
STAT 830

The basics of nonparametric models

The Empirical Distribution Function – EDF

The most common interpretation of probability is that the probability of
an event is the long run relative frequency of that event when the basic
experiment is repeated over and over independently. So, for instance, if X
is a random variable then P (X ≤ x) should be the fraction of X values
which turn out to be no more than x in a long sequence of trials. In general
an empirical probability or expected value is just such a fraction or average
computed from the data.

To make this precise, suppose we have a sample X1, . . . , Xn of iid real
valued random variables. Then we make the following definitions:
Definition: The empirical distribution function, or EDF, is

F̂n(x) =
1

n

n∑
i=1

1(Xi ≤ x).

This is a cumulative distribution function. It is an estimate of F , the cdf
of the Xs. People also speak of the empirical distribution of the sample:

P̂ (A) =
1

n

n∑
i=1

1(Xi ∈ A)

This is the probability distribution whose cdf is F̂n.
Now we consider the qualities of F̂n as an estimate, the standard error of

the estimate, the estimated standard error, confidence intervals, simultaneous
confidence intervals and so on. To begin with we describe the best known
summaries of the quality of an estimator: bias, variance, mean squared error
and root mean squared error.

Bias, variance, MSE and RMSE

There are many ways to judge the quality of estimates of a parameter φ; all of
them focus on the distribution of the estimation error φ̂−φ. This distribution
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is to be computed when φ is the true value of the parameter. For our non-
parametric iid sampling model the estimation error we are interested in is

F̂(x)− F (x)

where F is the true distribution function of the Xs.
The simplest summary of the size of a variable is the root mean squared

error :

RMSE =

√
Eθ

[
(φ̂− φ)2

]
In this definition the subscript θ on E is important; it specifies the true value
of θ and the value of φ in the error must match the value of θ. For example
if we were studying the N(µ, 1) model and estimating φ = µ2 then the θ in
the subscript would be µ and the φ in the error would be µ2 and the two
values of µ would be required to be the same.

The RMSE is measured in the same units as φ. That is if the parameter
φ is a certain number of dollars then the RMSE is also some number of
dollars. This makes the RMSE more scientifically meaningful than the more
commonly discussed (by statisticians) mean squared error or MSE. The latter
has, however, no square root and many formulas involving the MSE therefore
look simpler. The weakness of MSE is one that it shares with the variance.
For instance one might survey household incomes and get a mean of say
$40,000 with a standard deviation of $50,000 because income distributions
are very skewed to the right. The variance of household income would then
be 2,500,000,000 squared dollars – ludicrously hard to interpret.

Having given that warning, however, it is time to define the MSE:
Definition: The mean squared error (MSE) of any estimate is

MSE = Eθ

[
(φ̂− φ)2

]
= Eθ

[
(φ̂− Eθ(φ̂) + Eθ(φ̂)− φ)2

]
= Eθ

[
(φ̂− Eθ(φ̂))2

]
+
{

Eθ(φ̂)− φ
}2

In making this calculation there was a cross product term which you should
check is 0. The two terms in this formula have names: the first is the variance
of φ̂ while the second is the square of the bias.
Definition: The bias of an estimator φ̂ is

biasφ̂(θ) = Eθ(φ̂)− φ
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Notice that it depends on θ. The φ on the right hand side also depends on
the parameter θ.

Thus our decomposition above says

MSE = Variance + (bias)2.

In practice we often find there is a trade-off; if we try to make the variance
small we often increase the bias. Statisticians often speak of a “variance-bias
trade-off”.

We now apply these ideas to the EDF. The EDF is an unbiased estimate
of F . That is,

E[F̂n(x)] =
1

n

n∑
i1=

E[1(Xi ≤ x)]

=
1

n

n∑
i=1

F (x) = F (x)

so the bias of F̂n(x) is 0. The mean squared error is then

MSE = Var(F̂n(x)) =
1

n2

n∑
i=1

Var[1(Xi ≤ x)] =
1

n
F (x)[1− F (x)].

