## Lecture 03

## Dotplots:

- a graphical descriptive statistic
- applicable given univariate data $x_{1}, \ldots, x_{n}$
- able to observe centrality, dispersion, outliers
- not so widely used (histograms are better)


## Histograms:

- a graphical descriptive statistic
- applicable given univariate data $x_{1}, \ldots, x_{n}$
- able to observe centrality, dispersion, outliers
- we encourage intervals of equal length
- generated by statistical software

Histograms (we illustrate by hand):

- data are weights of students in kg: 47, 55, 79,
$63,64,67,54,59,58,84,70,61,65,59$


## Issues in constructing histograms:

- always label axes and provide a title
- how many intervals should be chosen?
- be aware of the scale of the vertical axis
- handling intervals that are not of equal length

Sample mean $\bar{x}$ :

- a numerical descriptive statistic of centrality
- applicable given univariate data $x_{1}, \ldots, x_{n}$
- $\bar{x}=\frac{x_{1}+\cdots+x_{n}}{n}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{\sum x_{i}}{n}$

Sample median $\tilde{x}$ :

- a numerical descriptive statistic of centrality
- applicable given univariate data $x_{1}, \ldots, x_{n}$
- $\tilde{x}= \begin{cases}x_{\left(\frac{n+1}{2}\right)} & \text { if } n \text { odd } \\ \left(x_{\left(\frac{n}{2}\right)}+x_{\left(\frac{n+2}{2}\right)}\right) / 2 & \text { if } n \text { even }\end{cases}$

Consider a sample of $n$ house prices:

- $\bar{x}=\$ 850,000$
- $\tilde{x}=\$ 700,000$
- Why do the statistics differ?

The median is more robust than the mean wrt outliers:

Know how to approximate the median and mean from a histogram:

