dekker.
Evensen, G. (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean

Dyn., 53, 343–367.
Fahrmeir, L. and Tutz, G. (eds) (1994) Multivariate Statistical Modelling based on Generalized Linear Models.

Berlin: Springer.
Fine, P. E. M. and Clarkson, J. A. (1982) Measles in England and Wales—I: an analysis of factors underlying

seasonal patterns. Int. J. Epidem., 11, 5–14.
Finkenstädt, B. F. and Grenfell, B. T. (2000) Time series modelling of childhood diseases: a dynamical systems

approach. Appl. Statist., 49, 187–205.
Gelman, A., Bois, F. and Jiang, J. (1996) Physiological pharmacokinetic analysis using population modeling and

informative prior distributions. J. Am. Statist. Ass., 91, 1400–1412.
Geyer, C. (1991) Markov chain monte carlo maximum likelihood. In Computing Science and Statistics: Proc. 23rd

Symp. Interface (ed. E. M. Keramidas), pp. 156–163. Fairfax Station: Interface Foundation.
Godsill, S. J., Doucet, A. and West, M. (2004) Monte Carlo smoothing for nonlinear time series. J. Am. Statist.

Ass., 99, 156–168.
Higdon, D., Gattiker, J. and Williams, B. (2007) Computer model calibration using high dimensional output.

J. Am. Statist. Ass., to be published.
Hodgkin, A. and Huxley, A. (1952) A quantitative description of membrane current and its application to con-

duction and excitation in nerve. J. Physiol., 117, 500–544.
Hooker, G. (2007) Forcing function diagnostics for nonlinear dynamics. To be published.
Hotelling, H. (1927) Differential equations subject to error, and population estimates. J. Am. Statist. Ass., 22,

283–314.
Huang, Y., Liu, D. and Wu, H. (2006) Hierarchical Bayesian methods for estimation of parameters in a longitu-

dinal HIV dynamic system. Biometrics, 62, 4l3–423.
Huang, Y. and Wu, H. (2006) A Bayesian approach for estimating antiviral efficacy in HIV dynamic models.

J. Appl. Statist., 33, 155–174.
Ionides, E. L., Bretó, C. and King, A. A. (2006) Inference for nonlinear dynamical systems. Proc. Natn. Acad.

Sci. USA, 103, 18438–18443.



Discussion on the Paper by Ramsay, Hooker, Campbell and Cao 795

Itô, K. (1951) On stochastic differential equations. In American Mathematical Society Memoirs, no. 4. New York:
American Mathematical Society.

Judd, K. (2007) Failure of maximum likelihood methods for chaotic dynamical systems. Phys. Rev. E, 75.
Judd, K. and Smith, L. A. (2004) Indistinguishable states II. Physica D, 196, 224–242.
Judd, K., Smith, L. and Weisheimer, A. (2004) Gradient free descent: shadowing, and state estimation using

limited derivative information. Physica D, 190, 153–166.
Kalman, R. E. (1960) A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Engng,

82, 35–45.
Kennedy, M. C. and O’Hagan, A. (2001) Bayesian calibration of computer models (with discussion). J. R. Statist.

Soc. B, 63, 425–464.
Kitagawa, G. (1996) Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Computnl

Graph. Statist., 5, 1–25.
Koch, C. (1999) Biophysics of Computation: Information Processing in Single Neurons. New York: Oxford Uni-

versity Press.
Künsch, H. R. (2005) Recursive Monte Carlo filters: algorithms and theoretical analysis. Ann. Statist., 33, 1983–

2021.
Kurtz, T. G. (1980) Relationships between stochastic and deterministic population models. Lect. Notes Biomath.,

38, 449–467.
Lande, R., Engen, S. and Saether, B. (2003) Stochastic Population Dynamics in Ecology and Conservation. Oxford:

Oxford University Press.
Lawson, C. L. and Hanson, R. J. (1995) Solving Least Squares Problems. Philadelphia: Society for Industrial and

Applied Mathematics.
Lele, S. R., Dennis, B. and Lutscher, F. (2007) Data cloning: easy maximum likelihood estimation for complex

ecological models using Bayesian Markov Chain Monte Carlo Methods. Ecol. Lett., 10, 551–563.
Lewis, J. M., Lakshmivarahan, S. and Dhall, S. K. (2006) Dynamic Data Assimilation: a Least Squares Approach.

