STAT 830
 Non-parametric Inference Basics

Richard Lockhart
Simon Fraser University
STAT 830 - Fall 2013

The Empirical Distribution Function - EDF

- Suppose we have sample X_{1}, \ldots, X_{n} of iid real valued rvs.
- The empirical distribution function is

$$
\hat{F}_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \leq x\right)
$$

- This is a cdf and is an estimate of F, the cdf of the X s.
- People also speak of the empirical distribution:

$$
\hat{P}(A)=\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i} \in A\right)
$$

- This is the probability distribution corresponding to \hat{F}_{n}.
- Now we consider the qualities of \hat{F}_{n} as an estimate, the standard error of the estimate, the estimated standard error, confidence intervals, simultaneous confidence intervals and so on.

Bias, variance and mean squared error

- Judge estimates in many ways; focus is distribution of error $\hat{\theta}-\theta$.
- Distribution computed when θ is true value of parameter.
- For our non-parametric iid sampling model we are interested in

$$
\hat{F}_{(x)}-F(x)
$$

when F is the true distribution function of the $X \mathrm{~s}$.

- Simplest summary of size of a variable is root mean squared error:

$$
R M S E=\sqrt{\mathrm{E}_{\theta}\left[(\hat{\theta}-\theta)^{2}\right]}
$$

- Subscript θ on E is important - specifies true value of θ and matches θ in the error!

MSE decomposition \& variance-bias trade-off

- The MSE of any estimate is

$$
\begin{aligned}
M S E & =\mathrm{E}_{\theta}\left[(\hat{\theta}-\theta)^{2}\right] \\
& =\mathrm{E}_{\theta}\left[\left(\hat{\theta}-\mathrm{E}_{\theta}(\hat{\theta})+\mathrm{E}_{\theta}(\hat{\theta})-\theta\right)^{2}\right] \\
& =\mathrm{E}_{\theta}\left[\left(\hat{\theta}-\mathrm{E}_{\theta}(\hat{\theta})\right)^{2}\right]+\left\{\mathrm{E}_{\theta}(\hat{\theta})-\theta\right\}^{2}
\end{aligned}
$$

- In making this calculation there was a cross product term which is 0 .
- The two terms each have names: the first is the variance of $\hat{\theta}$ while the second is the square of the bias.
- Definition: The bias of an estimator $\hat{\theta}$ is

$$
\operatorname{bias}_{\hat{\theta}}(\theta)=\mathrm{E}_{\theta}(\hat{\theta})-\theta
$$

- So our decomposition is

$$
M S E=\text { Variance }+(\text { bias })^{2} .
$$

- In practice often find a trade-off. Trying to make the variance smal increases the bias.

Applied to the EDF

- The EDF is an unbiased estimate of F. That is:

$$
\begin{aligned}
\mathrm{E}\left[\hat{F}_{n}(x)\right] & =\frac{1}{n} \sum_{i 1=}^{n} \mathrm{E}\left[1\left(X_{i} \leq x\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} F(x)=F(x)
\end{aligned}
$$

so the bias is 0 .

- The mean squared error is then

$$
\mathrm{MSE}=\operatorname{Var}\left(\hat{F}_{n}(x)\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left[1\left(X_{i} \leq x\right)\right]=\frac{1}{n} F(x)[1-F(x)]
$$

- This is very much the most common situation: the MSE is proportional to $1 / n$ in large samples.
- So the RMSE is proportional to $1 / \sqrt{n}$.
- RMSE is measured in same units as $\hat{\theta}$ so is scientifically right.

Biased estimates

- Many estimates exactly or approximately averages or ftns of averages.
- So, for example,

$$
\bar{X}=\frac{1}{n} X_{i} \quad \text { and } \quad \bar{X}^{2}=\frac{1}{n} X_{i}^{2}
$$

are unbiased estimates of $\mathrm{E}(X)$ and $\mathrm{E}\left(X^{2}\right)$.

