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Space debris

Sudipto Banerjee (UCLA) Bayesian modeling for large geostatistical datasets PIMS, UBC Vancouver, May, 2015



Motivating Example U.S. Forest biomass data

U.S. Forest biomass data

Figure: Observed biomass (left) and NDVI (right)

Forest biomass data collected between 1999 and 2006 at 114,371 plots

Normalized Difference Vegetation Index (NDVI) calculated in July 2006

NDVI is a measure of greenness and is used as a covariate in Forest
Biomass Regression Models
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Motivating Example U.S. Forest biomass data

Non Spatial Model

Model

Biomass = β0 + β1NDVI + error, β̂0 = 1.043, β̂1 = 0.0093
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Figure: Heat map (left) and variogram (right) of residuals reflecting spatial
correlation
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Spatial models

Spatially-varying regression models

Y(s) = β0(s) + β1(s)X(s) + e(s)

Produce maps for intercept and slope:{
β0(s) : s ∈ D ⊂ <d} and

{
β1(s) : s ∈ D ⊂ <d}

This would be rich: understand spatially-varying impact of predictors on
outcome.

Model-based predictions: Y(s0) | {y(s1), y(s2), . . . , y(sn)}.
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Spatial models

Gaussian (spatial) process

{w(s) : s ∈ D ⊂ <d} ∼ GP(0,Kθ(s, t)) implies

w = (w(s1),w(s2), . . . ,w(sn))> ∼ N(0,Kθ)

for every finite set of points s1, s2, . . . , sn.

Kθ = {Kθ(si, sj)} is a spatial variance-covariance matrix

Stationary: Kθ(s, t) = Kθ(t − s). Isotropy: Kθ(s, t) = Kθ(‖t − s‖).

Bochner: Covariance function⇔ characteristic function.

Sudipto Banerjee (UCLA) Bayesian modeling for large geostatistical datasets PIMS, UBC Vancouver, May, 2015



Spatial models

Matérn covariance:

Kθ(s, t) =
σ2

2φ2−1Γ(φ2)
(‖t − s‖φ1)φ2κφ2(‖t − s‖;φ1)

φ1 → controls how fast correlation decays
φ2 → controls smoothness of the spatial surface
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Spatial models

Hierarchical Gaussian process models

Full rank model
T = {t1, t2, . . . , tn} are locations where data is observed

y(ti) is outcome at the ith location, y = (y(t1), y(t2), . . . , y(tn))>

y = Xβ + Zw + ε, ε ∼ N(0, τ 2I)

w = (w(t1),w(t2), . . . ,w(tn))> are spatial random effects

w ∼ N(0,Kθ), Kθ is a valid spatial covariance matrix

Priors on {β, τ 2, θ}
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Spatial models

Computation issues

Storage: n2 pairwise distances to compute Kθ
Kθ is dense; solve Kθx = b and need det(Kθ)

Complexity: roughly O(n3) flops; computationally infeasible for large
datasets
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Approaches to dimension-reduction

Burgeoning literature on spatial big data

Low-rank approaches (Wahba, 1990; Higdon, 2002; Kamman & Wand,
2003; Paciorek, 2007; Rasmussen & Williams, 2006; Stein 2007, 2008;
Cressie & Johannesson, 2008; Banerjee et al., 2008; 2010; Gramacy &
Lee 2008; Sang et al., 2011; Lemos et al., 2011; Guhaniyogi et al., 2011,
2013; Salazar et al., 2013)

Covariance tapering (Furrer et al. 2006; Zhang and Du, 2007; Du et al.
2009; Kaufman et al., 2009)

Spectral domain: (Fuentes 2007; Paciorek, 2007)

Approximation using GMRFs: INLA (Rue et al. 2009; Lindgren et al.,
2011)

Nearest-neighbor models (processes) (Vecchia 1988; Stein et al. 2004;
Gramacy et al. 2014; Stroud et al 2014; Datta et al., 2015)
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Low rank Gaussian processes

Low-rank models: hierarchical approach

N(w∗ | 0,K∗θ )× N(y |Bθw∗,D)

y is n× 1 and n is large

w∗ is r × 1, where r << n; so K∗θ is r × r

Bθ is n× r is a matrix of “basis” functions

D is n× n, but easy to invert (e.g. diagonal)

Derive var(y) (or var(w∗ | y)) in two ways to obtain

(D + BθK∗θB>θ )−1 = D−1 − D−1Bθ(K∗−1
θ + B>θ D−1Bθ)−1B>θ D−1 .

This is the famous Sherman-Woodbury-Morrison formula.

