Lecture 26

Our attention now turns to *statistical inference* where we try to understand poplns based on sample data. We first study *confidence intervals*.

The Problem: Given a statistical model (eg. $X \sim \text{Normal}(\mu, \sigma^2)$, $Y \sim \text{Bin}(n, p)$, $W \sim \text{Poisson}(\theta)$), the estimation problem is to learn about unknown parameters (eg. μ , σ , p, θ) given observed data (eg. X's, Y's, W's).

Idea 1: We might estimate the population mean μ with the *point estimate* \bar{X} . Point estimation is barely mentioned in the text. Although seemingly sensible, the problem is that we do not know about the closeness of the estimate \bar{X} to the unknown parameter μ .

Idea 2: Interval estimation involves constructing an interval (eg. (7.3,12.6)) in which we are confident that μ resides.

We begin with confidence interval construction in the simplest context. Consider X_1, \ldots, X_n iid $\operatorname{Normal}(\mu, \sigma^2)$ where μ is unknown, σ is known and the observed value of \bar{X} is \bar{X}_{obs} .

Note that this is an unrealistic scenario. When is it ever the case that the mean parameter is unknown but the variance parameter is known? Ignoring the criticism, $\bar{X} \sim \text{Normal}(\mu, \sigma^2/n)$. A 95% confidence interval for μ is obtained via:

$$P\left(-1.96 < \frac{X - \mu}{\sigma/\sqrt{n}} < 1.96\right) = 0.95$$

$$\Leftrightarrow P\left(-1.96 \frac{\sigma}{\sqrt{n}} - \bar{X} < -\mu < 1.96 \frac{\sigma}{\sqrt{n}} - \bar{X}\right) = 0.95$$

$$\Leftrightarrow P\left(\bar{X} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

$$\Rightarrow \bar{X}_{\text{obs}} \pm 1.96 \frac{\sigma}{\sqrt{n}} \quad \text{is a 95\% CI for } \mu$$

More generally,

$$\bar{X}_{\text{obs}} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$
 is a $(1-\alpha)100\%$ CI for μ .

Interpretation of CI's: The explanation is subtle and you need to pay close attention.

Consider many hypothetical replications of an experiment.

A common but incorrect interpretation for CI'S: If $\bar{X}_{\rm obs} \pm z_{\frac{\alpha}{2}\frac{\sigma}{\sqrt{n}}}$ is a $(1-\alpha)100\%$ CI for μ , it is incorrect to write $\mathrm{P}\left(\mu \in \bar{X}_{\rm obs} \pm z_{\frac{\alpha}{2}\frac{\sigma}{\sqrt{n}}}\right) = 1 - \alpha$.

Discussion points wrt the CI $\bar{X}_{\text{obs}} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$:

- \bullet as n increases, the width of the CI decreases
- as our confidence increases (ie. 1α bigger), the width of the CI increases
- tradeoff: we want narrow CI's with large confidence
- a CI of a given confidence 1α is not unique

The simple but unrealistic CI setting previously presented is extended to more realistic scenarios.

We begin by assuming that our sample X_1, \ldots, X_n is large (ie. $n \ge 30$) as is often the case in practice.

Case 1: Since n is large, we can invoke the CLT where approximately $\bar{X} \sim \text{Normal}(\mu, \sigma^2/n)$. What is great about this is that we no longer need to assume that the X's are normal. In this case,

$$\bar{X}_{\mathrm{obs}} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

is an approximate $(1-\alpha)100\%$ CI for μ where σ is still assumed known.

Case 2: We have the same conditions as Case 1 except that σ is unknown. In this realistic case,

$$\bar{X}_{\mathrm{obs}} \pm z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

is an approximate $(1-\alpha)100\%$ CI for μ where s is the sample standard deviation.

Example: Consider heat measurements taken in degrees Celsius where $\mu=5$ and $\sigma=4$. A change is made in the process such that μ changes but σ remains the same. We observe $\bar{X}_{\rm obs}=6.1$ based on n=100 observations.

- (a) Construct a 90% CI for μ .
- (b) How big should the sample size be such that the CI is less than 0.6 degrees wide?

Problem: Consider the CI $\bar{X}_{\text{obs}} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$.

- (a) How much should the sample size *n* increase to reduce the width of by half?
- (b) What is the effect of increasing the sample size by a factor of 25?