- We might combine these to get a natural estimate of σ^{2} :

$$
\hat{\sigma}^{2}=\bar{X}^{2}-\bar{X}^{2}
$$

- This estimate is biased:

$$
\mathrm{E}\left[(\bar{X})^{2}\right]=\operatorname{Var}(\bar{X})+[\mathrm{E}(\bar{X})]^{2}=\sigma^{2} / n+\mu^{2}
$$

So the bias of $\hat{\sigma}^{2}$ is

$$
\mathrm{E}\left[\bar{X}^{2}\right]-\mathrm{E}\left[(\bar{X})^{2}\right]-\sigma^{2}=\mu_{2}^{\prime}-\mu^{2}-\sigma^{2} / n-\sigma^{2}=-\sigma^{2} / n
$$

Relative sizes of bias and variance

- In this case and many others the bias is proportional to $1 / n$.
- The variance is proportional to $1 / n$.
- The squared bias is proportional to $1 / n^{2}$.
- So in large samples the variance is more important!
- The biased estimate $\hat{\sigma}^{2}$ is traditionally changed to the usual sample variance $s^{2}=n \hat{\sigma}^{2} /(n-1)$ to remove the bias.
- WARNING: the MSE of s^{2} is larger than that of $\hat{\sigma}^{2}$.

Standard Errors and Interval Estimation

- In any case point estimation is a silly exercise.
- Assessment of likely size of error of estimate is essential.
- A confidence interval is one way to provide that assessment.
- The most common kind is approximate:

$$
\text { estimate } \pm 2 \text { estimated standard error }
$$

- This is an interval of values $L(X)<$ parameter $<U(X)$ where U and L are random.
- Justification for the two se interval above?
- Notation $\hat{\phi}$ is the estimate of $\phi . \hat{\sigma}_{\hat{\phi}}$ is the estimated standard error.
- Use central limit theorem, delta method, Slutsky's theorem to prove

$$
\lim _{n \rightarrow \infty} P_{F}\left(\frac{\hat{\phi}-\phi}{\hat{\sigma}_{\hat{\phi}}} \leq x\right)=\Phi(x)
$$

Pointwise limits for $F(x)$

- Define, as usual z_{α} by $\Phi\left(z_{\alpha}\right)=1-\alpha$ and approximate

$$
P_{F}\left(-z_{\alpha / 2} \leq \frac{\hat{\phi}-\phi}{\hat{\sigma}_{\hat{\phi}}} \leq z_{\alpha / 2}\right) \approx 1-\alpha .
$$

- Solve inequalities to get usual interval.
- Now we apply this to $\phi=F(x)$ for one fixed x.
- Our estimate is $\hat{\phi} \equiv \hat{F}_{n}(x)$.
- The random variable $n \phi$ has a Binomial distribution.
- So $\operatorname{Var}\left(\hat{F}_{n}(x)\right)=F(x)(1-F(x)) / n$. The standard error is

$$
\sigma_{\hat{\phi}} \equiv \sigma_{\hat{F}_{n}(x)} \equiv \mathrm{SE} \equiv \frac{\sqrt{F(x)[1-F(x)]}}{\sqrt{n}}
$$

- According to the central limit theorem

$$
\frac{\hat{F}_{n}(x)-F(x)}{\sigma_{\hat{F}_{n}(x)}} \xrightarrow{d} N(0,1)
$$

- See homework to turn this into a confidence interval.

Plug-in estimates

- Now to estimate the standard error.
- It is easier to solve the inequality

$$
\left|\frac{\hat{F}_{n}(x)-F(x)}{\mathrm{SE}}\right| \leq z_{\alpha / 2}
$$

if the term SE does not contain the unknown quantity $F(x)$.

- This is why we use an estimated standard error.
- In our example we will estimate $\sqrt{F(x)[1-F(x)] / n}$ by replacing $F(x)$ by $\hat{F}_{n}(x)$:

$$
\hat{\sigma}_{F_{n}(x)}=\sqrt{\frac{\hat{F}_{n}(x)\left[1-\hat{F}_{n}(x)\right.}{n}} .
$$

- This is an example of a general strategy: plug-in.
- Start with estimator, confidence interval or test whose formula depends on other parameter; plug-in estimate of that other parameter
- Sometimes the method changes the behaviour of our procedure and sometimes, at least in large samples, it doesn't.

Pointwise versus Simultaneous Confidence Limits

- In our example Slutsky's theorem shows

$$
\frac{\hat{F}_{n}(x)-F(x)}{\hat{\sigma}_{F_{n}(x)}} \xrightarrow{d} N(0,1) .
$$

- So there was no change in the limit law (alternative jargon for distribution).
- We now have two pointwise 95% confidence intervals:

$$
\hat{F}_{n}(x) \pm z_{0.025} \sqrt{\hat{F}_{n}(x)\left[1-\hat{F}_{n}(x)\right] / n}
$$

or

$$
\left\{F(x):\left|\frac{\sqrt{n}\left(\hat{F}_{n}(x)-F(x)\right)}{\sqrt{F(x)[1-F(x)]}}\right| \leq z_{0.025}\right\}
$$

- When we use these intervals they depend on x.
- And we usually look at a plot of the results against x.
- If we pick out an x for which the confidence interval is surprising to 항 us we may well be picking one of the x values for which the confidence interval misses its target.

