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The Empirical Distribution Function — EDF  pp 97-99

@ Suppose we have sample X, ..., X, of iid real valued rvs.
@ The empirical distribution function is

N 1 <

Fo(x) = = Z 1(X; < x)

n=<
i=1

@ This is a cdf and is an estimate of F, the cdf of the Xs.

@ People also speak of the empirical distribution:

- R
P(A) = - Z 1(X; € A)
i=1
@ This is the probability distribution corresponding to F.

@ Now we consider the qualities of ﬁn as an estimate, the standard erg
of the estimate, the estimated standard error, confidence intervals,
simultaneous confidence intervals and so on. =

Richard Lockhart (Simon Fraser University)STAT 830 Non-parametric Inference Basics: STAT 830 — Fall 2013 2/25



Bias, variance and mean squared error

Judge estimates in many ways; focus is distribution of error 6—9.

Distribution computed when 6 is true value of parameter.

For our non-parametric iid sampling model we are interested in

A

F(x) — F(x)

when F is the true distribution function of the Xs.

Simplest summary of size of a variable is root mean squared error:

RMSE = || Eq [(9 - 0)2}

Subscript 6 on E is important — specifies true value of § and matches
0 in the error!

ﬁ
=
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MSE decomposition & variance-bias trade-off
@ The MSE of any estimate is

MSE = Eq [(é - 9)2]
= By (8 — Eo(0) + Eo(9) - 0)°]

A o ~ 2
= o |(0 — Eo(0))?] + {Ea(6) - 0}
@ In making this calculation there was a cross product term which is 0.
@ The two terms each have names: the first is the variance of 6 while
the second is the square of the bias.
@ Definition: The bias of an estimator 6 is
biasy(0) = Eg(d) — 0
@ So our decomposition is
MSE = Variance + (bias)?.

@ In practice often find a trade-off. Trying to make the variance smalNzg
increases the bias. ==
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Applied to the EDF

@ The EDF is an unbiased estimate of F. That is:

BIF 0] = DB < %)
il=

=23 F() = FR)

so the bias is 0.
@ The mean squared error is then

. 1 — 1
MSE = Var(Fy(x)) = ;Var[l(X,- <] = ~F()[L = Fx)].
@ This is very much the most common situation: the MSE is
proportional to 1/n in large samples.
@ So the RMSE is proportional to 1//n.

@ RMSE is measured in same units as  so is scientifically right.
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Biased estimates

@ Many estimates exactly or approximately averages or ftns of averages.

@ So, for example,
1 - 1
X=2=X; and X2=-X?
n n

are unbiased estimates of E(X) and E(X?).
@ We might combine these to get a natural estimate of o2:
8% = X2 - X?
@ This estimate is biased:
E [(X)?] = Var(X) + [E(X)]* = 0%/n + 1%
So the bias of 62 is

E [)52] —E[(X)?] -0 =ph—p?—0?/n—0® = —0?/n.

Richard Lockhart (Simon Fraser University)STAT 830 Non-parametric Inference Basics: STAT 830 — Fall 2013 6 /25



Relative sizes of bias and variance

In this case and many others the bias is proportional to 1/n.
The variance is proportional to 1/n.

°

°

@ The squared bias is proportional to 1/n2.

@ So in large samples the variance is more important!
°

The biased estimate &2 is traditionally changed to the usual sample
variance s> = n&2/(n — 1) to remove the bias.

WARNING: the MSE of s? is larger than that of 2.

(]

]

=
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Standard Errors and Interval Estimation

@ In any case point estimation is a silly exercise.

@ Assessment of likely size of error of estimate is essential.

@ A confidence interval is one way to provide that assessment.
°

The most common kind is approximate:

estimate & 2 estimated standard error

This is an interval of values L(X) < parameter < U(X) where U and
L are random.

Justification for the two se interval above?

(]

(]

Notation quS is the estimate of ¢. c“qu5 is the estimated standard error.

Use central limit theorem, delta method, Slutsky's theorem to prove
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Pointwise limits for F(x)

@ Define, as usual z, by ®(z,) =1 — « and approximate

Pr <_Za/2 < u < Za/2> ~1l-o
7%

Solve inequalities to get usual interval.

Now we apply this to ¢ = F(x) for one fixed x.

Our estimate is ¢ = Fp(x).

The random variable nngb has a Binomial distribution.