This is very much the most common situation: the MSE is proportional to
1/n in large samples. So the RMSE is proportional to 1/

√
n.

The EDF is a sample average and all sample averages are unbiased es-
timates of their expected values. There are many estimates in use – most
estimates really – which are biased. Here is an example. Again we consider
a sample X1, . . . , Xn. The sample mean is

X̄ =
1

n
Xi.

The sample second moment is

X̄2 =
1

n
X2
i .

These two estimates are unbiased estimates of E(X) and E(X2). We might
combine them to get a natural estimate of σ2 if we remember that

σ2 = Var(X) = E(X2)− (E(X))2.
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It would then be natural to use X̄2 to estimate µ2 which would lead to the
following estimate of σ2:

σ̂2 = X̄2 − X̄2.

This estimate is biased, however, because it is a non-linear function of X̄.
In fact we find

E
[
(X̄)2

]
= Var(X̄) +

[
E(X̄)

]2
= σ2/n+ µ2.

So the bias of σ̂2 is

E
[
X̄2
]
− E

[
(X̄)2

]
− σ2 = µ′2 − µ2 − σ2/n− σ2 = −σ2/n.

In this case and many others the bias is proportional to 1/n. The variance
is proportional to 1/n. The squared bias is proportional to 1/n2. So in large
samples the variance is more important than the bias!
Remark: The biased estimate σ̂2 is traditionally changed to the usual sample
variance s2 = nσ̂2/(n− 1) to remove the bias.
WARNING: the MSE of s2 is larger than that of σ̂2.

Standard Errors and Interval Estimation

Traditionally theoretical statistics courses spend a considerable amount of
time on finding good estimators of parameters. The theory is elegant and
sophisticated but point estimation itself is a silly exercise which we will not
pursue here. The problem is that a bare estimate is of very little value indeed.
Instead assessment of the likely size of the error of our estimate is essential.
A confidence interval is one way to provide that assessment.

The most common kind of confidence interval is approximate:

estimate± 2 estimated standard error

This is an interval of values L(X) < parameter < U(X) where U and L are
random because they depend on the data.

What is the justification for the two SE interval above? In order to explain
we introduce some notation.
Notation: Suppose φ̂ is the estimate of φ. Then σ̂φ̂ denotes the estimated
standard error.
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We often use the central limit theorem, the delta method, and Slutsky’s
theorem to prove

lim
n→∞

PF

(
φ̂− φ
σ̂φ̂

≤ x

)
= Φ(x)

where Φ is the standard normal cdf:

Φ(x) =

∫ x

−∞

e−u
2/2

√
2π

du.

Example: We illustrate the ideas by giving first what we will call pointwise
confidence limits for F (x). Define, as usual, the notation for the upper α
critical point zα by the requirement Φ(zα) = 1− α. Then we approximate

PF

(
−zα/2 ≤

φ̂− φ
σ̂φ̂

lezα/2

)
≈ 1− α.

Then we solve the inequalities inside the probability to get the usual interval.
Now we apply this to φ = F (x) for one fixed x. Our estimate is φ̂ ≡ F̂n(x).

The random variable nφ̂ has a Binomial distribution. So Var(F̂n(x)) =
F (x)(1− F (x))/n. The standard error is

σφ̂ ≡ σF̂n(x)
≡ SE ≡

√
F (x)[1− F (x)]√

n
.

According to the central limit theorem

F̂n(x)− F (x)

σF̂n(x)

d→ N(0, 1)

(In the homework I ask you to turn this into a confidence interval.)
It is easier to solve the inequality∣∣∣∣∣ F̂n(x)− F (x)

SE

∣∣∣∣∣ ≤ zα/2

if the term SE does not contain the unknown quantity F (x). In the example
above it did but we will modify the SE term by estimating the standard
error. The method we follow uses a so-called plug-in procedure.
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In our example we will estimate
√
F (x)[1− F (x)]/n by replacing F (x)

by F̂n(x):

σ̂Fn(x) =

√
F̂n(x)[1− F̂n(x)]

n
.

