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What is a Changepoint?

A changepoint is a discontinuity in the marginal distributions of a
time-ordered sequence of data X1,X2, . . ..

H0 : The entire data sequence {Xi}ni=1 behaves via one model.

HA : There is an unknown time c such that {Xi}ci=1 behaves via
one model and {Xi}ni=c+1 behaves via a different model.
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Changepoints Wreak Havoc on Inferences
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More Changepoint Shenanigans
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Changepoints Arise in Unexpected Ways
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See the Changepoint Now?
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An AMOC Analyses

We present an asymptotic analysis for changes in the mean of a
series for the at most one changepoint (AMOC) case.

While AMOC settings are seldom reality, climatologists believe that
they can subsegment series down to those with either zero or one
changepoint(s).

If the time of the change is known a priori, then changepoint tests
are relatively simple, comprised largely of the usual t and z tests
learned in a first statistics class.
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Classical Background

The simplest regression setup is arguably

Xt = µ+∆1[t>c] + ǫt , 1 ≤ t ≤ n.

Take {ǫt} IID(0, σ2) for the moment; c is unknown.

The goal is to assess whether or not ∆ = 0, or whether c = n.
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A CUSUM-based Changepoint Test

If the changepoint time c were known (documented), a simple test
would compare differences in the means

X̄1:c =
1

c

c
∑

t=1

Xt and X̄c+1:n =
1

n − c

n
∑

t=c+1

Xt .

Weighting for the different segment sizes leads to consideration of

Z (c) =
X̄1:c − X̄c+1:n

Var(X̄1:c − X̄c+1:n)1/2
.
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CUSUM Statistics

This entails examining the statistic

Z (c) =
CUSUM(c)

σ
√

c

n

(

1− c

n

)

,

where

CUSUM(c) =
1√
n

(

c
∑

t=1

Xt −
c

n

n
∑

t=1

Xt

)

.

When c is unknown, we examine

Z 2
max

= max
1≤c≤n

Z 2(c).
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CUSUM Asymptotics

Under the null hypothesis of no changepoints, as n → ∞,

Z 2
max

→ ∞.

Q: How does one make sense of this?

A: Truncate Boundaries!
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CUSUM Asymptotics

Truncate the set of admissible changepoint times to all c such that
c/n ∈ [ℓ, h] ⊂ (0, 1).

Under a null hypothesis of no changepoints, as n → ∞, MacNeill
(1974, Annals of Statistics) shows that

max
ℓ≤ c

n
≤h

Z 2(c)
D−→ sup

ℓ≤t≤h

B2(t)

t(1− t)
.

Here, {B(t)}t=1
t=0 is a standard Brownian bridge process.
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A Reminder on Brownian Bridges

If {W (t)}t=1
t=0 is a Brownian motion, then

B(t) = W (t)− tW (1)

is a Brownian bridge over t ∈ [0, 1].

Robert Lund Clemson Math Sciences Lund@Clemson.edu Changepoints and Associated Climate Controversies



Clemson University

Some Changepoint Background
Mean Shifts for Independent Data
Hurricanes and Categorical Changepoints
Multiple Changepoints
Extreme USA Temperature Trends

Atlantic Basin Tropical Cyclone Counts and Strengths

There is considerable controversy over whether or not tropical
cyclone counts are increasing and/or if the strengths of the
individual storms are increasing.

July 28, 2009 Senate testimonial from Dr. Kelvin Droegemeier (a
climatologist from University of Oklahoma): North Atlantic
tropical cyclone counts are not increasing but the individual
strengths of the storms are.

Hurricane data: HURDAT on NOAA’s website. This has
information on about 1500 tropical cyclones occurring from
1851-current.

The data, especially in regard to windspeed of the storms, can be
unreliable.
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Annual Number of Observed Cyclones
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Peak Storm Windspeeds
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Changepoint Tests for a Distributional Change

We now study AMOC techniques for marginal distributions.

The null hypothesis is that X1, . . . ,Xn (the storm windspeeds) are
IID.

Our alternative hypothesis is that there is an unknown changepoint
time c at which time the CDF of the Xis shift in an unknown way.

