
Lecture 26

Our attention now turns to statistical inference
where we try to understand poplns based on
sample data. We first study confidence inter-
vals.

The Problem: Given a statistical model (eg. X ∼
Normal(µ, σ2), Y ∼ Bin(n, p), W ∼ Poisson(θ)), the
estimation problem is to learn about unknown
parameters (eg. µ, σ, p, θ) given observed data
(eg. X’s, Y ’s, W ’s).

Idea 1: We might estimate the population mean
µ with the point estimate X̄. Point estimation
is barely mentioned in the text. Although seem-
ingly sensible, the problem is that we do not
know about the closeness of the estimate X̄ to
the unknown parameter µ.

Idea 2: Interval estimation involves construct-
ing an interval (eg. (7.3,12.6) ) in which we are
confident that µ resides.
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We begin with confidence interval construction
in the simplest context. Consider X1, . . . , Xn iid
Normal(µ, σ2) where µ is unknown, σ is known and
the observed value of X̄ is X̄obs.

Note that this is an unrealistic scenario. When
is it ever the case that the mean parameter is
unknown but the variance parameter is known?
Ignoring the criticism, X̄ ∼ Normal(µ, σ2/n). A
95% confidence interval for µ is obtained via:

P

−1.96 <
X̄ − µ
σ/
√
n
< 1.96

 = 0.95

⇔ P

−1.96
σ√
n
− X̄ < −µ < 1.96

σ√
n
− X̄

 = 0.95

⇔ P

X̄ − 1.96
σ√
n
< µ < X̄ + 1.96

σ√
n

 = 0.95

⇒ X̄obs ± 1.96
σ√
n

is a 95% CI for µ

More generally,

X̄obs ± zα2
σ√
n

is a (1− α)100% CI for µ.
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Interpretation of CI’s: The explanation is subtle
and you need to pay close attention.

Consider many hypothetical replications of an
experiment.

A common but incorrect interpretation for CI’S:

If X̄obs±zα2
σ√
n is a (1−α)100% CI for µ, it is incorrect

to write P
(
µ ∈ X̄obs ± zα2

σ√
n

)
= 1− α.
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Discussion points wrt the CI X̄obs ± zα2
σ√
n:

• as n increases, the width of the CI decreases

• as our confidence increases (ie. 1− α bigger),
the width of the CI increases

• tradeoff: we want narrow CI’s with large con-
fidence

• a CI of a given confidence 1− α is not unique
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The simple but unrealistic CI setting previously
presented is extended to more realistic scenarios.

We begin by assuming that our sample X1, . . . , Xn

is large (ie. n ≥ 30) as is often the case in practice.

Case 1: Since n is large, we can invoke the CLT
where approximately X̄ ∼ Normal(µ, σ2/n). What
is great about this is that we no longer need to
assume that the X’s are normal. In this case,

X̄obs ± zα2
σ√
n

is an approximate (1−α)100% CI for µ where σ is
still assumed known.

Case 2: We have the same conditions as Case 1
except that σ is unknown. In this realistic case,

X̄obs ± zα2
s√
n

is an approximate (1−α)100% CI for µ where s is
the sample standard deviation.
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Example: Consider heat measurements taken in
degrees Celsius where µ = 5 and σ = 4. A change
is made in the process such that µ changes but
σ remains the same. We observe X̄obs = 6.1 based
on n = 100 observations.

(a) Construct a 90% CI for µ.

(b) How big should the sample size be such that
the CI is less than 0.6 degrees wide?
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Problem: Consider the CI X̄obs ± zα2
σ√
n.

(a) How much should the sample size n increase
to reduce the width of by half?

(b) What is the effect of increasing the sample
size by a factor of 25?
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