So Var(F,(x)) = F(x)(1 — F(x))/n. The standard error is

g VFOIR=FO
Fn(x) — - \/ﬁ :

According to the central limit theorem
Fa(x) — F(x)

T, (x)

e © © ¢ ¢

7%

< N(0,1)

@ See homework to turn this into a confidence interval.
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Plug-in estimates

Now to estimate the standard error.
It is easier to solve the inequality

Falx) — F(x)

SE < Zo)2

if the term SE does not contain the unknown quantity F(x).
This is why we use an estimated standard error.

In our example we will estimate \/F(x)[1 — F(x)]/n by replacing
F(x) by Fn(x):

X (I — Falx)
JFn(X) = .

n

This is an example of a general strategy: plug-in.

Start with estimator, confidence interval or test whose formula
depends on other parameter; plug-in estimate of that other parameter..
Sometimes the method changes the behaviour of our procedure andZ&=!
sometimes, at least in large samples, it doesn't. =2
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Pointwise versus Simultaneous Confidence Limits
@ In our example Slutsky’s theorem shows
Fa(x) — F
Fal) = F(4) 4 N(0,1).
UF,,(X)

@ So there was no change in the limit /aw (alternative jargon for
distribution).
@ We now have two pointwise 95% confidence intervals:

F(X)izoozs\/l: )1 = Fa(x)]/n

or
{F(X) : \/E(FH(X) — F(X))
FOOIL = F(X)]
@ When we use these intervals they depend on x.
@ And we usually look at a plot of the results against x.
@ If we pick out an x for which the confidence interval is surprising t
us we may well be picking one of the x values for which the

confidence interval misses its target.
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Simultaneous intervals

@ So we really want
Pe(L(X,x) < F(x) < U(X,x) for all x) >1— a.

@ |n that case the confidence intervals are called simultaneous.

@ Two possible methods: one exact, but conservative, one approximate,
less conservative.

@ Dvoretsky-Kiefer-Wolfowitz inequality:

Pr(3x : |Fa(x) — F(x)| > 4%(’;1/2)

)<a

@ Limit theory:

Pe(3x : V| Fa(x) = F(x)] > y) = P(3x 1 |Bo(x)| > y)

where By is a Brownian Bridge (special Gaussian process).
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Statistical Functionals

Not all parameters are created equal.
In the Weibull model density

fx;a, ) = % (%)a_ exp{—(x/B)*}1(x > 0).

there are two parameters: shape « and scale 5.
These parameters have no meaning in other densities.
But every distribution has a median and other quantiles:

(]

e ©

pP-quantile = inf{x : F(x) > p}.

(]

If r is bounded ftn then every distribution has value for parameter

6 = Be(r(X)) = / H(x)dF(x).

Most distributions have a mean, variance and so on. ]
@ A ftn from set of all cdfs to real line is called a statistical function
Example: Ef(X2) — [Ef(X)]?. =7
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Statistical functionals

@ The statistical functional
T(F) = / H(x)dF (x)

is linear.
@ The sample variance is not a linear functional.
@ Statistical functionals are often estimated using plug-in estimates so

n

T(F) = / r(x)dFn(x) = %Z r(X;).

1
@ This estimate is unbiased and has variance

UQT(F) =nt [ / r?(x)dF(x) — { / r(x)dF(X)}2] :

@ This can in turn be estimated using a plug-in estimate:

iy = [ [ Awat-{ | r(x)dﬁn(x)ﬂ i
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Plug-in estimates of functionals; bootstrap standard errors

@ When r(x) = x we have T(F) = ur (the mean)
@ The standard error is o/+/n.

@ Plug-in estimate of SE replaces o with sample SD (with n not n —1

as the divisor).
@ Now consider a general functional T(F).

@ The plug-in estimate of this is T(F,).

@ The plug-in estimate of the standard error of this estimate is
Var,;.n(T(F,,)).

which is hard to read and seems hard to calculate in general.

@ The solution is to simulate, particularly to estimate the standard errg

=
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Basic Monte Carlo

@ To compute a probability or expected value can simulate.

o Example: To compute P(|X| > 2) use software to generate some
number, say M, of replicates: X[, ..., X}, all having same
distribution as X.

@ Estimate desired probability using sample fraction.

R code: x=rnorm(1000000) ; y =rep(0,1000000); yl[abs(x)
>2] =1 ; sum(y)

Produced 45348 when | tried it. Gives p = 0.045348.
Correct answer is 0.04550026.

Using a million samples gave 2 correct digits, error of 2 in third digit.
Using M = 10000 is more common. | got p = 0.0484.

SE of pis \/p(1 — p)/100 = 0.0021. So error of up to 4 in second
significant digit is likely.