We devise a non-parametric test via χ2 statistics.

Partition the Xt into the cells I1, . . . ,Im.
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The χ
2
max Statistic

If a changepoint occurred at time c , then

χ2(c) =
m
∑

i=1

(

Oi ,c − Ê [Oi ,c ]
)2

Ê [Oi ,c ]
+

m
∑

i=1

(

O∗
i ,c − Ê [O∗

i ,c ]
)2

Ê [O∗
i ,c ]

should be statistically large — the two-sample χ2 statistic.

Here, Oi ,c and O∗
i ,c are the observed category i counts before and

after the changepoint time c .

We hence examine

χ2
max

= max
ℓ≤ c

n
≤h

χ2(c).
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A Categorical Asymptotic Theorem

(Robbins, Lund, Gallagher, Lu 2011, Journal of the American

Statistical Association) Under the null hypothesis of no
changepoints,

max
ℓ≤ c

n
≤h

χ2(c)
D−→ sup

ℓ≤t≤h

B2
1 (t) + · · · + B2

m−1(t)

t(1− t)
.

Here, B2
1 (t) + · · ·+ B2

m(t) is the sum of m independent squared
Brownian bridges.

Boundaries must again be cropped.
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Our “Saffir-Simpson” Partition of Windspeeds

Category 1: 40-73 mph (tropical cyclones)

Category 2: 74-95 mph hurricanes

Category 3: 96-110 mph hurricanes

Category 4: 111-130 mph hurricanes

Category 5: 131+ mph hurricanes

We added some bells and whistles to the categorical changepoint
test to jointly find changepoints in the above categories and,
simultaneously, annual counts.
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Peak Storm Windspeeds
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Count and Windspeed Changepoint Test (Joint)
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Counts Only Changepoint Tests
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Optimal Count Segmentation
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CUSUM Windspeed Changepoint Test
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χ
2
max Test for Windspeed Changepoints
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What About Recent Counts?
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Hurricane Conclusions and Comments

Hurricane counts have shown recent increases (circa 1995).

Windspeeds of the storms have not recently increased.

Not shown here: Almost every variable in this data set (longitude,
latitude, duration,....) shows a changepoint around 1960.

The circa 1995 changepoint is hotly debated and is the subject of
the 2006 popular book “Storm World” by Chris Mooney.
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Key Questions

How many changepoints (call it m) are there?

Where are the m changepoints located — call them
τ1 < τ2 < · · · < τm?

Three recent non-Bayesian references:

1. Davis, Lee, and Rodriguez-Yam, Journal of the American

Statistical Association, (2006).

2. Lu, Lund, and Lee, Annals of Applied Statistics, (2010).

3. Li and Lund, Journal of Climate, (2012).
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New Bedford, MA Annual Precipitations

New Bedford, MA Annual Precipitation
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Minimum Description Length (MDL) Methods

The MDL Objective Function:

MDL(m, τ1, . . . , τm) = − log2(L
∗) + P(m, τ1, . . . , τm).

L∗ = L∗(m, τ1, . . . , τm) is an optimized model likelihood given the
changepoint numbers m and location times τ1 < · · · < τm.

P(m, τ1, . . . , τm) is a penalty for the number(s) and type(s) of
model parameters and the changepoint configuration.

Robert Lund Clemson Math Sciences Lund@Clemson.edu Changepoints and Associated Climate Controversies



Clemson University

Some Changepoint Background
Mean Shifts for Independent Data
Hurricanes and Categorical Changepoints
Multiple Changepoints
Extreme USA Temperature Trends

A Teaser for the Fit
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The MDL Criterion

MDL methods penalize integer-valued parameters more heavily
than real-valued parameters. MDL methods fundamentally differ
from AIC and BIC methods, which penalize total parameter counts
only.

The penalty for a real-valued parameter estimated from k

data points is log2(k)/2.

The penalty for an unbounded integer I is log2(I ) .

The penalty for an integer parameter I that is known to be
bounded by an integer B is log2(B).

The total penalty P is the sum of penalties for each
parameter.
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The Lognormal Likelihood

Lognormal distributions often describe annual precipitations well.
Annual precipitation series often display correlation.