Modeling: specifying w∗ and Bθ.
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Low rank Gaussian processes

Gaussian predictive process (Banerjee et al., JRSS-B, 2008)

Start with a parent Gaussian process w(s) ∼ GP(0,Kθ(·, ·))

Fix a set of “knots” s1, s2, . . . , sr, and let K∗θ = {Kθ(si, sj)}

Then, w∗ = (w(s1),w(s2), . . . ,w(sr))
> ∼ N(0,K∗θ )

Predictive process: w̃(s) = E[w(s) |w∗] = bθ(s)>w∗

Orthogonal decomposition:

var{w(s)} = var{w̃(s)}+ var{w(s)− w̃(s)}

Approximate residual process with a sparse process (Sang et al. 2011)

Sudipto Banerjee (UCLA) Bayesian modeling for large geostatistical datasets PIMS, UBC Vancouver, May, 2015



Low rank Gaussian processes
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Low rank Gaussian processes

(a) True w (b) Full GP (c) PPGP 64 knots

Figure: Comparing full GP vs low-rank GP with 2000 locations
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Sparse Gaussian Processes

Sparse Gaussian Processes

Introduce (auxiliary) random effects to achieve computational benefits.

Let S = {s1, s2, . . . , sk} be a “reference” set of points.

Spatial random effects: (w(s1),w(s2), . . . ,w(sk))
> ∼ N(0, K̃θ) ,

Spatial process: w(t) =

k∑
i=1

ai(t)w(si) + η(t) .

1 Example: η(t) ind∼ N(0, τ 2(t)).
2 Example: ai(t) 6= 0 ONLY IF t is a “neighbor” of si.

Three pieces to the puzzle:
1 How do we construct K̃−1

θ to be sparse and det(K̃θ) to be cheap?
2 How do we define “neighbors” for arbitrary points t?
3 How do we choose nonzero ai(t)’s? Ensure good approx. to full GP?
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Sparse Gaussian Processes

Simple method of introducing sparsity (e.g. graphical models)

Write a joint density p(w) = p(w1,w2, . . . ,wn) as:

p(w1)p(w2 |w1)p(w3 |w1,w2) · · · p(wn |w1,w2, . . . ,wn−1)

Example: For Gaussian distributions:

w1 = 0 + η1;

wi = ai1w1 + ai2w2 + · · ·+ ai,i−1wi−1 + ηi; i = 2, 3, . . . , n

=⇒ w = Aw + η; η ∼ N(0,D)

Making some aij = 0 introduces conditional independence

Equivalent to w ∼ N(0,Kθ) and chol(K−1
θ ) = LDL>, then additional

zeroes in lower-triangular L.
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Sparse Gaussian Processes

Sparse likelihood approximations (Vecchia, 1988; Stein et al., 2004)

With wi ≡ w(si), write a GP joint density p(w) = p(w1,w2, . . . ,wn) as:

p(w1)p(w2 |w1)p(w3 |w1,w2) · · · p(wn |w1,w2, . . . ,wn−1)

Use “screening effect” to impose conditional independence and obtain:

p̃(w) = p(w1)p(w2 |w1)p(w3 |w1,w2)p(w4 |w1,w3) · · · p(wn |win ,wjn)

If w ∼ N(0,Kθ), then p̃(w) = N(w | 0, K̃θ)

K̃−1
θ is sparser than K−1

θ .
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Sparse Gaussian Processes

Sparse precision matrices

Two crucial facts
1 p̃(w) is a valid joint density from the model w ∼ N(0, K̃θ)
2 K̃−1

θ depends on Kθ and is sparse with at most nm2 non-zero entries
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Figure: Sparse precision matrices from neighbor-based approximation
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Nearest neighbor Gaussian process (NNGP)

Extension to a Nearest-neighbor GP (Datta et al., JASA, 2015)

Fix any “reference” set S = {s1, s2, . . . , sk}

N(si) =

 empty set for i = 1
{s1, s2, . . . , si−1} for 2 ≤ i ≤ m
m nearest neighbors of si among {s1, s2, . . . , si−1} for i > m

Model wS ∼ N(0, K̃θ) (“Vecchia prior”)

For any t outside S, define N(t) as the set of m-nearest neighbors of t in S

Construct w(t) =
∑k

i=1 ai(t)w(si) + η(t) with ai(t) = 0 if si /∈ N(t).

Nonzero ai(t)’s are specified according to p(w(t) |wN(t)).
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Nearest neighbor Gaussian process (NNGP)

For T = {t1, t2, . . . , tn} outside S, we define

p̃(wT |wS) =

n∏
i=1

p(w(ti) |wN(ti)) .

