Lecture 21

It turns out that there is a connection between the Poisson and Exponential distributions. Recall the Poisson process where N_T is the number of events that occur in the interval [0,T] where $N_T \sim \text{Poisson}(\lambda T)$. Let

 $Y \equiv$ waiting time until the first event

Then the cdf of Y is given by

$$P(Y \le y) = 1 - P(Y > y)$$

= 1 - P(zero events in [0,y])
= 1 - P(N_y = 0) where N_y ~ Poisson(\lambda y)
= 1 - (\lambda y)^0 e^{-\lambda y}/0!
= 1 - e^{-\lambda y}

which implies $Y \sim \text{Exponential}(\lambda)$

Problem: Let X be the distance in metres that a rat moves from its birth site to its first territorial vacancy. Suppose that X has an exponential distribution with $\lambda = 0.01386$.

- (a) What is the probability that the distance X is at most 100 metres?
- (b) What is the probability that the distance X exceeds the mean distance by more than two standard deviations?
- (c) What is the median distance?

Until now, we have studied probabilities corresponding to a single rv X. We now consider joint probability distributions associated with a vector rv (X_1, \ldots, X_k) .

Example: a trivariate discrete distribution described by the pmf p(x, y, z)

	X=1	X=2	X=3	
Y=1	0.10	0.20	0.00	Z = 5
Y=2	0.00	0.05	0.05	

	X=1	X=2	X=3	
Y=1	0.00	0.30	0.10	Z = 6
Y=2	0.05	0.05	0.10	

The marginal pmf $p(x) = \Sigma_{y,z} p(x, y, z)$

In the continuous setting, we describe distributions via a joint pdf $f(x_1, \ldots, x_k)$ which satisfies

 $1. \quad f(x_1,\ldots,x_k) \ge 0 \quad \forall x_1,\ldots,x_k$

2. $\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \ldots, x_k) dx_1 \cdots dx_k = 1$

To obtain probabilities in the continuous setting, $P((X_1, ..., X_k) \in A) = \int \cdots \int_A f(x_1, ..., x_k) dx_1 \cdots dx_k$ **Example:** A bivariate distribution on (X, Y) is given by f(x, y) = 2(2x + 3y)/5 where 0 < x, y < 1

- (a) Calculate P(X > 1/2, Y < 1/2).
- (b) Obtain the marginal pdf of X and verify that it is a pdf.

Recall that we previously discussed the independence of events. The concept of independence can be extended to rv's.

Definition: Random variables are independent if their joint pmfs (pdfs) factor into their marginal pmfs (pdfs).

Example: Consider the bivariate pdf

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left\{-\frac{1}{2}\left(\frac{x^2}{\sigma_1^2} + \frac{y^2}{\sigma_2^2}\right)\right\}$$
$$= \frac{1}{\sqrt{2\pi\sigma_1^2}} \exp\left\{-\frac{1}{2}\left(\frac{x-0}{\sigma_1}\right)^2\right\} \frac{1}{\sqrt{2\pi\sigma_2^2}} \exp\left\{-\frac{1}{2}\left(\frac{y-0}{\sigma_2}\right)^2\right\}$$

Example: Consider the bivariate pmf given by

	X=1	X=2
Y=1	0.4	0.2
Y=2	0.1	0.3

- (a) Obtain the marginal pmf for X.
- (b) Obtain the marginal pmf for Y.
- (c) Are X and Y independent?

Problem: Two components of a computer have the joint pdf for their lifetimes X and Y in years

$$f(x,y) = xe^{-x(1+y)}$$
 $x, y \ge 0$

- (a) What is the probability that the lifetime X of the first component exceeds 3 years?
- (b) What are the marginal pdfs of X and Y?
- (c) What is the probability that the lifetime of at least one component exceeds 3 years?