A reasonable model for annual precipitation series {Xt} has

Lognormal marginal distributions.

A location parameter µ that shifts at each of the m changepoint
times τ1 < · · · < τm.

A scale parameter σ that is constant over all regimes.
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Lognormal Likelihood

The marginal density of Xt is

f (x) =
exp

{

− (ln(x)−µr(t))
2

2σ2

}

xσ
√
2π

, x > 0.

Here, r(t) denotes the time t regime number.

If Xt is independent in time t, the likelihood L of all N
observations is

L =

N
∏

t=1

f (Xt) =
exp{− 1

2σ2

∑

N

t=1(ln(Xt)− µr(t))
2}

(σ
√
2π)N

(

∏

N

t=1 Xt

) ,
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Lognormal Parameter Estimators

For known changepoint numbers m and times at τ1 < · · · < τm,
likelihood parameter estimators are

µ̂ℓ =
1

τℓ − τℓ−1

∑

t∈Rℓ

ln(Xt),

σ̂2 =
1

N

N
∑

t=1

(ln(Xt)− µ̂r(t))
2.

Plugging in these optimizers gives L∗(m, τ1, . . . , τm).
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The Lognormal Likelihood

Because precipitation data is correlated, we modify the above to
allow for AR(1) autocorrelation with lag-one autocorrelation
parameter φ in (-1,1):

ln(Xt) = φ ln(Xt−1) + Zt .

Here, {Zt} ∼ WN(0, σ2).

The parameter estimators are more involved, but similar.

Again, we get L∗(m, τ1, . . . , τm).
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The MDL Penalty

An MDL penalty is obtained by adding penalties for each model
parameter.

Real-valued parameters: the penalty for µℓ is log2(τℓ − τℓ−1)/2;
the penalty for φ and σ2 is log2(N)/2

Integer-valued parameters: the penalty for the number of segments
is log2(m + 1); the penalty for τi is log2(τi+1) since τi < τi+1.
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The MDL Penalties

The MDL penalty is hence

P = 2 log2(N) +

m+1
∑

i=1

log2(τi − τi−1)

2
+ log2(m + 1) +

m
∑

i=2

log2(τi).

and the objective function is

MDL =
N

2
ln(σ̂2) +

m+1
∑

i=1

ln(τi − τi−1)

2
+ ln(m + 1) +

m
∑

i=2

ln(τi ).

Simplifications: (1) all base two logarithms were changed to
natural logarithms; (2) constant quantities are ignored (e.g., N and
X1, . . . ,XN).
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The Combinatorial Wall

An exhaustive search over all models with m changepoints requires
evaluation of

(

N

m

)

MDL scores.

Summing this over m = 0, 1, . . . ,N shows that an exhaustive
optimization requires 2N different MDL evaluations.

We devised a genetic algorithm for this task. A genetic algorithm
is an intelligent random walk search.

No details here, but it works pretty well.
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Two Segment Models
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Three Segment Models
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Four Segment Models
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Five Segment Models
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Six Segment Models
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Simulations — Set I

Mimics the New Bedford Data with lognormal distributions:

1000 series of length N = 200 with no changepoints.
µ = 6.8, φ = 0.2, σ2 = 0.025.

Table: Empirical proportions of estimated changepoint numbers. The
correct value of m is zero.

m Percent

0 99.0 %
1 0.4 %
2 0.5 %
3+ 0.1 %
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Simulations — Set II

µt =















6.8 1 ≤ t ≤ 49
7.0 50 ≤ t ≤ 99
7.2 100 ≤ t ≤ 149
7.4 150 ≤ t ≤ 200

.

Table: Empirical proportions of estimated changepoint numbers (m = 3)

m Percent

0 0.0 %
1 3.6 %
2 28.8 %
3 63.1 %
4 4.3 %
5+ 0.2 %
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Count Detection Histogram
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Log Normal Simulations−Set II

Figure: The detected changepoint times cluster around their true values
of 50, 100, and 150.
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Simulations — Set III

µt =















6.8 1 ≤ t ≤ 24
7.0 25 ≤ t ≤ 74
6.6 75 ≤ t ≤ 99
6.8 100 ≤ t ≤ 200

.