Cambridge: Cambridge University Press.
Li, L., Brown, M. B., Lee, K. H. and Gupta, S. (2002) Estimation and inference for a spline-enhanced population

pharmacokinetic model. Biometrics, 58, 601–611.
Li, L., Lin, X., Brown, M., Gupta, S. and Lee, K. H. (2004) A population pharmacokinetic model with time-

dependent covariates measured with errors. Biometrics, 60, 451–460.
Li, Z., Osborne, M. and Prvan, T. (2005) Parameter estimation in ordinary differential equations. IMA J. Numer.

Anal., 25, 264–285.
Liu, Y. H. and Wang, X. J. (2001) Spike-frequency adaptation of a generalized leaky integrate-and-fire model

neuron. J. Computnl Neursci., 10, 25–45.
London, W. and Yorke, J. A. (1973) Recurrent outbreaks of measles, chickenpox and mumps: i, seasonal variation

in contact rates. Am. J. Epidem., 98, 453–468.
McSharry, P. E. and Smith, L. A. (2004) Consistent Nonlinear Dynamics: identifying model inadequacy. Physica

D, 192, 1–22.
Mendes, P., Moles, C. G. and Banga, J. R. (2003) Parameter estimation in biochemical pathways: a comparison

of global optimization methods. Genome Res., 13, 2467–2474.
Mitchell, T., Morris, M. and Ylvisaker, D. (1994) Asymptotically optimum experimental designs for prediction

of deterministic functions given derivative information. J. Statist. Planng. Inf., 41, 377–389.
Molenaar, P. C. M. and Newell, K. M. (2003) Direct fit of a theoretical model of phase transition in oscillatory

finger motions. Br. J. Math. Statist. Psychol., 56, 199–214.
Mood, A. M. (1940) The distribution theory of runs. Ann. Math. Statist., 11, 367–392.
Morris, M. D., Mitchell, T. J. and Ylvisaker, D. (1993) Bayesian design and analysis of computer experiments—use

of derivatives in surface prediction. Technometrics, 35, 243–255.
Nocedal, J. and Wright, S. (2006) Numerical Optimization, 2nd edn. New York: Springer.
O’Hagan, A. (1992) Some Bayesian numerical analysis. In Bayesian Statistics 4, pp. 345–363. New York: Oxford

University Press.
Pillai, G., Mentre, F. and Steimer, J. (2005) Non-linear mixed effects modeling—from methodology and software

development driving implementation in drug development science. J. Pharmkin. Pharmdyn., 32, 161–183.
Prinz, A., Bucher, D. and Marder, E. (2004) Similar network activity from disparate circuit parameters. Nat.

Neursci., 7, 1345–1352.
Ramsay, J. O. (1998) Estimating smooth monotone functions. J. R. Statist. Soc. B, 60, 365–375.
R Core Development Team (2006) R: a Language and Environment for Statistical Computing. Vienna: R Foun-

dation for Statistical Computing.
Robert, C. P. and Titterington, D. M. (1998) Reparameterization strategies for hidden Markov models and Bayes-

ian approaches to maximum likelihood estimation. Statist. Comput., 8, 145–158.
Ruppert, D., Wand, M. P. and Carroll, R. J. (2005) Semiparametric Regression. Cambridge: Cambridge University

Press.
Särkkä, S. (2006) On sequential Monte Carlo sampling of discretely observed stochastic differential equations.