Simultaneous intervals

- So we really want

$$
P_{F}(L(X, x) \leq F(x) \leq U(X, x) \text { for all } x) \geq 1-\alpha
$$

- In that case the confidence intervals are called simultaneous.
- Two possible methods: one exact, but conservative, one approximate, less conservative.
- Dvoretsky-Kiefer-Wolfowitz inequality:

$$
P_{F}\left(\exists x:\left|\hat{F}_{n}(x)-F(x)\right|>\sqrt{\frac{-\log (\alpha / 2)}{2 n}}\right) \leq \alpha
$$

- Limit theory:

$$
P_{F}\left(\exists x:|\sqrt{n}| \hat{F}_{n}(x)-F(x) \mid>y\right) \rightarrow P\left(\exists x:\left|B_{0}(x)\right|>y\right)
$$

where B_{0} is a Brownian Bridge (special Gaussian process).

Statistical Functionals

- Not all parameters are created equal.
- In the Weibull model density

$$
f(x ; \alpha, \beta)=\frac{1}{\beta}\left(\frac{x}{\beta}\right)^{\alpha-1} \exp \left\{-(x / \beta)^{\alpha}\right\} 1(x>0)
$$

there are two parameters: shape α and scale β.

- These parameters have no meaning in other densities.
- But every distribution has a median and other quantiles:

$$
p^{\text {th }} \text {-quantile }=\inf \{x: F(x) \geq p\} .
$$

- If r is bounded ftn then every distribution has value for parameter

$$
\phi \equiv \mathrm{E}_{F}(r(X)) \equiv \int r(x) d F(x)
$$

- Most distributions have a mean, variance and so on.
- A ftn from set of all cdfs to real line is called a statistical functional
- Example: $\mathrm{E}_{F}\left(X^{2}\right)-\left[\mathrm{E}_{F}(X)\right]^{2}$.

Statistical functionals

- The statistical functional

$$
T(F)=\int r(x) d F(x)
$$

is linear.

- The sample variance is not a linear functional.
- Statistical functionals are often estimated using plug-in estimates so

$$
T \hat{(F)}=\int r(x) d \hat{F}_{n}(x)=\frac{1}{n} \sum_{1}^{n} r\left(X_{i}\right)
$$

- This estimate is unbiased and has variance

$$
\sigma_{T(F)}^{2}=n^{-1}\left[\int r^{2}(x) d F(x)-\left\{\int r(x) d F(x)\right\}^{2}\right]
$$

- This can in turn be estimated using a plug-in estimate:

$$
\hat{\sigma}_{T(F)}^{2}=n^{-1}\left[\int r^{2}(x) d \hat{F}_{n}(x)-\left\{\int r(x) d \hat{F}_{n}(x)\right\}^{2}\right]
$$

Plug-in estimates of functionals; bootstrap standard errors

- When $r(x)=x$ we have $T(F)=\mu_{F}$ (the mean)
- The standard error is σ / \sqrt{n}.
- Plug-in estimate of SE replaces σ with sample SD (with n not $n-1$ as the divisor).
- Now consider a general functional $T(F)$.
- The plug-in estimate of this is $T\left(\hat{F}_{n}\right)$.
- The plug-in estimate of the standard error of this estimate is

$$
\sqrt{\operatorname{Var}_{\hat{F}_{n}}\left(T\left(\hat{F}_{n}\right)\right)}
$$

which is hard to read and seems hard to calculate in general.

- The solution is to simulate, particularly to estimate the standard error.

Basic Monte Carlo

- To compute a probability or expected value can simulate.
- Example: To compute $P(|X|>2)$ use software to generate some number, say M, of replicates: $X_{1}^{*}, \ldots, X_{M}^{*}$ all having same distribution as X.
- Estimate desired probability using sample fraction.
- R code: $x=r n o r m(1000000)$; $y=r e p(0,1000000)$; y [abs(x) >2] $=1$; $\operatorname{sum}(y)$
- Produced 45348 when I tried it. Gives $\hat{p}=0.045348$.
- Correct answer is 0.04550026 .
- Using a million samples gave 2 correct digits, error of 2 in third digit.
- Using $M=10000$ is more common. I got $\hat{p}=0.0484$.
- SE of \hat{p} is $\sqrt{p(1-p)} / 100=0.0021$. So error of up to 4 in second significant digit is likely.