This is an example of a general strategy in which we start with an estimator,
a confidence interval or a test statistic whose formula depends on some other
parameter; we plug-in an estimate of that other parameter to the formula
and then use the resulting object in our inference procedure. Sometimes the
method changes the behaviour of our procedure and sometimes, at least in
large samples, it doesn’t.

In our example Slutsky’s theorem shows

F̂n(x)− F (x)

σ̂Fn(x)

d→ N(0, 1).

So there was no change in the limit law (which is common alternative jargon
for the word distribution).

We now have two pointwise 95% confidence intervals:

F̂n(x)± z0.025
√
F̂n(x)[1− F̂n(x)]/n

or

{F (x) :

∣∣∣∣∣
√
n(F̂n(x)− F (x))√
F (x)[1− F (x)]

∣∣∣∣∣ ≤ z0.025}

When we use these intervals they depend on x. Moreover, we usually look
at a plot of the results against x. This leads to a problem. If we pick out an
x for which the confidence interval is surprising or interesting to us we may
well be picking one of the x values for which the confidence interval misses
its target. After all, 1 out of every 20 confidence intervals with 95% coverage
probabilities misses its target.

This suggests that what we really want is

PF (L(X, x) ≤ F (x) ≤ U(X, x) for all x) ≥ 1− α.

In that case the confidence intervals are called simultaneous. Thee are at
least two possible methods: one is exact (meaning that the coverage proba-
bility of a 95% confidence interval is at least 95% for every choice of F , but
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conservative (meaning that the coverage is often quite a bit larger that 95%
so that the interval is unnecessarily wide); the other method is approximate
and less conservative. Here are some incomplete details.

The exact, conservative, procedure is base on the Dvoretsky-Kiefer-Wolfowitz
inequality:

PF (∃x : |F̂n(x)− F (x)| >
√
− log(α/2)

2n
) ≤ α

The use of this inequality to generate confidence intervals is quite uncommon
– the homework problems ask you to compare it to the next interval and to
criticize its properties.

The approximate procedure is based on large sample limit theory. The
following assertion is a famous piece of probability theory:

lim
n→∞

PF (∃x : |
√
n|F̂n(x)− F (x)| > y) = P (∃t ∈ [0, 1] : |B0(t)| > y)

where B0 is a Brownian Bridge. A Brownian Bridge is a stochastic process; in
particular it is a Gaussian process, with mean E(B0(x)) ≡ 0 and covariance
function

Cov(B0(x), B0(y)) = min{x, y} − xy.

I won’t be describing precisely what that all means. You might consult some
book or other which I will eventually cite I hope. It is possible, however, to
choose y so that the probability on the right hand side above is α.

Statistical Functionals

Not all parameters are created equal. Some of them have a meaning for all
or at least most distribution functions or densities while others really only
have a meaning inside some quite specific model. For instance, in the Weibull
model density

f(x;α, β) =
1

β

(
x

β

)α−1
exp{−(x/β)α}1(x > 0).

there are two parameters: shape α and scale β. These parameters have no
meaning in other densities; that is if the real density is normal we cannot say
what α and β are. But every distribution has a median and other quantiles:

pth-quantile = inf{x : F (x) ≥ p}.
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Too, if r is a bounded function then every distribution has a value for the
parameter

φ ≡ EF (r(X)) ≡
∫
r(x)dF (x).

Similarly, most distributions have a mean, variance and so on.

Definition: A function from set of all cdfs to real line is called a statistical
functional.

Example: The quantity T (F ) ≡ EF (X2) − [EF (X)]2 is a statistical func-
tional, namely, the variance of F . It is not quite defined for all F but it is
defined for most.

The statistical functional

T (F ) =

∫
r(x)dF (x)

is linear. The sample variance is not a linear functional.
Statistical functionals are often estimated using plug-in estimates so that

ˆT (F ) =

∫
r(x)dF̂n(x) =

1

n

n∑
1

r(Xi).