In Proc. Nonlinear Statistical Signal Processing Wrkshp, Cambridge, Sept.



796 Discussion on the Paper by Ramsay, Hooker, Campbell and Cao

Schaffer, W. M. (1985) Can nonlinear dynamics elucidate mechanisms in ecology and epidemiology? IMA J.
Math. Appl. Med. Biol., 2, 221–252.

Schwartz, I. B. and Smith, H. L. (1983) Infinite subharmonic bifurcation in an seir model. J. Math. Biol., 18,
233–253.

Singer, H. (1993) Continuous-time dynamical systems with sampled data, errors of measurement and unobserved
components. J. Time Ser. Anal., 14, 527–545.

Smith, L. A. (2000) Disentangling uncertainty and error: on the predictability of nonlinear systems. In Nonlinear
Dynamics and Statistics (ed. A. I. Mees), pp. 31–64. Boston: Birkhäuser.

Solak, E., Murray-Smith, R., Leithead, W. and Leith, D. (2003) Derivative observations in gaussian process
models of dynamic systems. In Advances in Neural Information Processing Systems, vol. 16. Cambridge: MIT
Press.

Stengel, R. F. (1994) Optimal Control and Estimation. London: Dover Publications.
Tanartkit, P. and Biegler, L. T. (1995) Stable decomposition for dynamic optimization. Industrl Engng Chem.

Res., 34, 1253.
Tanartkit, P. and Biegler, L. T. (1996) Reformulating ill-conditioned DAE optimization problems. Industrl Engng

Chem. Res., 35, 1853.
Tarantola, A. (2005) Inverse Problem Theory. Philadelphia: Society for Industrial and Applied Mathematics.
Thompson, K. R., Dowd, M., Lu, Y. and Smith, B. (2000) Oceanographic data assimilation and regression

analysis. Environmetrics, 11, 183–196.
Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267–288.
Tien, J. H. (2007) Optimization for bursting neural models. PhD Thesis. Cornell University, Ithaca.
Tien, J. H. and Guckenheimer, J. (2007) Parameter estimation for bursting neural models. Submitted to J. Computnl

Neursci.
Tjoa, I.-B. and Biegler, L. (1991) Simultaneous solution and optimization strategies for parameter estimation of

differential-algebraic equation systems. Industrl Engng Chem. Res., 30, 376–385.
Turchin, P. (2003) Complex Population Dynamics: a Theoretical/Empirical Synthesis. Princeton: Princeton Uni-

versity Press.
de Valpine, P. (2004) Monte Carlo state space likelihoods by weighted posterior kernel density estimation. J. Am.

Statist. Ass., 99, 523–536.
Varah, J. M. (1982) A spline least squares method for numerical parameter estimation in differential equations.

SIAM J. Scient. Computn, 3, 28–46.
Wahba, G. (1978) Improper priors, spline smoothing and the problem of guarding against model errors in regres-

sion. J. R. Statist. Soc. B, 40, 364–372.
Wahba, G. (1990) Spline Models for Observational Data. Philadelphia: Society for Industrial and Applied Math-

ematics.
Wahba, G. and Wang, Y. (1990) When is the optimal regularization parameter insensitive to the choice of the loss

function? Communs Statist. Theory Meth., 19, 1685–1700.
Wallinga, J. and Teunis, P. (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar

impacts of control measures. Am. J. Epidem., 160, 509–516.
Wood, S. N. (2006) Generalized Additive Models: an Introduction with R. Boca Raton: Chapman and Hall–CRC.
Wu, H., Zhu, H., Miao, H. and Perelson, A. S. (2007) Parameter identifiability and estimation of hiv/aids dynamics

models. To be published.
Zenker, S., Rubin, J. and Clermont, G. (2006) Towards a model-based medicine: integration of probabilistic

inference with mechanistic knowledge. J. Crit. Care, 21, 350.
Zimmer, C. (2002) Life after chaos. Science, 284, 83–86.