Table: Empirical proportions of estimated changepoints (m = 3)

m Percent

0 0.0 %
1 6.0 %
2 19.5 %
3 69.2 %
4 5.1 %
5+ 0.2 %
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Figure: The detected changepoint times cluster around their true values
of 25, 75, and 100.
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New Bedford Precipitation Data

New Bedford, MA Annual Precipitation
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Optimal Model

The GA algorithm converged to a model with four changepoints at
times 1867, 1910, 1965, and 1967.

The minimum MDL score achieved was -309.8570.

This segmentation is graphed against the data and appears visually
reasonable.
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Optimal Model

Fitted New Bedford, MA Model
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Summary

The table below shows optimum MDL scores for various numbers
of model segments. These values were obtained by exhaustive
search and are exact.

Table: Optimum MDL Scores

# Segments Changepoint Times MDL Score

1 — -296.7328
2 1967 -303.8382
3 1917, 1967 -306.6359
4 1867, 1910, 1967 -309.2878
5 1867, 1910, 1965, 1967 -309.8570
6 1829, 1832, 1867, 1910, 1967 -308.2182
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USA Temperature Trends

Our last subsection studies US temperature trends in monthly high
and low temperatures that takes into account changepoint
features. The study is now out in Lee, Li, and Lund (2014) Journal
of Climate.

Changes in average US temperatures are an essentially settled
matter.

There are about 1000 data stations.

A monthly high temperature is the highest high temperature over
all days during the month.
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Station Locations
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Figure: The Jacksonville, Illinois Maximum Record
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Figure: The Jacksonville, Illinois Minimum Record
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Figure: The Jacksonville, Illinois Maximum Reference Series
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Figure: The Jacksonville, Illinois Minimum Reference Series
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Figure: The Jacksonville, Illinois Maximum Changepoint Structure

Robert Lund Clemson Math Sciences Lund@Clemson.edu Changepoints and Associated Climate Controversies



Clemson University

Some Changepoint Background
Mean Shifts for Independent Data
Hurricanes and Categorical Changepoints
Multiple Changepoints
Extreme USA Temperature Trends

GEV Extreme Distributions

For a fixed station, Xt , the month t extreme, is assumed to follow
the generalized extreme-value distribution with CDF

Ft(x) = P [Xt ≤ x ] = exp

[

−
{

1 + ξ

(

x − µt

σt

)}−1/ξ

+

]

.

ξ is the all important shape parameter.

σt varies periodically with period 12 months.

µt is a time varying location parameter.
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More on the Model

µt = mt + αt + δt .

Here, mt is a monthly location parameter with period 12 months,
α is a linear trend parameter, and δt is a regime mean allowing for
m changepoints at times τ1 < · · · < τm.

δt =



















∆1, if t = 1, . . . , τ1 − 1;
∆2, if t = τ1, . . . , τ2 − 1;
...

...
∆k+1, if t = τk , . . . ,N.
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Details

Xt and Xs are assumed independent when t 6= s:

L =

N
∏

t=1

F ′
t(Xt).

Temporal independence is probably not realistic.

The likelihood is optimized numerically with an MDL penalty. A
genetic algorithm is used to optimize the penalized likelihood.
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Raw USA Trends in Monthly Maximums
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Smoothed USA Trends in Monthly Maximums
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Raw USA Trends in Monthly Minimums

[8,10]
[6,8)
[4,6)
[2,4)
[0,2)
[−2,0)
[−4,−2)
[−6,−4)
[−8,−6)
[−10,−8)

Robert Lund Clemson Math Sciences Lund@Clemson.edu Changepoints and Associated Climate Controversies



Clemson University

Some Changepoint Background
Mean Shifts for Independent Data
Hurricanes and Categorical Changepoints
Multiple Changepoints
Extreme USA Temperature Trends

Smoothed USA Trends in Monthly Minimums
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Conclusions

Low temperatures are warming more than high temperatures.

The Western US is warming more than the Eastern US.

Vancouver is warming!
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