This estimate is unbiased and has variance

σ2
ˆT (F )

= n−1

[∫
r2(x)dF (x)−

{∫
r(x)dF (x)

}2
]
.

This variance can in turn be estimated using a plug-in estimate:

σ̂2
ˆT (F )

= n−1

[∫
r2(x)dF̂n(x)−

{∫
r(x)dF̂n(x)

}2
]
.

And of course from that estimated variance we get an estimated standard
error.

Bootstrap standard errors

When r(x) = x we have T (T ) = µF (the mean). The standard error of this
estimate is σ/

√
n. The plug-in estimate of the standard error replaces σ with

the sample standard deviation (but with n not n− 1 as the divisor).
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Now consider a general functional T (F ). The plug-in estimate of this is
T (F̂n). The plug-in estimate of the standard error of this estimate is√

VarF̂n
(T (F̂n)).

which is hard to read and seems hard to calculate in general. The solution
is to simulate, particularly to estimate the standard error.

Basic Monte Carlo

To compute a probability or expected value we can simulate.
Example: To compute P (|X| > 2) for some random variable X we use
software to generate some number, say M , of replicates: X∗1 , . . . , X

∗
M all

having same distribution as X. Then we estimate the desired probability
using the sample fraction. Here is some R code:

x=rnorm(1000000)

y =rep(0,1000000)

y[abs(x) >2] =1

sum(y)

This produced 45348 when I tried it which gives me the estimate p̂ =
0.045348. Using pnorm I find the correct answer is 0.04550026. So using
a million samples gave 2 correct significant digits and an error of 2 in the
third digit. Using M = 10000 has traditionally been more common, though
I think that is changing. Using 10000, I got p̂ = 0.0484. In fact, the SE of p̂
is
√
p(1− p)/100 = 0.0021. So error of up to 4 in second significant digit is

reasonably likely.

The bootstrap

In the previous section we were drawing samples from some specific distribu-
tion – the normal distribution in the example. In bootstrapping the random
variable X is replaced by the whole data set and we simulate by drawing
samples from the distribution F̂n.

The idea is to generate new data sets (I will use a superscript ∗ as in X∗

to indicate these are newly generated data sets) from the distribution F of
X. Bu we don’t know F so we use F̂n.
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Example: Suppose we are interested in confidence intervals for the mean
of a distribution. We will get them by simulating the distribution of the t
pivot:

t =

√
n(X̄ − µ)

s
.

We have data X1, . . . , Xn and as usual for statisticians we don’t know µ
or the cumulative distribution function F of the Xs. So we replace these
by quantities computed from F̂n. Call µ∗ =

∫
xdF̂n(x) = X̄. Then draw

X∗1,1, . . . , X
∗
1,n an iid sample from the cdf F̂ . Repeat this sampling process

M times computing t from the * values each time. Here is R code:

x=runif(5)

mustar = mean(x)

tv=rep(0,M)

tstarv=rep(0,M)

for( i in 1:M){

xn=runif(5)

tv[i]=sqrt(5)*mean(xn-0.5)/sqrt(var(xn))

xstar=sample(x,5,replace=TRUE)

tstarv[i]=sqrt(5)*mean(xstar-mustar)/sqrt(var(xstar))

}

This loop does two simulations. First, the variables xn and tv implement
parametric bootstrapping : they simulate the t-pivot from a parametric model,
namely, the Uniform[0,1] model. On the other hand xstar is bootstrap
sample from the population x and tstarv is the t-pivot computed from
xstar.

When I ran the code the first time I got the original data set

x = (0.7432447, 0.8355277, 0.8502119, 0.3499080, 0.8229354)

So mustar =0.7203655. Now let us look at side-by-side histograms of tv and
tstarv:

Confidence intervals: based on t-statistic: T =
√
n(X̄ − µ)/s.