The bootstrap

- In bootstrapping X is replaced by the whole data set.
- Generate new data sets $\left(X^{*}\right)$ from distribution F of X.
- Don't know F so use \hat{F}_{n}.
- Example: Interested in distribution of t pivot:

$$
t=\frac{\sqrt{n}(\bar{X}-\mu)}{s}
$$

- Have data X_{1}, \ldots, X_{n}. Don't know μ or cdf of X s.
- Replace these by quantities computed from \hat{F}_{n}.
- Call $\mu^{*}=\int x d \hat{F}_{n}(x)=\bar{X}$.
- Draw $X_{1,1}^{*}, \ldots, X_{1, n}^{*}$ an iid sample from the cdf \hat{F}.
- Repeat M times computing t from * values each time.

Bootstrapping the t pivot

- Here is R code:

```
x=runif(5)
mustar = mean(x)
tv=rep(0,M)
tstarv=rep(0,M)
for( i in 1:M){
    xn=runif(5)
    tv[i]=sqrt(5)*mean(xn-0.5)/sqrt(var(xn))
    xstar=sample(x,5,replace=TRUE)
    tstarv[i]=sqrt(5)*mean(xstar-mustar)/sqrt(var(xstar))
}
```


Bootstrapping a pivot continued

- Loop does two simulations.
- in xn and tv we do parametric bootstrapping: simulate t-pivot from parametric model.
- xstar is bootstrap sample from population x .
- tstarv is t-pivot computed from xstar.
- Original data set is

$$
(0.7432447,0.8355277,0.8502119,0.3499080,0.8229354)
$$

- So mustar $=0.7203655$
- Side by side histograms of tv and tstarv on next slide.

Bootstrap distribution histograms

Using the bootstrap distribution

- Confidence intervals: based on t-statistic: $T=\sqrt{n}(\bar{X}-\mu) / s$.
- Use the bootstrap distribution to estimate $P(|T|>t)$.
- Adjust t to make this 0.05 . Call result c.
- Solve $|T|<c$ to get interval

$$
\bar{x} \pm c s / \sqrt{n}
$$

- Get $c=22.04, \bar{x}=0.720, s=0.211$; interval is -1.36 to 2.802 .
- Pretty lousy interval. Is this because it is a bad idea?
- Repeat but simulate $\bar{X}^{*}-\mu^{*}$.
- Learn

$$
P\left(\bar{X}^{*}-\mu^{*}<-0.192\right)=0.025=P\left(\bar{X}^{*}-\mu^{*}>0.119\right)
$$

- Solve inequalities to get (much better) interval

$$
0.720-0.119<\mu<0.720+0.192
$$

- Of course the interval missed the true value!

Monte Carlo Study

- So how well do these methods work?
- Theoretical analysis: let C_{n} be resulting interval.
- Assume number of bootstrap reps is so large that we can ignore simulation error.
- Compute

$$
\lim _{n \rightarrow \infty} P_{F}\left(\mu(F) \in C_{n}\right)
$$

- Method is asymptotically valid (or calibrated or accurate) if this limit is $1-\alpha$.
- Simulation analysis: generate many data sets of size 5 from Uniform.
- Then bootstrap each data set, compute C_{n}.
- Count up number of simulated uniform data sets with $0.5 \in C_{n}$ to get coverage probability.
- Repeat with (many) other distributions.

R code

```
tstarint = function(x,M=10000){
n = length(x)
must=mean(x)
se=sqrt(var(x)/n)
xn=matrix(sample(x,n*M,replace=T),nrow=M)
one = rep(1,n)/n
dev= xn%*%%ne - must
tst=dev/sqrt(diag(var(t(xn)))/n)
c1=quantile(dev,c(0.025,0.975))
c2=quantile(abs(tst),0.95)
c(must-c1[2],must-c1[1], must -c2*se,must+c2*se)
}
```


R code

```
lims=matrix(0,1000,4)
count=lims
for(i in 1:1000){
x=runif(5)
lims[i,]=tstarint(x)
}
count[,1][lims[,1]<0.5]=1
count[,2][lims[,2]>0.5]=1
count[,3][lims[,3]<0.5]=1
count[,4][lims[,4]>0.5]=1
sum(count[,1]*count[,2])
sum(count[,3]*count[,4])
```


Results

- 804 out of 1000 intervals based on $\bar{X}-\mu$ cover the true value of 0.5 .
- 972 out of 1000 intervals based on t statistics cover true value.
- This is the uniform distribution.
- Try another distribution. For exponential I get 909, 948.
- Try another sample size. For uniform $n=25$ I got 921, 941 .

