## Lecture 23

Definition: The covariance between the rvs $X$ and $Y$ is given by

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathrm{E}((X-\mathrm{E}(X))(Y-\mathrm{E}(Y))) \\
& =\mathrm{E}(X Y)-\mathrm{E}(X) \mathrm{E}(Y)
\end{aligned}
$$

## Interpretation:

- positive covariance
- large $x$ 's occur with large $y$ 's
- small $x$ 's occur with small $y$ 's
- negative covariance
- large $x$ 's occur with small $y$ 's
- small $x$ 's occur with large $y$ 's

Correlation is the scaled and preferred version of covariance.

Definition: The correlation between the rvs $X$ and $Y$ is given by

$$
\rho=\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\mathrm{V}(X)} \sqrt{\mathrm{V}(Y)}}
$$

Discussion points:

- $-1 \leq \operatorname{Corr}(X, Y) \leq 1$
- correlation is location/scale invariant
- $\rho$ is the population analogue of $r$
- $\rho$ typically relevant to continuous rvs
- if $a>0$, then $\operatorname{Corr}(X, a X+b)=1$
- if $a<0$, then $\operatorname{Corr}(X, a X+b)=-1$

Example: Obtain the correlation between $X$ and $Y$ where the joint pmf of $X$ and $Y$ is given in the following table.

|  | $\mathbf{X}=\mathbf{1}$ | $\mathbf{X}=\mathbf{2}$ | $\mathbf{X}=\mathbf{3}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{Y}=\mathbf{1}$ | 0.1 | 0.2 | 0.3 |
| $\mathbf{Y}=\mathbf{2}$ | 0.0 | 0.2 | 0.2 |

## Proposition: If $X$ and $Y$ are independent, then

$$
\operatorname{Cov}(X, Y)=0
$$

In addition, $\operatorname{Corr}(X, Y)=0$ provided $\mathrm{V}(X)$ and $\mathrm{V}(Y)$ are nonzero. The converse is not true.

Also, recall that correlation does not imply causation.

Proposition: $\mathrm{V}(X+Y)=\mathrm{V}(X)+\mathrm{V}(Y)+2 \operatorname{Cov}(X, Y)$

Proposition: More generally,

$$
\mathrm{V}(a X+b Y+c)=a^{2} \mathrm{~V}(X)+b^{2} \mathrm{~V}(Y)+2 a b \operatorname{Cov}(X, Y)
$$

Proposition: Even more generally,
$\mathrm{V}\left(\sum_{i=1}^{n} a_{i} X_{i}+c\right)=\Sigma_{i=1}^{n} a_{i}^{2} \mathrm{~V}\left(X_{i}\right)+2 \Sigma_{i<j} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$
$\mathrm{E}\left(\sum_{i=1}^{n} a_{i} X_{i}+c\right)=c+\sum_{i=1}^{n} a_{i} \mathrm{E}\left(X_{i}\right)$

Lets put some of this stuff together to provide a useful result.

Corollary: Suppose that the rv's $X_{1}, \ldots, X_{n}$ are a sample. In other words, the $X$ 's are independent and arise from a common distribution with mean $\mu$ and variance $\sigma^{2}$. Then the sample mean has the following properties:

- $\mathrm{E}(\bar{X})=\mu$
- $\mathrm{V}(\bar{X})=\sigma^{2} / n$

Suprisingly, we have reached this point in our Statistics course and we have not yet defined the word statistic.

Definition: A statistic is a function of the data.

Some examples:

- $\bar{X}=\sum_{i=1}^{n} X_{i} / n$ is a statistic
- $S^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} /(n-1)$ is a statistic

Since data are variable, statistics are also variable. Sometimes we are interested in the distributions of statistics.

Example: Obtain the distribution of the statistic $Q=X+Y$ where the joint pmf of $X$ and $Y$ is given in the following table.

|  | $\mathbf{X}=\mathbf{1}$ | $\mathbf{X}=\mathbf{2}$ | $\mathbf{X}=\mathbf{3}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{Y}=\mathbf{1}$ | 0.1 | 0.1 | 0.2 |
| $\mathbf{Y}=\mathbf{2}$ | 0.2 | 0.3 | 0.1 |

The previous example was simple. To generalize, we need to go a little crazy with notation.

Suppose that $X_{1}, \ldots, X_{n}$ are discrete with joint pmf $p\left(x_{1}, \ldots, x_{n}\right)$. Then the pmf for the general statistic $Q\left(X_{1}, \ldots, X_{n}\right)$ is

$$
p_{Q}(q)=\sum_{A} p\left(x_{1}, \ldots, x_{n}\right)
$$

where the sum is a multiple sum and $A$ is the set of $x_{1}, \ldots, x_{n}$ such that $Q\left(x_{1}, \ldots, x_{n}\right)=q$.

Suppose that $X_{1}, \ldots, X_{n}$ are continuous with joint pdf $f\left(x_{1}, \ldots, x_{n}\right)$. Then the cdf for the general statistic $Q\left(X_{1}, \ldots, X_{n}\right)$ is

$$
F_{Q}(q)=\mathrm{P}(Q \leq q)=\int_{A} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

where the integral is a multiple integral and $A$ is the set of $x_{1}, \ldots, x_{n}$ such that $Q\left(x_{1}, \ldots, x_{n}\right) \leq q$.

I have mentioned previously that statistical practice relies heavily on computation. Here is a simulation procedure that can be used to approximate distributions of statistics when the sums and integrals from the previous page are too difficult to obtain analytically.

- Repeat the following two steps $M$ times where $M$ is large and let $i$ denote the $i$-th iteration
- generate $x_{1}, \ldots, x_{n}$ according to $p\left(x_{1}, \ldots, x_{n}\right)$ or $f\left(x_{1}, \ldots, x_{n}\right)$ (depending whether the data are discrete or continuous)
- calculate $Q_{i}=Q\left(x_{1}, \ldots, x_{n}\right)$ for the data
- approximate the distbn of Q with a histogram based on generated outcomes $Q_{1}, \ldots, Q_{M}$

