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The Empirical Distribution Function – EDF pp 97-99

Suppose we have sample X1, . . . ,Xn of iid real valued rvs.

The empirical distribution function is

F̂n(x) =
1

n

n
∑

i=1

1(Xi ≤ x)

This is a cdf and is an estimate of F , the cdf of the X s.

People also speak of the empirical distribution:

P̂(A) =
1

n

n
∑

i=1

1(Xi ∈ A)

This is the probability distribution corresponding to F̂n.

Now we consider the qualities of F̂n as an estimate, the standard error
of the estimate, the estimated standard error, confidence intervals,
simultaneous confidence intervals and so on.
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Bias, variance and mean squared error

Judge estimates in many ways; focus is distribution of error θ̂ − θ.

Distribution computed when θ is true value of parameter.

For our non-parametric iid sampling model we are interested in

F̂(x)− F (x)

when F is the true distribution function of the X s.

Simplest summary of size of a variable is root mean squared error:

RMSE =

√

Eθ

[

(θ̂ − θ)2
]

Subscript θ on E is important – specifies true value of θ and matches
θ in the error!
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MSE decomposition & variance-bias trade-off
The MSE of any estimate is

MSE = Eθ

[

(θ̂ − θ)2
]

= Eθ

[

(θ̂ − Eθ(θ̂) + Eθ(θ̂)− θ)2
]

= Eθ

[

(θ̂ − Eθ(θ̂))
2
]

+
{

Eθ(θ̂)− θ
}2

In making this calculation there was a cross product term which is 0.
The two terms each have names: the first is the variance of θ̂ while
the second is the square of the bias.
Definition: The bias of an estimator θ̂ is

biasθ̂(θ) = Eθ(θ̂)− θ

So our decomposition is

MSE = Variance + (bias)2.

In practice often find a trade-off. Trying to make the variance small
increases the bias.
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Applied to the EDF

The EDF is an unbiased estimate of F . That is:

E[F̂n(x)] =
1

n

n
∑

i1=

E[1(Xi ≤ x)]

=
1

n

n
∑

i=1

F (x) = F (x)

so the bias is 0.

The mean squared error is then

MSE = Var(F̂n(x)) =
1

n2

n
∑

i=1

Var[1(Xi ≤ x)] =
1

n
F (x)[1 − F (x)].

This is very much the most common situation: the MSE is
proportional to 1/n in large samples.

So the RMSE is proportional to 1/
√
n.

RMSE is measured in same units as θ̂ so is scientifically right.
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Biased estimates

Many estimates exactly or approximately averages or ftns of averages.

So, for example,

X̄ =
1

n
Xi and X̄ 2 =

1

n
X 2
i

are unbiased estimates of E(X ) and E(X 2).

We might combine these to get a natural estimate of σ2:

σ̂2 = X̄ 2 − X̄ 2

This estimate is biased:

E
[

(X̄ )2
]

= Var(X̄ ) +
[

E(X̄ )
]2

= σ2/n + µ2.

So the bias of σ̂2 is

E

[

X̄ 2
]

− E
[

(X̄ )2
]

− σ2 = µ′

2 − µ2 − σ2/n − σ2 = −σ2/n.
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Relative sizes of bias and variance

In this case and many others the bias is proportional to 1/n.

The variance is proportional to 1/n.

The squared bias is proportional to 1/n2.

So in large samples the variance is more important!

The biased estimate σ̂2 is traditionally changed to the usual sample
variance s2 = nσ̂2/(n − 1) to remove the bias.

WARNING: the MSE of s2 is larger than that of σ̂2.
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Standard Errors and Interval Estimation

In any case point estimation is a silly exercise.

Assessment of likely size of error of estimate is essential.

A confidence interval is one way to provide that assessment.

The most common kind is approximate:

estimate± 2 estimated standard error

This is an interval of values L(X ) < parameter < U(X ) where U and
L are random.

Justification for the two se interval above?

Notation φ̂ is the estimate of φ. σ̂φ̂ is the estimated standard error.

Use central limit theorem, delta method, Slutsky’s theorem to prove

lim
n→∞

PF

(

φ̂− φ

σ̂φ̂
≤ x

)

= Φ(x)
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Pointwise limits for F (x)

Define, as usual zα by Φ(zα) = 1− α and approximate

PF

(

−zα/2 ≤
φ̂− φ

σ̂φ̂
≤ zα/2

)

≈ 1− α.

Solve inequalities to get usual interval.

Now we apply this to φ = F (x) for one fixed x .

Our estimate is φ̂ ≡ F̂n(x).

The random variable nφ̂ has a Binomial distribution.

