Lecture 21

It turns out that there is a connection between the Poisson and Exponential distributions. Recall the Poisson process where N_{T} is the number of events that occur in the interval $[0, T]$ where $N_{T} \sim \operatorname{Poisson}(\lambda T)$. Let
$Y \equiv$ waiting time until the first event

Then the cdf of Y is given by

$$
\begin{aligned}
\mathrm{P}(Y \leq y) & =1-\mathrm{P}(Y>y) \\
& =1-\mathrm{P}(\text { zero events in }[\mathbf{0}, \mathbf{y}]) \\
& =1-\mathrm{P}\left(N_{y}=0\right) \quad \text { where } N_{y} \sim \operatorname{Poisson}(\lambda y) \\
& =1-(\lambda y)^{0} e^{-\lambda y} / 0! \\
& =1-e^{-\lambda y}
\end{aligned}
$$

which implies $Y \sim \operatorname{Exponential}(\lambda)$

Problem: Let X be the distance in metres that a rat moves from its birth site to its first territorial vacancy. Suppose that X has an exponential distribution with $\lambda=0.01386$.
(a) What is the probability that the distance X is at most 100 metres?
(b) What is the probability that the distance X exceeds the mean distance by more than two standard deviations?
(c) What is the median distance?

Until now, we have studied probabilities corresponding to a single rv X. We now consider joint probability distributions associated with a vector $\mathbf{r v}\left(X_{1}, \ldots, X_{k}\right)$.

Example: a trivariate discrete distribution described by the pmf $p(x, y, z)$

	$\mathbf{X}=\mathbf{1}$	$\mathbf{X}=\mathbf{2}$	$\mathbf{X}=\mathbf{3}$
$\mathbf{Y}=\mathbf{1}$	0.10	0.20	0.00
$\mathbf{Y}=\mathbf{2}$	0.00	0.05	0.05

	$\mathbf{X}=\mathbf{1}$	$\mathbf{X}=\mathbf{2}$	$\mathbf{X}=\mathbf{3}$	
$\mathbf{Y}=\mathbf{1}$	0.00	0.30	0.10	
$\mathbf{Y}=\mathbf{2}$	0.05	0.05	0.10	

The marginal pmf $\mathrm{p}(x)=\Sigma_{y, z} \mathrm{p}(x, y, z)$

In the continuous setting, we describe distributions via a joint pdf $f\left(x_{1}, \ldots, x_{k}\right)$ which satisfies

1. $f\left(x_{1}, \ldots, x_{k}\right) \geq 0 \quad \forall x_{1}, \ldots, x_{k}$
2. $\quad \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f\left(x_{1}, \ldots, x_{k}\right) d x_{1} \cdots d x_{k}=1$

To obtain probabilities in the continuous setting,
$\mathrm{P}\left(\left(X_{1}, \ldots, X_{k}\right) \in A\right)=\int \cdots \int_{A} f\left(x_{1}, \ldots, x_{k}\right) d x_{1} \cdots d x_{k}$

Example: A bivariate distribution on (X, Y) is given by $f(x, y)=2(2 x+3 y) / 5$ where $0<x, y<1$
(a) Calculate $\mathrm{P}(X>1 / 2, Y<1 / 2)$.
(b) Obtain the marginal pdf of X and verify that it is a pdf.

Recall that we previously discussed the independence of events. The concept of independence can be extended to rv's.

Definition: Random variables are independent if their joint pmfs (pdfs) factor into their marginal pmfs (pdfs).

Example: Consider the bivariate pdf

$$
\begin{aligned}
f(x, y) & =\frac{1}{2 \pi \sigma_{1} \sigma_{2}} \exp \left\{-\frac{1}{2}\left(x^{2} / \sigma_{1}^{2}+y^{2} / \sigma_{2}^{2}\right)\right\} \\
& =\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} \exp \left\{-\frac{1}{2}\left(\frac{x-0}{\sigma_{1}}\right)^{2}\right\} \frac{1}{\sqrt{2 \pi \sigma_{2}^{2}}} \exp \left\{-\frac{1}{2}\left(\frac{y-0}{\sigma_{2}}\right)^{2}\right\}
\end{aligned}
$$

Example: Consider the bivariate pmf given by

	$\mathbf{X}=\mathbf{1}$	$\mathbf{X}=\mathbf{2}$
$\mathbf{Y}=\mathbf{1}$	0.4	0.2
$\mathbf{Y}=\mathbf{2}$	0.1	0.3

(a) Obtain the marginal pmf for X. (b) Obtain the marginal pmf for Y. (c) Are X and Y independent?

Problem: Two components of a computer have the joint pdf for their lifetimes X and Y in years

$$
f(x, y)=x e^{-x(1+y)} \quad x, y \geq 0
$$

(a) What is the probability that the lifetime X of the first component exceeds 3 years?
(b) What are the marginal pdfs of X and Y ?
(c) What is the probability that the lifetime of at least one component exceeds 3 years?

