Lecture 13

We explore expectation in more detail.
Proposition: For a discrete rv X with pmf $p(x)$

$$
\mathrm{E}\left(g_{1}(x)+\cdots+g_{k}(x)\right)=\mathrm{E}\left(g_{1}(x)\right)+\cdots+\mathrm{E}\left(g_{k}(x)\right)
$$

Definition: The variance of a discrete rv X with pmf $p(x)$ is

$$
\sigma^{2} \equiv \mathrm{~V}(X) \equiv E\left[(X-\mathrm{E}(X))^{2}\right]
$$

- we call σ the standard deviation
- σ and σ^{2} are measures of spread
- contrast sample quantities (\bar{x}, s) with popln quantities (μ, σ)

Example: Consider the experiment consisting of three flips of a coin. Let $X \equiv$ the number of heads. Obtain $\mathrm{V}(X)$.

Proposition: $\mathrm{V}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}$

Proposition: $\mathrm{V}(a X+b)=a^{2} \mathrm{~V}(X)$

Example: Let X be the average january temperature in degrees Celsius where $\mathrm{E}(X)=5 \mathrm{C}$ and $\mathrm{V}(X)=3(\mathrm{C})^{2}$. Find the expected value and the variance of Y where Y is the average january temperature in degrees Fahrenheit.

Problem: Calculate σ and $\mathrm{E}\left(3 X+4 X^{2}\right)$ corresponding to the rv X with $\operatorname{pmf} p(x)$ where

$$
\begin{array}{c|ccc}
x & 4 & 8 & 10 \\
\hline p(x) & 0.2 & 0.7 & 0.1
\end{array}
$$

Example: In a game of chance, I bet x dollars. With probability p, I win y dollars. What should x be for this to be a fair game?

Definition: A discrete rv X has a Binomial distribution denoted $\operatorname{Bin}(n, \theta)$ if it has pmf

$$
p(x)= \begin{cases}\binom{n}{x} \theta^{x}(1-\theta)^{n-x} & x=0,1, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

Motivation for the Binomial - the most important discrete distribution:

Consider performing an experiment n times where the probability of success in every trial is θ and the n experiments are independent. We are interested in the probability of x successes.

The probability of getting x successes S and $n-x$ failures F in the specific order

$$
S S \cdots S \quad F F \cdots F
$$

is

$$
\begin{aligned}
& \theta \theta \cdots \theta(1-\theta)(1-\theta) \cdots(1-\theta) \\
= & \theta^{x}(1-\theta)^{n-x} .
\end{aligned}
$$

Therefore

$$
P(x \text { successes })=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}
$$

for $x=0,1, \ldots, n$.

Key points for the Binomial distribution:

1. the n trials are independent
2. same probability of success θ in each trial

Example: You roll a die 10 times and are interested in obtaining 5's or 6's. What is the probability that x rolls result in either 5 's or 6's?

For $X \sim \operatorname{Bin}(n, \theta)$

- $\mathrm{E}(X)=n \theta$
- $\mathrm{V}(X)=n \theta(1-\theta)$

Proof (first result):

$$
\begin{aligned}
\mathrm{E}(X) & =\sum_{x=0}^{n} x\binom{n}{x} \theta^{x}(1-\theta)^{n-x} \\
& =\sum_{x=1}^{n} x \frac{n!}{x!(n-x)!} \theta^{x}(1-\theta)^{n-x} \\
& =n \theta \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} \theta^{x-1}(1-\theta)^{n-x} \\
& =n \theta \sum_{y=0}^{n-1} \frac{(n-1)!}{y!(n-1-y)!} \theta^{y}(1-\theta)^{n-1-y} \\
& =n \theta \sum_{y=0}^{n-1}\binom{n-1}{y} \theta^{y}(1-\theta)^{n-1-y} \\
& =n \theta
\end{aligned}
$$

