
Lecture 23

Definition: The covariance between the rvs X
and Y is given by

Cov(X, Y ) = E( (X − E(X))(Y − E(Y )) )

= E(XY )− E(X)E(Y )

Interpretation:

• positive covariance

– large x’s occur with large y’s

– small x’s occur with small y’s

• negative covariance

– large x’s occur with small y’s

– small x’s occur with large y’s
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Correlation is the scaled and preferred version
of covariance.

Definition: The correlation between the rvs X
and Y is given by

ρ = Corr(X, Y ) =
Cov(X, Y )√
V(X)

√
V(Y )

Discussion points:

• −1 ≤ Corr(X, Y ) ≤ 1

• correlation is location/scale invariant

• ρ is the population analogue of r

• ρ typically relevant to continuous rvs

• if a > 0, then Corr(X, aX + b) = 1

• if a < 0, then Corr(X, aX + b) = −1
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Example: Obtain the correlation between X and
Y where the joint pmf of X and Y is given in the
following table.

X=1 X=2 X=3
Y=1 0.1 0.2 0.3
Y=2 0.0 0.2 0.2
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Proposition: If X and Y are independent, then

Cov(X, Y ) = 0

In addition, Corr(X, Y ) = 0 provided V(X) and
V(Y ) are nonzero. The converse is not true.

Also, recall that correlation does not imply cau-
sation.
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Proposition: V(X + Y ) = V(X) + V(Y ) + 2Cov(X, Y )

Proposition: More generally,

V(aX + bY + c) = a2V(X) + b2V(Y ) + 2abCov(X, Y )

Proposition: Even more generally,

V
 n∑
i=1
aiXi + c

 = ∑n
i=1 a

2
iV(Xi) + 2 ∑

i<j aiajCov(Xi, Xj)

E
 n∑
i=1
aiXi + c

 = c + ∑n
i=1 aiE(Xi)
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Lets put some of this stuff together to provide a
useful result.

Corollary: Suppose that the rv’s X1, . . . , Xn are a
sample. In other words, the X’s are independent
and arise from a common distribution with mean
µ and variance σ2. Then the sample mean has the
following properties:

• E(X̄) = µ

• V(X̄) = σ2/n
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Suprisingly, we have reached this point in our
Statistics course and we have not yet defined the
word statistic.

Definition: A statistic is a function of the data.

Some examples:

• X̄ =
∑n
i=1Xi/n is a statistic

• S2 =
∑n
i=1(Xi − X̄)2/(n− 1) is a statistic

Since data are variable, statistics are also vari-
able. Sometimes we are interested in the distri-
butions of statistics.
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Example: Obtain the distribution of the statistic
Q = X+Y where the joint pmf of X and Y is given
in the following table.

X=1 X=2 X=3
Y=1 0.1 0.1 0.2
Y=2 0.2 0.3 0.1
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The previous example was simple. To generalize,
we need to go a little crazy with notation.

Suppose that X1, . . . , Xn are discrete with joint
pmf p(x1, . . . , xn). Then the pmf for the general
statistic Q(X1, . . . , Xn) is

pQ(q) =
∑
A
p(x1, . . . , xn)

where the sum is a multiple sum and A is the set
of x1, . . . , xn such that Q(x1, . . . , xn) = q.

Suppose that X1, . . . , Xn are continuous with joint
pdf f (x1, . . . , xn). Then the cdf for the general
statistic Q(X1, . . . , Xn) is

FQ(q) = P(Q ≤ q) =
∫
A f (x1, . . . , xn) dx1 . . . dxn

where the integral is a multiple integral and A is
the set of x1, . . . , xn such that Q(x1, . . . , xn) ≤ q.
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I have mentioned previously that statistical prac-
tice relies heavily on computation. Here is a sim-
ulation procedure that can be used to approxi-
mate distributions of statistics when the sums
and integrals from the previous page are too dif-
ficult to obtain analytically.

• Repeat the following two steps M times where
M is large and let i denote the i-th iteration

– generate x1, . . . , xn according to p(x1, . . . , xn)
or f (x1, . . . , xn) (depending whether the data
are discrete or continuous)

– calculate Qi = Q(x1, . . . , xn) for the data

• approximate the distbn of Q with a histogram
based on generated outcomes Q1, . . . , QM
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