Lecture 22

We now turn our attention to the expectation of functions of random variables.

Proposition: In the continuous case, using standard notation,
$\mathrm{E}\left[g\left(X_{1}, \ldots, X_{k}\right)\right]=\int \cdots \int g\left(x_{1}, \ldots x_{k}\right) f\left(x_{1}, \ldots x_{k}\right) d x_{1} \cdots d x_{k}$
In the discrete case, we replace the pdf f with the corresponding $\operatorname{pmf} p$ and we replace the multiple integral with a multiple sum.

Example: An instructor gives a quiz with two parts. For a randomly selected student, let X and Y be the scores obtained on the two parts respectively. The table gives the joint pmf $p(x, y)$ of X and Y :

$$
\begin{array}{c|c|c|c|c|}
\mathbf{p}(\mathbf{x}, \mathbf{y}) & \mathbf{y}=\mathbf{0} & \mathbf{y}=\mathbf{5} & \mathbf{y}=\mathbf{1 0} & \mathbf{y}=\mathbf{1 5} \\
\hline \mathbf{x}=\mathbf{0} & 0.02 & 0.06 & 0.02 & 0.10 \\
\mathbf{x}=\mathbf{5} & 0.04 & 0.15 & 0.20 & 0.10 \\
\mathbf{x}=\mathbf{1 0} & 0.01 & 0.15 & 0.14 & 0.01
\end{array}
$$

(a) What is the expected total score $\mathrm{E}(X+Y)$?
(b) What is the expected maximum score from the two parts?
(c) Are X and Y independent?
(d) Obtain $\mathrm{P}(Y=10 \mid X \geq 5)$.

Example: We return to the discrete distribution described by the $\operatorname{pmf} p(x, y, z)$

| | $\mathbf{X}=\mathbf{1}$ | $\mathbf{X}=\mathbf{2}$ | $\mathbf{X}=\mathbf{3}$ |
| :--- | :---: | :---: | :---: | :---: |
| $\mathbf{Y}=\mathbf{1}$ | 0.10 | 0.20 | 0.00 |
| $\mathbf{Y}=\mathbf{2}$ | 0.00 | 0.05 | 0.05 |

	$\mathbf{X}=\mathbf{1}$	$\mathbf{X}=\mathbf{2}$	$\mathbf{X}=\mathbf{3}$
$\mathbf{Y}=\mathbf{1}$	0.00	0.30	0.10
$\mathbf{Y}=\mathbf{2}$	0.05	0.05	0.10

Obtain $\mathrm{E}(g)$ where $g(x, y, z)=x z$.

Problem: Annie and Alvie agree to meet for lunch between noon and 1pm. Denote Annie's arrival time by X and Alvie's by Y, and suppose X and Y are independent with pdfs $f_{X}(x)=3 x^{2}$ where $0<x<1$ and $f_{Y}(y)=2 y$ where $0<y<1$.

What is the expected time that the one who arrives first waits for the other person to arrive?

Recall that the conditional probability of event A given event B is given by

$$
\mathrm{P}(A \mid B)=\mathrm{P}(A B) / \mathrm{P}(B) .
$$

Conditional probability is now extended to continuous rv's.

Definition: In the continuous case, using standard notation, the conditional density of X_{1} given $X_{2}=x_{2}, \ldots, X_{k}=x_{k}$ is given by

$$
f_{X_{1} \mid X_{2}, \ldots, X_{k}}\left(x_{1}\right)=\frac{f_{X_{1}, \ldots, X_{k}}\left(x_{1}, \ldots, x_{k}\right)}{f_{X_{2}, \ldots, X_{K}}\left(x_{2}, \ldots, x_{k}\right)}
$$

The definition can be extended in various ways including the discrete case.

Example: Recall the bivariate distribution on (X, Y) given by the pdf $f_{X, Y}(x, y)=2(2 x+3 y) / 5$ where $0<x, y<1$. Earlier we established the marginal density for X given by $f_{X}(x)=4 x / 5+3 / 5$ where $0<x<1$. Suppose we observe $X=0.2$. What is the conditional pdf of Y ?

Problem: The number of customers waiting for the gift-wrap service at department store is a rv X taking possible values $0,1,2,3$ and 4 with corresponding probabilities $0.10,0.20,0.30,0.25$ and 0.15 . A random customer has 1,2 or 3 packages for wrapping with probabilities $0.6,0.3$ and 0.1 respectively. Let Y be the total number of packages to be wrapped by customers waiting in line.
(a) Determine $\mathrm{P}(X=3, Y=3)$.
(b) Determine $\mathrm{P}(X=4, Y=11)$.