=
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The bootstrap

In bootstrapping X is replaced by the whole data set.
Generate new data sets (X*) from distribution F of X.

Don’t know F so use I-ﬁ,,.

e © ¢ ¢

Example: Interested in distribution of t pivot:

V(X — p)

S .

Have data Xi,...,X,. Don't know p or cdf of Xs.
Replace these by quantities computed from E,.
Call p* = [xdF,(x) = X.

Draw X{'y,...,X{, an iid sample from the cdf F.

e © ¢ ¢ ¢

Repeat M times computing t from * values each time.

=
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Bootstrapping the t pivot

@ Here is R code:

x=runif (5)

mustar = mean(x)

tv=rep(0,M)

tstarv=rep(0,M)

for( i in 1:M){
xn=runif (5)
tv[i]=sqrt (5)*mean(xn-0.5) /sqrt(var(xn))
xstar=sample(x,5,replace=TRUE)
tstarv[i]=sqrt (5)*mean(xstar-mustar)/sqrt (var (xstar))

=
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Bootstrapping a pivot continued

@ Loop does two simulations.

@ in xn and tv we do parametric bootstrapping: simulate t-pivot from
parametric model.

@ xstar is bootstrap sample from population x.
@ tstarv is t-pivot computed from xstar.

@ Original data set is
(0.7432447,0.8355277,0.8502119, 0.3499080, 0.8229354)

@ So mustar =0.7203655

o Side by side histograms of tv and tstarv on next slide.
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Bootstrap distribution histograms

S U
o o
™ | ™ |
o o
= =
@ o ] @ o ]
& © & ©
[a)] [a)]

0.0 0.1
|
0.0 0.1
|
h
=
P

tv tstarv

Richard Lockhart (Simon Fraser University)STAT 830 Non-parametric Inference Basics: STAT 830 — Fall 2013 20 /25



Using the bootstrap distribution

Confidence intervals: based on t-statistic: T = +/n(X — p)/s.
Use the bootstrap distribution to estimate P(|T| > t).
Adjust t to make this 0.05. Call result c.

Solve |T| < ¢ to get interval

X £ cs/+/n.

e © ¢ ¢

o Get ¢ =22.04, x = 0.720, s = 0.211; interval is -1.36 to 2.802.
@ Pretty lousy interval. Is this because it is a bad idea?

@ Repeat but simulate X* — p*.

@ Learn

P(X* — u* < —0.192) = 0.025 = P(X* — p* > 0.119)
@ Solve inequalities to get (much better) interval

0.720 — 0.119 < ¢ < 0.720 +- 0.192

@ Of course the interval missed the true value!
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Monte Carlo Study

@ So how well do these methods work?
@ Theoretical analysis: let C, be resulting interval.

@ Assume number of bootstrap reps is so large that we can ignore
simulation error.

o Compute
lim Pe(u(F) € Cy)

n—oo
@ Method is asymptotically valid (or calibrated or accurate) if this limit
is1—a.
@ Simulation analysis: generate many data sets of size 5 from Uniform.
@ Then bootstrap each data set, compute C,.

@ Count up number of simulated uniform data sets with 0.5 € C, to get
coverage probability.

@ Repeat with (many) other distributions.
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R code

tstarint = function(x,M=10000){

n = length(x)

must=mean (x)

se=sqrt (var(x)/n)
xn=matrix(sample(x,n*M,replace=T) ,nrow=M)
one = rep(1,n)/n

dev= xn%*jone - must
tst=dev/sqrt(diag(var(t(xn)))/n)
cl=quantile(dev,c(0.025,0.975))
c2=quantile(abs(tst),0.95)

c(must-c1[2] ,must-c1[1], must -c2*se,must+c2*se)

}
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R code

lims=matrix(0,1000,4)
count=lims

for(i in 1:1000){
x=runif (5)
lims[i,]=tstarint(x)

count[,1][1ims[,1]1<0.5]=1
count[,2] [1ims[,2]>0.5]=1
count[,3] [1ims[,3]<0.5]=1
count[,4] [1ims[,4]>0.5]=1
sum(count [, 1] *count[,2])
sum(count[,3]*count[,4])

=

Richard Lockhart (Simon Fraser University)STAT 830 Non-parametric Inference Basics: STAT 830 — Fall 2013 24 /25




Results

804 out of 1000 intervals based on X — 1 cover the true value of 0.5.
972 out of 1000 intervals based on t statistics cover true value.
This is the uniform distribution.

Try another distribution. For exponential | get 909, 948.

e © © ¢ ¢

Try another sample size. For uniform n =25 | got 921, 941.
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