Generalize to any finite T as follows:

p̃(wT) =

∫
p̃(wS)p̃(wT\S |wS)

∏
{i | si∈S\T}

d(w(si))

Example: Model p̃(wS)p̃(wT |wS) = N(wS | 0, K̃θ)× N(wT |ATwS,DT)

A very convenient choice in practice: S = T , i.e., take set of observed
locations as reference set.
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Nearest neighbor Gaussian process (NNGP) Hierarchical NNGP

Hierarchical NNGP model

NNGP used as a sparsity inducing prior for hierarchical models.

Likelihood
N(y |Xβ+ZwT , τ

2I)× N(wT |ATwS,DT)× N(wS | 0, K̃θ)
× N(β |µβ,Vβ)× IG(τ 2 | aτ , bτ )× π(θ)

Gibbs’ sampler

Conjugate full conditionals for β, τ 2

Sequential updates for full conditional of w(ti)’s

Metropolis step for updating θ
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Nearest neighbor Gaussian process (NNGP) Hierarchical NNGP

Storage and computation
Never needs to store n×n distance matrix. Stores n small m×m matrices

Total flop count per iteration of Gibbs’ sampler is O(nm3) i.e linear in n

Scalable to massive datasets

Sudipto Banerjee (UCLA) Bayesian modeling for large geostatistical datasets PIMS, UBC Vancouver, May, 2015



Application to spatial datasets Simulation experiments

Simulation experiments

2500 locations on a unit square

y(ti) = β0 + β1X(ti) + w(ti) + ε(ti)

Single covariate generated from N(0, 1)

Spatial effects generated from GP(0, σ2R(ν, φ))

R(ν, φ) is Matern correlation function with smoothness ν and decay φ

Candidate models: Full GP, Low rank GP (PPGP) with 64 knots and
NNGP
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Application to spatial datasets Simulation experiments

(a) True w (b) Full GP (c) PPGP 64 knots

(d) NNGP, m = 10 (e) NNGP, m = 20

Figure: Univariate synthetic data analysisSudipto Banerjee (UCLA) Bayesian modeling for large geostatistical datasets PIMS, UBC Vancouver, May, 2015



Application to spatial datasets Simulation experiments
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Application to spatial datasets Simulation experiments

Table: Univariate synthetic data analysis

NNGP Predictive Process Full
True m = 10 m = 20 64 knots Gaussian Process

β0 1 1.00 (0.62, 1.31) 1.03 (0.65, 1.34) 1.30 (0.54, 2.03) 1.03 (0.69, 1.34)
β1 5 5.01 (4.99, 5.03) 5.01 (4.99, 5.03) 5.03 (4.99, 5.06) 5.01 (4.99, 5.03)
σ2 1 0.96 (0.78, 1.23) 0.94 (0.77, 1.20) 1.29 (0.96, 2.00) 0.94 (0.76, 1.23)
τ2 0.1 0.10 (0.08, 0.13) 0.10 (0.08, 0.13) 0.08 (0.04, 0.13) 0.10 (0.08, 0.12)
φ 12 12.93 (9.70, 16.77) 13.36 (9.99, 17.15) 5.61 (3.48, 8.09) 13.52 (9.92, 17.50)

G (Goodness of fit) – 77.84 76.40 1075.63 74.80
P (Penalization) – 340.40 337.88 200.39 333.27

D (G+P) – 418.24 414.28 1276.03 408.08
RMSPE – 1.2 1.2 1.68 1.2

Run time (Minutes) – 14.40 46.47 43.36 560.31

Parameter estimates for all models are similar

NNGP performs at par with Full GP, PPGP performs worse

NNGP yields huge computational gains
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Application to spatial datasets Forest biomass analysis

Back to the Forest biomass dataset

Number of spatial locations: n = 114, 371

Full GP and PPGP storage requirements� 38 gigabytes available

We use a hierarchical spatially varying coefficients NNGP model

Model
Biomass(t) = (β0 + β0(t)) + (β1 + β1(t))NDVI(t) + ε(t)

w(t) = (β0(t), β1(t))> ∼ Bivariate NNGP(0, K̃θ(·)), m = 5

Full inferential output: 46 hrs
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Application to spatial datasets Forest biomass analysis

(a) Observed biomass (b) Fitted biomass

(c) β0(t) (d) βNDVI(t)
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Conclusions Summary and future research

Conclusions

Unified platform for estimation, prediction and model comparison

Easily extends to multivariate and spatial-temporal processes

Posterior predictions, recovery of latent spatial surfaces

Superior performance, massive computation and storage gains over
existing models

Possible extension to spatial GLMs
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Conclusions Summary and future research

Thank you!
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