So Var(F̂n(x)) = F (x)(1 − F (x))/n. The standard error is

σφ̂ ≡ σ
F̂n(x)

≡ SE ≡
√

F (x)[1 − F (x)]√
n

.

According to the central limit theorem

F̂n(x) − F (x)

σ
F̂n(x)

d→ N(0, 1)

See homework to turn this into a confidence interval.
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Plug-in estimates

Now to estimate the standard error.

It is easier to solve the inequality
∣

∣

∣

∣

∣

F̂n(x)− F (x)

SE

∣

∣

∣

∣

∣

≤ zα/2

if the term SE does not contain the unknown quantity F (x).

This is why we use an estimated standard error.

In our example we will estimate
√

F (x)[1 − F (x)]/n by replacing

F (x) by F̂n(x):

σ̂Fn(x) =

√

F̂n(x)[1 − F̂n(x)

n
.

This is an example of a general strategy: plug-in.

Start with estimator, confidence interval or test whose formula
depends on other parameter; plug-in estimate of that other parameter.

Sometimes the method changes the behaviour of our procedure and
sometimes, at least in large samples, it doesn’t.
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Pointwise versus Simultaneous Confidence Limits
In our example Slutsky’s theorem shows

F̂n(x)− F (x)

σ̂Fn(x)

d→ N(0, 1).

So there was no change in the limit law (alternative jargon for
distribution).
We now have two pointwise 95% confidence intervals:

F̂n(x)± z0.025

√

F̂n(x)[1 − F̂n(x)]/n

or

{F (x) :
∣

∣

∣

∣

∣

√
n(F̂n(x)− F (x))
√

F (x)[1 − F (x)]

∣

∣

∣

∣

∣

≤ z0.025}

When we use these intervals they depend on x .
And we usually look at a plot of the results against x .
If we pick out an x for which the confidence interval is surprising to
us we may well be picking one of the x values for which the
confidence interval misses its target.
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Simultaneous intervals

So we really want

PF (L(X , x) ≤ F (x) ≤ U(X , x) for all x) ≥ 1− α.

In that case the confidence intervals are called simultaneous.

Two possible methods: one exact, but conservative, one approximate,
less conservative.

Dvoretsky-Kiefer-Wolfowitz inequality:

PF (∃x : |F̂n(x)− F (x)| >
√

− log(α/2)

2n
) ≤ α

Limit theory:

PF (∃x : |
√
n|F̂n(x)− F (x)| > y) → P(∃x : |B0(x)| > y)

where B0 is a Brownian Bridge (special Gaussian process).
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Statistical Functionals

Not all parameters are created equal.

In the Weibull model density

f (x ;α, β) =
1

β

(

x

β

)α−1

exp{−(x/β)α}1(x > 0).

there are two parameters: shape α and scale β.

These parameters have no meaning in other densities.

But every distribution has a median and other quantiles:

pth-quantile = inf{x : F (x) ≥ p}.
If r is bounded ftn then every distribution has value for parameter

φ ≡ EF (r(X )) ≡
∫

r(x)dF (x).

Most distributions have a mean, variance and so on.

A ftn from set of all cdfs to real line is called a statistical functional.

Example: EF (X
2)− [EF (X )]2.
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Statistical functionals
The statistical functional

T (F ) =

∫

r(x)dF (x)

is linear.
The sample variance is not a linear functional.
Statistical functionals are often estimated using plug-in estimates so

ˆT (F ) =

∫

r(x)dF̂n(x) =
1

n

n
∑

1

r(Xi).

This estimate is unbiased and has variance

σ2
ˆT (F )

= n−1

[

∫

r2(x)dF (x) −
{
∫

r(x)dF (x)

}2
]

.

This can in turn be estimated using a plug-in estimate:

σ̂2
ˆT (F )

= n−1

[

∫

r2(x)dF̂n(x)−
{
∫

r(x)dF̂n(x)

}2
]

.
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Plug-in estimates of functionals; bootstrap standard errors

When r(x) = x we have T (F ) = µF (the mean)

The standard error is σ/
√
n.

Plug-in estimate of SE replaces σ with sample SD (with n not n − 1
as the divisor).

Now consider a general functional T (F ).

The plug-in estimate of this is T (F̂n).

The plug-in estimate of the standard error of this estimate is

√

Var
F̂n
(T (F̂n)).

which is hard to read and seems hard to calculate in general.

The solution is to simulate, particularly to estimate the standard error.
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Basic Monte Carlo

To compute a probability or expected value can simulate.

Example: To compute P(|X | > 2) use software to generate some
number, say M, of replicates: X ∗

1 , . . . ,X
∗

M
all having same

distribution as X .

Estimate desired probability using sample fraction.

