Lecture 30

Errors in testing:

	Parameter Space		
Decision	$H_0 \ true$	$H_1 \ true$	
Reject H_0	Type I Error		
Do not reject H_0		Type II Error	

Discussion questions:

- what is a good test?
- can we have a perfect test?

Example: We examine Type I error and Type II error in the earlier example where a defendent is accused of a crime in a court of law.

Probabilities associated with errors in testing:

	Parameter Space		
Decision	H_0 true	H_1 true	
Reject H_0	α	$1-\beta$	
Do not reject H_0		eta	

Discussion points:

- α is the significance level of a test
- we typically fix α
- 1β is referred to as the *power* of a test
- we want the power to be large
- α , β are test properties; indpt of data
- note that in our examples, H_0 is *simple*
- note that in our examples, H_1 is *composite*

Example: We return to the one sample problem where X_1, \ldots, X_n are iid, $\sigma = 1.8$, $\alpha = 0.05$ and n = 100. We are interested in testing $H_0 : \mu = 3$ versus $H_1 : \mu > 3$.

- (a) Find the *critical region* (rejection region).
- (b) Calculate the power at $\mu = 3.2$.
- (c) Calculate the power at $\mu = 3.5$.
- (d) What happens in (b) when $n = 100 \rightarrow 400$?

I have mentioned previously that statistical practice relies heavily on computation. Here is a general simulation procedure that can be used to approximate power. Suppose that you have data X_1, \ldots, X_n and are testing H_0 versus H_1 . Suppose that the critical region is $\{X : Q(X) \ge a\}$ and leads to an intractable power expression

Power = P(**reject** H₀ | H₁ **true**)
= P(
$$Q(\underline{X}) \ge a \mid H_1$$
 true)

Step 0: set counter = 0

Step 1: generate x_1, \ldots, x_n under H_1

Step 2: if $Q(\underline{x}) \ge a$, increase the counter by 1

Repeat Steps 1 and 2 M times and approximate

Power
$$\approx \frac{\text{counter}}{M}$$