Use the bootstrap distribution to estimate P (|T | > t).
Adjust t to make this 0.05. Call result c. Solve |T | < c to get interval

X̄ ± cs/
√
n.
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Figure 1: Histograms of simulations. The histogram on the left is of t pivots
for 1,000,000 samples of size 5 drawn from the uniform distribution. The one
on the right is for t pivots computed for 1,000,000 samples of size 5 drawn
from the population with just 5 elements as specified in the text
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Get c = 22.04, x̄ = 0.720, s = 0.211; interval is -1.36 to 2.802. Pretty lousy
interval. Is this because it is a bad idea? Repeat but simulate X̄∗−µ∗. Learn

P (X̄∗ − µ∗ < −0.192) = 0.025 = P (X̄∗ − µ∗ > 0.119)

Solve inequalities to get (much better) interval

0.720− 0.119 < µ < 0.720 + 0.192

Of course the interval missed the true value!

Monte Carlo Study

So how well do these methods work? We can do either a theoretical analysis
or a simulation study. To describe the possible theoretical analysis let Cn be
resulting interval. Usually we assume the number of bootstrap repetitions is
so large that we can ignore that simulation error. Now we use theory (more
sophisticated than in this course) to compute

lim
n→∞

PF (µ(F ) ∈ Cn)

We say the method is asymptotically valid (or calibrated or accurate) if this
limit is 1− α.

The other way to assess this point is via simulation analysis: we gener-
ate many data sets of size 5 from say the Uniform[0,1] distribution. Then
we carry out the bootstrap method for each data set and compute the in-
terval Cn. Finally we count up the number of simulated uniform data sets
with 0.5 ∈ Cn to get an empirical coverage probability. Since we will be
using the method without knowing the true distribution we repeat the pro-
cess with samples from (many) other distributions. We try to select enough
distributions to give us a pretty good idea of the overall behaviour.
Remark: : Some statisticians never do anything except the simulation part.
I think this is somewhat perilous – you are hard pressed to guarantee that
your simulation covered all the realistic possibilities. But then, I do theory
for a living.

Here is some R code which carries out a bit of that Monte Carlo study:

tstarint = function(x,M=10000){

n = length(x)

12



must=mean(x)

se=sqrt(var(x)/n)

xn=matrix(sample(x,n*M,replace=T),nrow=M)

one = rep(1,n)/n

dev= xn%*%one - must

tst=dev/sqrt(diag(var(t(xn)))/n)

c1=quantile(dev,c(0.025,0.975))

c2=quantile(abs(tst),0.95)

c(must-c1[2],must-c1[1], must -c2*se,must+c2*se)

}

lims=matrix(0,1000,4)

count=lims

for(i in 1:1000){

x=runif(5)

lims[i,]=tstarint(x)

}

count[,1][lims[,1]<0.5]=1

count[,2][lims[,2]>0.5]=1

count[,3][lims[,3]<0.5]=1

count[,4][lims[,4]>0.5]=1

sum(count[,1]*count[,2])

sum(count[,3]*count[,4])

The results for the study I did are these. For samples of size 5 from
the Uniform[0,1] distribution the empirical coverage probability for the true
mean of 1/2, using the bootstrap distribution of the error X̄ − µ is 80.4% in
1000 Monte Carlo trials using 10,000 bootstrap samples in each trial. This
compares to coverage of 97.2% under the same conditions using the t pivot√
n)(X̄ − µ)/s. (Strictly speaking t is only an approximate pivot.) For

samples of size 25 I got 92.1% and 94.8%. I also tried exponential data. For
n = 5 I got ? and ? while for n = 25 I got 92.1% and 94.1%.
Remark: : It is possible to put standard errors on these Monte Carlo esti-
mates and to assess the inaccuracy induced by using only 10,000 bootstrap
samples instead of infinitely many. Ignoring the latter you should be able to
add standard errors to each of the percentages given. They are all roughly
0.007 or 0.7 percentage points.
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