R code: x=rnorm(1000000) ; y =rep(0,1000000); y[abs(x)

>2] =1 ; sum(y)

Produced 45348 when I tried it. Gives p̂ = 0.045348.

Correct answer is 0.04550026.

Using a million samples gave 2 correct digits, error of 2 in third digit.

Using M = 10000 is more common. I got p̂ = 0.0484.

SE of p̂ is
√

p(1− p)/100 = 0.0021. So error of up to 4 in second
significant digit is likely.

Richard Lockhart (Simon Fraser University)STAT 830 Non-parametric Inference Basics STAT 830 — Fall 2013 16 / 25



The bootstrap

In bootstrapping X is replaced by the whole data set.

Generate new data sets (X ∗) from distribution F of X .

Don’t know F so use F̂n.

Example: Interested in distribution of t pivot:

t =

√
n(X̄ − µ)

s
.

Have data X1, . . . ,Xn. Don’t know µ or cdf of X s.

Replace these by quantities computed from F̂n.

Call µ∗ =
∫

xdF̂n(x) = X̄ .

Draw X ∗

1,1, . . . ,X
∗

1,n an iid sample from the cdf F̂ .

Repeat M times computing t from * values each time.
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Bootstrapping the t pivot

Here is R code:
x=runif(5)

mustar = mean(x)

tv=rep(0,M)

tstarv=rep(0,M)

for( i in 1:M){
xn=runif(5)

tv[i]=sqrt(5)*mean(xn-0.5)/sqrt(var(xn))

xstar=sample(x,5,replace=TRUE)

tstarv[i]=sqrt(5)*mean(xstar-mustar)/sqrt(var(xstar))

}
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Bootstrapping a pivot continued

Loop does two simulations.

in xn and tv we do parametric bootstrapping: simulate t-pivot from
parametric model.

xstar is bootstrap sample from population x.

tstarv is t-pivot computed from xstar.

Original data set is

(0.7432447, 0.8355277, 0.8502119, 0.3499080, 0.8229354)

So mustar =0.7203655

Side by side histograms of tv and tstarv on next slide.
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Bootstrap distribution histograms
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Using the bootstrap distribution

Confidence intervals: based on t-statistic: T =
√
n(X̄ − µ)/s.

Use the bootstrap distribution to estimate P(|T | > t).

Adjust t to make this 0.05. Call result c .

Solve |T | < c to get interval

X̄ ± cs/
√
n.

Get c = 22.04, x̄ = 0.720, s = 0.211; interval is -1.36 to 2.802.

Pretty lousy interval. Is this because it is a bad idea?

Repeat but simulate X̄ ∗ − µ∗.

Learn

P(X̄ ∗ − µ∗ < −0.192) = 0.025 = P(X̄ ∗ − µ∗ > 0.119)

Solve inequalities to get (much better) interval

0.720 − 0.119 < µ < 0.720 + 0.192

Of course the interval missed the true value!
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Monte Carlo Study

So how well do these methods work?

Theoretical analysis: let Cn be resulting interval.

Assume number of bootstrap reps is so large that we can ignore
simulation error.

Compute
lim
n→∞

PF (µ(F ) ∈ Cn)

Method is asymptotically valid (or calibrated or accurate) if this limit
is 1− α.

Simulation analysis: generate many data sets of size 5 from Uniform.

Then bootstrap each data set, compute Cn.

Count up number of simulated uniform data sets with 0.5 ∈ Cn to get
coverage probability.

Repeat with (many) other distributions.
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R code

tstarint = function(x,M=10000){
n = length(x)

must=mean(x)

se=sqrt(var(x)/n)

xn=matrix(sample(x,n*M,replace=T),nrow=M)

one = rep(1,n)/n

dev= xn%*%one - must

tst=dev/sqrt(diag(var(t(xn)))/n)

c1=quantile(dev,c(0.025,0.975))

c2=quantile(abs(tst),0.95)

c(must-c1[2],must-c1[1], must -c2*se,must+c2*se)

}
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R code

lims=matrix(0,1000,4)

count=lims

for(i in 1:1000){
x=runif(5)

lims[i,]=tstarint(x)

}
count[,1][lims[,1]<0.5]=1

count[,2][lims[,2]>0.5]=1

count[,3][lims[,3]<0.5]=1

count[,4][lims[,4]>0.5]=1

sum(count[,1]*count[,2])

sum(count[,3]*count[,4])
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Results

804 out of 1000 intervals based on X̄ − µ cover the true value of 0.5.

972 out of 1000 intervals based on t statistics cover true value.

This is the uniform distribution.

Try another distribution. For exponential I get 909, 948.

Try another sample size. For uniform n = 25 I got 921, 941.
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