Lecture 32 We consider another variation to the two sample problem. This time, the data are again normal. Realistically, σ_1 and σ_2 are unknown but we need to make the additional assumption $\sigma_1 = \sigma_2$. Given X_1, \ldots, X_m iid $\operatorname{Normal}(\mu_1, \sigma_1^2)$ independent of Y_1, \ldots, Y_n iid $\operatorname{Normal}(\mu_2, \sigma_2^2)$ with $\sigma_1 = \sigma_2$, then the following statistic can be used for testing and the construction of confidence intervals. $$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\left(\frac{1}{m} + \frac{1}{n}\right) \frac{(m-1)s_1^2 + (n-1)s_2^2}{m+n-2}}} \sim t_{m+n-2}$$ where s_1 and s_2 are the respective sample std devs. Example: The Chapin Social Insight Test gave the following scores. Assuming normal data, test whether the mean score of males exceeds the mean score of females. | Group | | | S | |---------|----|-------|-------| | males | 18 | 25.34 | 13.36 | | females | 23 | 24.94 | 14.39 | Example cont'd: Obtain a 95% CI for $\mu_1 - \mu_2$. There are actually lots of testing methodologies corresponding to different data scenarios. We will study one more situation (a common one involving paired data) but keep in mind that the principles that we have studied carry over to more complex situations. Suppose in the paired data situation, we have X_1, \ldots, X_n iid arising from a population with mean μ_1 , and Y_1, \ldots, Y_n iid arising from a population with mean μ_2 . Furthermore, assume that the data are paired such that X_i corresponds to Y_i . This natural pairing implies that there is a dependence between X_i and Y_i . To carry out inference (testing and the construction of CI's), we define a new random variable, the difference $D_i = X_i - Y_i$. Our interest concerns the unknown parameter $$E(D_i) = E(X_i - Y_i)$$ $$= E(X_i) - E(Y_i)$$ $$= \mu_1 - \mu_2.$$ Our analysis proceeds as in the single sample case based on the data D_1, \ldots, D_n . Example: Suppose scores measuring jitteriness are normally distributed. We believe that scores increase after drinking coffee. Let X_i be the before drinking coffee score and let Y_i be the the after drinking coffee score for the i-th individual. Based on $\alpha = 0.01$, test the hypothesis. | x_i | $ y_i $ | $ d_i $ | |-------|---------|---------| | 50 | 56 | | | 60 | 70 | | | 55 | 60 | | | 72 | 70 | | | 85 | 82 | | | 78 | 84 | | | 65 | 68 | | | 90 | 88 | | | | 1 | 1 | Example cont'd: Obtain a 95% CI for the mean difference in jitteriness scores. Example cont'd: Suppose we have the same data but the experiment involves 16 people where 8 people were measured without having coffee and 8 other people where measured after drinking coffee. How does the analysis differ? Example cont'd: Suppose now that the 16 people involve 8 pairs of twins such that X_i and Y_i are twins. How should the analysis proceed? Example cont'd: Assume the same conditions as above but the data are no longer normal. How should the analysis proceed? Pairing is a special case of *blocking* (read in text). Blocking attempts to reduce variation by grouping data that are similar, and this hopefully leads to *more sensitive* tests (ie. tests that reject H_0 more often when H_0 is false). Example: To illustrate the above, consider five before and after measurements involving a drug where there are big differences in responses between people but there is small variation in the D_i 's. Assuming normal data, we carry out a paired analysis and a non-paired analysis. $$\begin{array}{c|cc} x_i & y_i & d_i \\ 25 & 29 & -4 \\ 46 & 50 & -4 \\ 30 & 33 & -3 \\ 75 & 78 & -3 \\ 19 & 25 & -6 \end{array}$$ ## Two Sample Testing - Summary Assume X_1, \ldots, X_m iid with mean μ_1 and std dev σ_1 , and Y_1, \ldots, Y_n iid with mean μ_2 and std dev σ_2 . | Data | Test Statistic | Comments | |---------------------------|---|---| | paired data, | take $D_i = X_i - Y_i$ and | | | m = n | refer to single sample case | | | non-paired, | $\frac{X-Y-(\mu_1-\mu_2)}{\sqrt{\sigma_1^2/m+\sigma_2^2/n}} \sim N(0,1)$ | replace σ_i 's with s_i 's | | m, n large | | if σ_i 's unknown | | non-paired, | $\frac{X-Y-(\mu_1-\mu_2)}{\sqrt{\sigma_1^2/m+\sigma_2^2/n}} \sim N(0,1)$ | unrealistic | | m, n not large, | | | | data normal, | | | | σ_i 's known | | | | non-paired, | $\frac{X-Y-(\mu_1-\mu_2)}{\sqrt{(\frac{1}{m}+\frac{1}{n})s_p^2}}\sim t_{m+n-2}$ | $s_p^2 = \frac{(m-1)s_1^2 + (n-1)s_2^2}{m+n-2}$ | | m, n not large, | , , | | | data normal, | | | | $\sigma_1 pprox \sigma_2$ | | | | but unknown | | | | binomial data, | $\frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{p_1(1 - p_1)/m + p_2(1 - p_2)/n}} \sim \text{normal}(0, 1)$ | replace p 's with estimates | | m, n large, | • | in denominator | | p_1, p_2 moderate | | |